Thai Journal of **Math**ematics Volume 20 Number 4 (2022) Pages 1519–1533

http://thaijmath.in.cmu.ac.th

Fixed Points of Various Types of Operators in Modular Metric Spaces

Sumana Pal* and Ansar Gazi

Department of Mathematics and Statistics, Aliah University, IIA/27, New Town, Kolkata 700160, West Bengal, India e-mail : sumana.pal@gmail.com (S. Pal); ansargazi3041993@gmail.com (A. Gazi)

Abstract This paper is mainly devoted to the study of fixed point theorems for generalized contractive type mappings over a complete modular metric space. A new approach for obtaining fixed point result using a Cantor's Intersection like Theorem on modular metric spaces has been investigated. The notion of orbital completeness has been exploited in search of fixed point for Caristi-type mapping. We also explore a result on fixed points for Ćirić operator over a complete modular metric space. Further we give a result on common fixed point which extends a result due to Jungck.

MSC: 47H10; 47H09 Keywords: modular metric spaces; fixed points; contractive type operators; orbital completeness

Submission date: 28.07.2021 / Acceptance date: 15.02.2022

1. INTRODUCTION

A new direction in fixed point theory was initiated in 2010 when Chistyakov ([1],[2]) introduced the concept of modular metric spaces. He first developed some theory related to these spaces and then gave some fixed point results [3] on modular metric spaces. This study continued further with Abdou and Khamsi ([4], [5], [6]) proving many new theorems. Mongkolkeha et al. [7] explored contraction mappings in this setting to find fixed point theorems. The theory has evolved with works done by authors like Abdou [8], Abobaker and Ryan [9], Mitrovic et al. [10] and Hussain [11]. Hitherto many researchers have been pursuing the study of fixed points in the realm of modular metric spaces (see [12], [13], [14], [15], [16], [17], [18], [19]).

First we recall briefly the basic concepts and facts in modular metric spaces.

Let X be any arbitrary non-empty set and $\omega : (0, \infty) \times X \times X \to [0, \infty]$ be written as $\omega_{\lambda}(x, y) = \omega(\lambda, x, y)$, for each $\lambda > 0$ and $x, y \in X$.

^{*}Corresponding author.

Definition 1.1. [1, Definition 2.1] Let X be a non-empty set and $\omega : (0, \infty) \times X \times X \rightarrow [0, \infty]$ satisfy the following:

- (1) $\omega_{\lambda}(x, y) = 0$ for all $\lambda > 0$ if and only if x = y;
- (2) $\omega_{\lambda}(x,y) = \omega_{\lambda}(y,x);$
- (3) $\omega_{\lambda+\mu}(x,z) \leq \omega_{\lambda}(x,y) + \omega_{\mu}(y,z);$

for all $\lambda, \mu > 0$ and for all $x, y, z \in X$. Then ω is said to be a metric modular on X.

For $x, y \in X$, the function $0 < \lambda \mapsto \omega_{\lambda}(x, y)$ is nonincreasing on $(0, \infty)$.

A metric modular ω on X is said to be convex if, instead of (3), it satisfies the inequality

$$\omega_{\lambda+\mu}(x,z) \le \frac{\lambda}{\lambda+\mu}\omega_{\lambda}(x,y) + \frac{\mu}{\mu+\lambda}\omega_{\mu}(y,z)$$

for all $\lambda, \mu > 0$ and for all $x, y, z \in X$.

Given a modular ω on X and a point x_0 in X, the two sets

$$X_{\omega} \equiv X_{\omega}(x_0) = \{ x \in X : \omega_{\lambda}(x, x_0) \to 0 \text{ as } \lambda \to \infty \}$$

and

$$X_{\omega}^* \equiv X_{\omega}^*(x_0) = \{ x \in X : \exists \lambda = \lambda(x) > 0 \text{ such that } \omega_{\lambda}(x, x_0) < \infty \}$$

are each known as modular spaces (around x_0).

In general, $X_{\omega}(x_0) \subset X_{\omega}^*(x_0)$. The modular space X_{ω} can be equipped with a metric d_{ω} , generated by ω and given by

 $d_{\omega}(x,y) = \inf\{\lambda > 0 : w_{\lambda}(x,y) \le \lambda\}, \text{ for all } x, y \in X_{\omega}.$

It is known that d_{ω} is a well defined metric on X_{ω}^* also. If ω is convex then $X_{\omega}(x_0) = X_{\omega}^*(x_0)$ and this common set can be endowed with a metric d_{ω}^* given by

 $d^*_{\omega}(x,y) = \inf\{\lambda > 0 : \omega_{\lambda}(x,y) \le 1\}, \text{ for all } x, y \in X^*_{\omega}.$

Definition 1.2. Let X_{ω} be a modular metric space.

