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1 Introduction and Preliminaries

In the present work, we introduce the concept of d∗-metric which is a probable
modification of the definition of ordinary metric. In this section we give some
properties about d∗-metric. In section 2, we prove two common fixed point theorem
for four weakly compatible maps in d∗-metric spaces.

In what follows, N the set of all natural numbers and R+ the set of all positive
real numbers.

Let binary operation � : R+ × R+ −→ R+ satisfies the following conditions:

(i) � is associative and commutative,
(ii) � is continuous.

Five typical examples are a � b = max{a, b}, a � b = a + b, a � b = ab, a � b =
ab + a + b and a � b = ab

max{a,b,1} for each a, b ∈ R+.

Definition 1.1. The binary operation � is said to satisfy α-property if there exists
a positive real number α such that

a � b ≤ α max{a, b}

for every a, b ∈ R+.
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Example 1.2. (1) If define a � b = a + b, for each a, b ∈ R+, then for α ≥ 2, we
have a � b ≤ α max{a, b}.

(2) If define a � b = ab
max{a,b,1} , for each a, b ∈ R+, then for α ≥ 1, we have

a � b ≤ α max{a, b}.

Definition 1.3. Let X be a nonempty set. A generalized metric (or d∗-metric)
on X is a function d∗ : X2 −→ R+ that satisfies the following conditions for each
x, y, z ∈ X.

(1) d∗(x, y) ≥ 0,
(2) d∗(x, y) = 0 if and only if x = y,
(3) d∗(x, y) = d∗(y, x),
(4) d∗(x, y) ≤ d∗(x, z) � d∗(z, y).

The pair (X, d∗) is called a generalized metric (or d∗-metric) space.

Some examples of such a function are

(a) Let X be a nonempty set. Define d∗(x, y) = d(x, y), for each x, y ∈ X,

where a � b = a + b for a, b ∈ R+ and d is an ordinary metric on X.

(b) If X = Rn then we define d∗(x, y) = ||x − y|| for every x, y ∈ Rn, where
a � b = ab + a + b for a, b ∈ R+ and || · || is a norm on Rn.

(c) Let X be a nonempty set. Define

d∗(x, y) =

{

0 , x = y

1 , otherwise
,

for each x, y ∈ X, where a � b = max{a, b} for a, b ∈ R+.

Let (X, d∗) be a d∗-metric space. For r > 0 define

Bd∗(x, r) = {y ∈ X : d∗(x, y) < r}.

Definition 1.4. Let (X, d∗) be a d∗-metric space and A ⊂ X.
(1) If for every x ∈ A there exists r > 0 such that Bd∗(x, r) ⊂ A, then the

subset A is called open subset of X. A subset A of X is said to be closed if the
complement of A in X is open.

(2) A subset A of X is said to be d∗-bounded if there exists r > 0 such that
d∗(x, y) < r for all x, y ∈ A.

(3)A sequence {xn} in X converges to x if and only if d∗(xn, x) = d∗(x, xn) →
0 as n → ∞. That is for each ε > 0 there exists n0 ∈ N such that

∀n ≥ n0 =⇒ d∗(x, xn) < ε.

(4) A sequence {xn} in X is called a Cauchy sequence if for each ε > 0 , there
exists n0 ∈ N such that d∗(xn, xm) < ε for each n,m ≥ n0. The d∗-metric space
(X, d∗) is said to be complete if every Cauchy sequence is convergent.

Let τ be the set of all A ⊂ X with x ∈ A if and only if there exists r > 0 such
that Bd∗(x, r) ⊂ A. Then τ is a topology on X (induced by the d∗-metric d∗).
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Lemma 1.5. Let (X, d∗) be a d∗-metric space such that � satisfy α-property with
α ≤ 1. If r > 0, then ball Bd∗(x, r) is open in X.

Proof. Let z ∈ Bd∗(x, r), hence d∗(x, z) < r. Let d∗(x, z) = δ and r′ = r − δ. Let
y ∈ Bd∗(z, r′), hence we have d∗(y, z) < r′ = r−δ. It follows, d∗(y, z)+d∗(x, z) < r.
Thus

d∗(x, y) ≤ d∗(x, z) � d∗(z, y)

≤ α max{d∗(x, z), d∗(z, y)}

≤ d∗(x, z) + d∗(z, y) < r.

Therefore Bd∗(z, r′) ⊆ Bd∗(x, r). Hence the ball Bd∗(x, r) is open.

Lemma 1.6. Let (X, d∗) be a d∗-metric space such that � satisfy α-property with
α > 0. If a sequence {xn} in X converges to x, then x is unique.

Proof. Let xn −→ y and y 6= x. Since {xn} converges to x and y, then for each
ε > 0 there exists n1, n2 ∈ N such that for n ≥ n1, d∗(x, xn) < ε

α
and for n ≥ n2,

d∗(y, xn) < ε
α
. If we set n0 = max{n1, n2}, then for every n ≥ n0 we have by

triangular inequality

d∗(x, y) ≤ d∗(x, xn) � d∗(xn, y)

≤ α max{d∗(x, xn), d∗(xn, y)}

< α max{
ε

α
,

ε

α
} = ε.

Hence d∗(x, y) = 0 which is a contradiction. So, x = y.

Lemma 1.7. Let (X, d∗) be a d∗-metric space, such that � satisfy α-property with
α > 0. If a sequence {xn}in X is converges to x, then the sequence {xn} is
Cauchy.

Proof. Since xn −→ x, for each ε > 0 there exists n0 ∈ N such that for n ≥ n0

d∗(xn, x) < ε
α
. Then for every n,m ≥ n0, by triangular inequality, we have

d∗(xn, xm) ≤ d∗(xn, x) � d∗(x, xm)

≤ α max{d∗(xn, x), d∗(x, xm)}

< α max{
ε

α
,

ε

α
} = ε.

Hence {xn} is a Cauchy sequence.

In 1998, Jungck and Rhoades [4] introduced the concept of weak compatible
mappings and proved some common fixed point theorems using this concept on
ordinary metric spaces. After then, many fixed point results have been obtained
using weakly compatible mappings on ordinary metric spaces (see [1], [2], [3], [5]).
Similarly we can give the concept of weakly compatible mappings on d∗-metric
spaces as follows.
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Definition 1.8. Let A and S be mappings from a d∗-metric space (X, d∗) into
itself. Then the mappings are said to be weakly compatible if they are commute at
their coincidence point, that is, Ax = Sx implies that ASx = SAx.

2 Main Results

Theorem 2.1. Let (X, d∗) be a complete d∗-metric space, such that � satisfy α-
property with α ≤ 1. If A,B, S and T be self mappings of X into itself satisfying:

(i) A(X) ⊆ T (X), B(X) ⊆ S(X) and T (X) or S(X) is a closed subset of X,
(ii) The pairs (A,S) and (B, T ) are wakly compatible,
(iii) for all x, y ∈ X,

d∗(Ax,By) ≤ k1(d
∗(Sx, Ty) � d∗(Ax, Sx) � d∗(By, Ty))

+k2(d
∗(Sx,By) � d∗(Ax, Ty))

where k1, k2 > 0 and 0 < k1 + k2 < 1.
Then A,B, S and T have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point in X. By (i), we can choose a point x1 in
X such that y0 = Ax0 = Tx1 and y1 = Bx1 = Sx2. In general, there exists a
sequence {yn} such that, y2n = Ax2n = Tx2n+1 and y2n+1 = Bx2n+1 = Sx2n+2,
for n = 1, 2, · · · . We claim that the sequence {yn} is a Cauchy sequence.

By (iii), we have

d∗(y2n, y2n+1) = d∗(Ax2n, Bx2n+1)

≤ k1(d
∗(Sx2n, Tx2n+1) � d∗(Ax2n, Sx2n) � d∗(Bx2n+1, Tx2n+1))

+k2(d
∗(Sx2n, Bx2n+1) � d∗(Ax2n, Tx2n+1))

≤ k1(d
∗(y2n−1, y2n) � d∗(y2n, y2n−1) � d∗(y2n+1, y2n))

+k2(d
∗(y2n−1, y2n+1) � d∗(y2n, y2n)).