(1) A sequence $\{x_n\}$ in X_{ω} is said to be modular convergent or ω -convergent to an element $x \in X$ if there exists a number $\lambda > 0$, possibly depending on $\{x_n\}$ and x, such that

$$\lim_{n \to \infty} \omega_\lambda(x_n, x) = 0.$$

Here x is called a modular limit of the sequence $\{x_n\}$.

(2) A sequence $\{x_n\}$ in X_{ω} is said to be modular Cauchy or ω -Cauchy if there exists a number $\lambda > 0$, possibly depending on the sequence, such that

 $\omega_{\lambda}(x_m, x_n) \to 0 \text{ as } m, n \to \infty.$

(3) The modular space X_{ω} is said to be modular complete or ω -complete if every ω -Cauchy sequence from X_{ω} is ω -convergent.

Let (X, d) be a metric space with at least two points. There are several ways to define a metric modular on X.

Example 1.3. [9, Examples 2.1 - 2.3] We take (X, d) to be a metric space.

(1) Let for all $x, y \in X$, $\omega_{\lambda}(x, y) = d(x, y)$. In this case, property (3) in the definition of a modular is just the triangle inequality for the metric. This modular is not convex as we can see by taking z = y and $\mu = \lambda$.

- (2) Let $\omega_{\lambda}(x, y) = \frac{d(x, y)}{\lambda}$ for all $\lambda > 0$. In this case, we can think of $\omega_{\lambda}(x, y)$ as the average velocity required to travel from x to y in time λ . A simple calculation with the triangle inequality shows that this modular is convex.
- (3) Let $\omega_{\lambda}(x,y) = \frac{d(x,y)}{\lambda + d(x,y)}$ for all $\lambda > 0$. It can be shown that this modular is not convex if we take z = y and $\mu = \lambda$.

Example 1.4. [7, Example 3.7] Let $X = \{(a, 0) \in \mathbb{R}^2 : 0 \le a \le 1\} \cup \{(0, b) \in \mathbb{R}^2 : 0 \le b \le 1\}$. Define the mapping $\omega : (0, \infty) \times X \times X \to [0, \infty]$ by

$$\begin{split} \omega_{\lambda}((a_{1},0),(a_{2},0)) &= \frac{4|a_{1}-a_{2}|}{3\lambda}, \\ \omega_{\lambda}((0,b_{1}),(0,b_{2})) &= \frac{|b_{1}-b_{2}|}{\lambda}, \\ \omega_{\lambda}((a,0),(0,b)) &= \frac{4a}{3\lambda} + \frac{b}{\lambda} = \omega_{\lambda}((0,b),(a,0)). \end{split}$$

We note that $\omega_{\lambda}((0,0),(0,0)) = 0$ is satisfied by all three conditions above. Here $X = X_{\omega}$ and X_{ω} is a ω -complete modular metric space.

Let ω be a metric modular on X and X_{ω} be a modular metric space induced by ω . For any $x \in X_{\omega}$ and $r \ge 0$, the set $\omega - B_{\delta}(x) = \{y \in X_{\omega} : \omega_{\delta}(x, y) < r; \delta > 0\}$ is called a modular open ball. A modular closed ball is defined as $\omega - B_{\delta}[x] = \{y \in X_{\omega} : \omega_{\delta}(x, y) \le r; \delta > 0\}$.

Definition 1.5.

- (1) A subset M of X_{ω} is said to be ω -closed if the ω -limit of any ω -convergent sequence of M is in M.
- (2) A subset M of X_{ω} is said to be ω -bounded if

 $\sup\{\omega_{\lambda}(x,y): x, y \in X, \lambda > 0\} < \infty.$

(3) A function $f: X_{\omega} \to \mathbb{R}$ is said to be ω -lower semicontinuous at $u \in X_{\omega}$ if given $\epsilon > 0$, there is a $\delta > 0$ such that

$$f(x) > f(u) - \epsilon$$
 for $x \in \omega - B_{\delta}(u)$.

2. Main Results

Here we establish a Cantor's Intersection like theorem in a complete modular metric space. We begin with the following definition.