If we put dn = d∗(yn, yn+1), then by above inequality we have

d2n ≤ k1(d2n−1 � d2n−1 � d2n) + k2(d
∗(y2n−1, y2n+1) � 0).

Hence

d2n ≤ k1 max{d2n, d2n−1} + k2 max{d∗(y2n−1, y2n+1), 0}

≤ k1 max{d2n, d2n−1} + k2(d
∗(y2n−1, y2n) � d∗(y2n, y2n+1))

≤ k1 max{d2n, d2n−1} + k2 max{d∗(y2n−1, y2n), d∗(y2n, y2n+1)}

≤ k1 max{d2n, d2n−1} + k2 max{d2n−1, d2n}

= (k1 + k2)max{d2n, d2n−1}.
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If d2n ≥ d2n−1, we have

d2n ≤ (k1 + k2)d2n < d2n,

which is a contradiction. It follows that

d2n < d2n−1.

Similarly, it is easy to see that d2n+1 < d2n. Therefore, dn < dn−1, for n =
1, 2, · · · . Thus by the above inequalities we have

dn ≤ (k1 + k2)dn−1 = kdn−1,

where k = k1 + k2 < 1. Thus

dn ≤ kdn−1 ≤ k2dn−2 ≤ · · · ≤ knd0.

That is
d∗(yn, yn+1) ≤ knd∗(y0, y1) −→ 0

as n → ∞. If m ≥ n, then

d∗(yn, ym) ≤ d∗(yn, yn+1) � d∗(yn+1, yn+2) � · · · � d∗(ym−1, ym)

≤ max{d∗(yn, yn+1), · · · , d∗(ym−1, ym)} −→ 0

as n → ∞. It follows that, the sequence {yn} is a Cauchy sequence and by the
completeness of X, {yn} converges to y ∈ X. Then

lim
n→∞

yn = lim
n→∞

Ax2n = lim
n→∞

Bx2n+1 = lim
n→∞

Sx2n+2 = lim
n→∞

Tx2n+1 = y.

Now let T (X) is closed subset of X, then there exists v ∈ X such that Tv = y.
We now prove that Bv = y. By (iii), we get

lim
n→∞

d∗(Ax2n, Bv) ≤ lim
n→∞

[k1(d(Sx2n, T v) � d∗(Ax2n, Sx2n) � d∗(Bv, Tv))

+k2(d
∗(Sx2n, Bv) � d∗(Ax2n, T v))]

and so

d∗(y,Bv) ≤ k1(d
∗(y, Tv) � d∗(y, y) � d∗(Bv, y))

+k2(d
∗(y,Bv) � d∗(y, y))

≤ k1 max{d∗(y, y), d∗(y, y), d∗(Bv, y)}

+k2 max{d∗(y,Bv), d∗(y, y)}

= (k1 + k2)d
∗(y,Bv)

< d∗(y,Bv),

which is a contradiction if d∗(y,Bv) > 0. Hence Bv = y = Tv. Since B and T are
weakly compatible mappings, then we have BTv = TBv and so By = Ty.
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Now, we prove that By = y. By (iii), we get

lim
n→∞

d∗(Ax2n, By) ≤ lim
n→∞

[k1(d(Sx2n, T y) � d∗(Ax2n, Sx2n) � d∗(By, Ty))

+ k2(d
∗(Sx2n, By) � d∗(Ax2n, T y))].

Hence,

d∗(y,By) ≤ k1(d
∗(y, Ty) � d∗(y, y) � d∗(By, y))

+k2(d
∗(y,By) � d∗(y, y))

≤ k1 max{d∗(y,By), d∗(y, y)}

+k2 max{d∗(y,By), d∗(y, y)}

= (k1 + k2)d
∗(y,By)

< d∗(y,By),

which is a contradiction if d∗(y,By) > 0. Thus By = y = Ty.
Since B(X) ⊆ S(X), there exists w ∈ X such that Sw = y. We show that

Aw = y. From (iii) we have

d∗(Aw,By) ≤ k1(d
∗(Sw, Ty) � d∗(Aw,Sw) � d∗(By, Ty))

+ k2(d
∗(Sw,By) � d∗(Aw, Ty))

and it follows that

d∗(Aw, y) ≤ k1(d
∗(y, y) � d∗(Aw, y) � d∗(y, y))

+k2(d
∗(y, y) � d∗(Aw, y))

≤ k1 max{d∗(y, y), d∗(Aw, y)}

+k2 max{d∗(y, y), d∗(Aw, y)}

= (k1 + k2)d
∗(Aw, y)

< d∗(Aw, y),

which is a contradiction if d∗(Aw, y) > 0. Thus Aw = y and hence Aw = y = Sw.
Since A and S are weakly compatible, then ASw = SAw and so Ay = Sy.

Now, we show that Ay = y. From (iii), we get

d∗(Ay,By) ≤ k1(d
∗(Sy, Ty) � d∗(Ay, Sy) � d∗(By, Ty))

+ k2(d
∗(Sy,By) � d∗(Ay, Ty))

and it follows that

d∗(Ay, y) ≤ k1(d
∗(Sy, y) � d∗(Ay, Sy) � d∗(y, y))

+k2(d
∗(Sy, y) � d∗(Ay, y))

≤ k1 max{d∗(Ay, y), d∗(Ay,Ay), d∗(y, y)}

+k2 max{d∗(Ay, y), d∗(Ay, y)}

= (k1 + k2)d
∗(Ay, y)

< d∗(Ay, y),
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which is a contradiction if d∗(Ay, y) > 0. Thus, Ay = y and therefore Ay = Sy =
By = Ty = y. That is y is a cammon fixed point for A,B, T, S.

The proof is similar when S(X) is assumed to be a closed subset of X.

Now to prove uniqueness assume that x be another common fixed point of
A,B, S and T . Then from (iii) we have

d∗(x, y) = d∗(Ax,By)

≤ k1(d
∗(Sx, Ty) � d∗(Ax, Sx) � d∗(By, Ty))

+ k2(d
∗(Sx,By) � d∗(Ax, Ty)),

and so

d∗(x, y) ≤ k1 max{d∗(x, y), d∗(x, x), d∗(y, y)}

+k2 max{d∗(x, y), d∗(x, y)}

= (k1 + k2)d
∗(x, y)

< d∗(x, y),

which is a contradiction if d∗(x, y) > 0. Thus x = y. This completes the proof.

In the following theorem, let d is an ordinary metric on X.

Theorem 2.2. Let (X, d) be a complete metric space, such that � satisfy α-
property with α > 0. If A,B, S and T be self mappings of X into itself, satisfying:

(i) A(X) ⊆ T (X), B(X) ⊆ S(X) and T (X) or S(X) is a closed subset of X,

(ii) The pairs (A,S) and (B, T ) are wakly compatible,

(iii) for all x, y ∈ X,

d(Ax,By) ≤ k1(d(Sx, Ty) � d(Ax, Sx)) + k2(d(Sx, Ty) � d(By, Ty))

+k3(d(Sx, Ty) �
d(Sx,By) + d(Ax, Ty)

2
)

where k1, k2, k3 > 0 and 0 < α(k1 + k2 + k3) < 1.

Then A,B, S and T have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point in X. By (i), we can choose a point x1 in
X such that y0 = Ax0 = Tx1 and y1 = Bx1 = Sx2. In general, there exists a
sequence {yn} such that, y2n = Ax2n = Tx2n+1 and y2n+1 = Bx2n+1 = Sx2n+2,
for n = 1, 2, · · · . We claim that the sequence {yn} is a Cauchy sequence.
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By (iii), we have

d(y2n, y2n+1) = d(Ax2n, Bx2n+1)

≤ k1(d(Sx2n, Tx2n+1) � d(Ax2n, Sx2n))

+k2(d(Sx2n, Tx2n+1) � d(Bx2n+1, Tx2n+1))

+k3(d(Sx2n, Tx2n+1) �
d(Sx2n, Bx2n+1) + d(Ax2n, Tx2n+1)

2
)

= k1(d(y2n−1, y2n) � d(y2n, y2n−1))

+k2(d(y2n−1, y2n) � d(y2n+1, y2n))

+k3(d(y2n−1, y2n) �
d(y2n−1, y2n+1) + d(y2n, y2n)

2
).

If we put dn = d(yn, yn+1), then by above inequality we have

d2n ≤ k1(d2n−1 � d2n−1) + k2(d2n−1 � d2n) + k3(d2n−1 �
d(y2n−1, y2n+1)

2
).

Hence

d2n ≤ k1αd2n−1 + k2α max{d2n−1, d2n} + k3α max{d2n−1,
d2n−1 + d2n

2
}.

If d2n ≥ d2n−1, then we have

d2n ≤ k1αd2n + k2αd2n + k3αd2n < d2n,

which is a contradiction. It follows that

d2n < d2n−1.

Similarly, it is easy to see that d2n+1 < d2n. Therefore, dn < dn−1, for n =
1, 2, · · · .

Thus by above inequality we get

dn ≤ α(k1 + k2 + k3)dn−1 = kdn−1,

where α(k1 + k2 + k3) = k < 1. Hence

dn ≤ kdn−1 ≤ k2dn−2 ≤ · · · ≤ knd0.

That is
d(yn, yn+1) ≤ knd(y0, y1) −→ 0

as n → ∞. If m ≥ n, then

d(yn, ym) ≤ d(yn, yn+1) + d(yn+1, yn+2) + · · · + d(ym−1, ym)

≤ knd(y0, y1) + kn+1d(y0, y1) · · · + km−1d(y0, y1)

=
kn

1 − k
d(y0, y1) −→ 0
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as n → ∞. It follows that, the sequence {yn} is Cauchy sequence and by the
completeness of X, {yn} converges to y ∈ X. Then

lim
n→∞

yn = lim
n→∞

Ax2n = lim
n→∞

Bx2n+1 = lim
n→∞

Sx2n+2 = lim
n→∞

Tx2n+1 = y.

Let T (X) is closed subset of X, then there exists v ∈ X such that Tv = y.

We now prove that Bv = y. By (iii), we get

lim
n→∞

d(Ax2n, Bv) ≤ lim
n→∞

[k1(d(Sx2n, T v) � d(Ax2n, Sx2n))

+k2(d(Sx2n, T v) � d(Bv, Tv))

+k3(d(Sx2n, T v) �
d(Sx2n, Bv) + d(Ax2n, T v)

2
)]

and so

d(y,Bv) ≤ k1(d(y, Tv) � d(y, y)) + k2(d(y, Tv) � d(Bv, Tv))

+k3(d(y, Tv) �
d(y,Bv) + d(y, Tv)

2
)

≤ k1α max{d(y, Tv), 0} + k2α max{0, d(Bv, y)}

+k3α max{0,
d(y,Bv) + 0

2
}

< d(y,Bv).

It follows that Bv = y = Tv. Since B and T are two weakly compatible mappings,
we have BTv = TBv and so By = Ty.

Next, we prove that By = y. By (iii), we get

lim
n→∞

d(Ax2n, By) ≤ lim
n→∞

[k1(d(Sx2n, T y) � d(Ax2n, Sx2n))

+k2(d(Sx2n, T y) � d(By, Ty))

+k3(d(Sx2n, T y) �
d(Sx2n, By) + d(Ax2n, T y)

2
)].

Hence,

d(y,By) ≤ k1(d(y, Ty) � d(y, y)) + k2(d(y, Ty) � d(By, Ty))

+k3(d(y, Ty) �
d(y,By) + d(y, Ty)

2
)

≤ k1α max{d(y, Ty), d(y, y)} + k2α max{d(y, Ty), d(By, Ty)

+k3α max{d(y, Ty),
d(y,By) + d(y, Ty)

2
}

< d(y,By)

and so By = y.
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Since B(X) ⊆ S(X), there exists w ∈ X such that Sw = y. We prove that
Aw = y. By (iii) we have

d(Aw,By) ≤ k1(d(Sw, Ty) � d(Aw,Sw)) + k2(d(Sw, Ty) � d(By, Ty))

+k3(d(Sw, Ty) �
d(Sw,By) + d(Aw, Ty)

2
)

and it follows that

d(Aw, y) ≤ k1(d(Sw, y) � d(Aw,Sw)) + k2(d(Sw, y) � d(y, y))

+k3(d(Sw, y) �
d(Sw, y) + d(Aw, y)

2
)

≤ k1α max{d(Sw, y), d(Aw,Sw)} + k2α max{d(Sw, y), d(y, y)}

+k3α max{d(Sw, y),
d(Sw, y) + d(Aw, y)

2
}

< d(Aw, y).

This implies that Aw = y and hence Aw = Sw = y. Since A and S are weakly
compatible, then ASw = SAw and so Ay = Sy.

Now, we prove that Ay = y. From (iii), we have

d(Ay,By) ≤ k1(d(Sy, Ty) � d(Ay, Sy)) + k2d(Sy, Ty) � d(By, Ty))

+k3(d(Sy, Ty) �
d(Sy,By) + d(Ay, Ty)

2
)

and it follows that

d(Ay, y) ≤ k1(d(Sy, y) � d(Ay, Sy)) + k2(d(Sy, y) � d(y, y))

+k3(d(Sy, y) �
d(Sy, y) + d(Ay, y)

2
)

≤ k1α max{d(Sy, y), d(Ay, Sy)} + k2α max{d(Sy, y), d(y, y)}

+k3α max{d(Sy, y),
d(Sy, y) + d(Ay, y)

2
}

< d(Ay, y)

and it follows that Ay = y and therefore Ay = Sy = By = Ty = y. That is y is a
common fixed point for A,B, T, S.

The proof is similar when S(X) is assumed to be a closed subset of X.
Now to prove uniqueness assume that x be another common fixed point of

A,B, S and T . Then

d(x, y) = d(Ax,By)

≤ k1(d(Sx, Ty) � d(Ax, Sx)) + k2(d(Sx, Ty) � d(By, Ty))

+k3(d(Sx, Ty) �
d(Sx,By) + d(Ax, Ty)

2
)
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and so

d(x, y) = d(Ax,By)

≤ k1(d(x, y) � d(x, x)) + k2(d(x, y) � d(y, y))

+k3(d(x, y) �
d(x, y) + d(x, y)

2
)

< d(x, y).

Thus it follows that x = y.

Corollary 2.3. Let (X, d) be a complete metric space. If A,B, S and T be self
mappings of X into itself satisfying:

(i) A(X) ⊆ T (X), B(X) ⊆ S(X) and T (X) or S(X) is a closed subset of X,

(ii) The pairs (A,S) and (B, T ) are wakly compatible,

(iii) for all x, y ∈ X,

d(Ax,By) ≤ k1(d(Sx, Ty) + d(Ax, Sx)) + k2(d(Sx, Ty) + d(By, Ty))

+k3(d(Sx, Ty) +
d(Sx,By) + d(Ax, Ty)

2
),

where k1, k2, k3 > 0 and 0 < k1 + k2 + k3 < 1

2
.

Then A,B, S and T have a unique common fixed point in X.

Proof. If define a � b = a + b for each a, b ∈ R+, then for α ≥ 2, we have
a � b ≤ α max{a, b}. Also if put α = 2 then we get 0 < α(k1 + k2 + k3) < 1,
hence all conditions of Theorem 2.2 are holds. Thus A,B, S and T have a unique
common fixed point in X.
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