Definition 2.1. The diameter of an ω -bounded subset M of X_{ω} is denoted by ω -Diam(M) and is defined by

$$\omega\text{-Diam}(M) = \sup\{\omega_{\lambda}(x, y) : x, y \in X, \lambda > 0\}.$$

Lemma 2.2. Let ω be a metric modular on X and X_{ω} be a modular metric space induced by ω . Let F be a ω -bounded subset of X_{ω} . Then its closure is bounded and ω -Diam $(\overline{F}) = \omega$ -Diam(F).

Proof. Since $F \subseteq \overline{F}$, we have

$$0 \le \sup\{\omega_{\lambda}(x, y) : x, y \in F, \lambda > 0\} \le \sup\{\omega_{\lambda}(x, y) : x, y \in \overline{F}, \lambda > 0\}$$
$$\Rightarrow \omega \operatorname{-Diam}(F) \le \omega \operatorname{-Diam}(\overline{F}).$$
(2.1)

Let $u, v \in \overline{F}$ be such that $\omega_{\lambda}(u, v) \geq 0$, for $\lambda > 0$. Then given $\epsilon > 0$, there exist $z_1, z_2 \in F$ to satisfy $\omega_{\frac{\lambda}{2}}(u, z_1) < \frac{\epsilon}{2}$ and $\omega_{\frac{\lambda}{2}}(v, z_2) < \frac{\epsilon}{2}$. Therefore

$$\begin{split} \omega_{\lambda}(u,v) &\leq \omega_{\frac{\lambda}{3}}(u,z_{1}) + \omega_{\frac{\lambda}{3}}(z_{1},z_{2}) + \omega_{\frac{\lambda}{3}}(z_{2},v) \\ &< \epsilon + \omega_{\frac{\lambda}{3}}(z_{1},z_{2}), \\ \Rightarrow \omega_{\lambda}(u,v) &< \epsilon + \omega \text{-Diam}(F), \\ \Rightarrow \omega \text{-Diam}(\bar{F}) &< \epsilon + \omega \text{-Diam}(F). \end{split}$$

As $\epsilon > 0$ is arbitrary, we get

$$\omega - \operatorname{Diam}(\bar{F}) \le \omega - \operatorname{Diam}(F). \tag{2.2}$$

Combining (2.1) and (2.2), we get ω -Diam $(F) = \omega$ -Diam (\overline{F}) .

Theorem 2.3. (Cantor's Intersection like Theorem) Let ω be a metric modular on Xand X_{ω} be a modular metric space induced by ω . Let $\{F_n\}$ be a monotonically decreasing sequence of non-empty closed subsets of X_{ω} such that ω -Diam $(F_n) \to 0$ as $n \to \infty$. Then $F = \bigcap_{n=1}^{\infty} F_n$ contains exactly one point if and only if X_{ω} is a complete modular metric space.

Proof. We construct a sequence $\{x_n\}$ in X_{ω} by selecting a point $x_n \in F_n$ for each n. Since the sets $\{F_n\}$ are nested, so $x_n \in F_m$, for all $n \ge m$. Let $\epsilon > 0$ be given. Since ω -Diam $(F_n) \to 0$, there exists a positive integer N such that ω -Diam $(F_N) < \epsilon$. It is clear that for all $n, m \ge N$, $x_n, x_m \in F_N$ and as such we have $\omega_{\lambda}(x_m, x_n) \le \omega$ -Diam $(F_N) < \epsilon$ for all $n, m \ge N$. Thus $\{x_n\}$ is a ω -Cauchy sequence in X_{ω} . Since X_{ω} is a complete modular metric space, so there exists $x \in X_{\omega}$ such that $x_n \to x$.

We now claim that $x \in \bigcap F_n$.

Let n be fixed. Then the subsequence $\{x_n, x_{n+1}, x_{n+2}, \ldots\}$ of $\{x_n\}$ is contained in F_n and still converges to x. But F_n being a closed subspace of the complete modular metric space X_{ω} , it is complete and so $x \in F_n$. This is true for each $n \in \mathbb{N}$. Hence $x \in \bigcap F_n$. This shows that $\bigcap F_n$ is nonempty.

Finally to prove that x is the only point in the intersection $\bigcap F_n$. Let $x \in \bigcap F_n$ and $y \in \bigcap F_n$. Then x and y both are in F_n , for each $n \in \mathbb{N}$. Therefore $0 \leq \omega_\lambda(x, y) \leq \omega$ -Diam $(F_n) \to 0$ as $n \to \infty$. Then $\omega_\lambda(x, y) = 0 \Rightarrow x = y$. Hence such $x \in X$ is unique and consequently $F = \bigcap F_n$ is a singleton set.

Conversely, let for every decreasing sequence $\{F_n\}$ of non-empty closed sets with ω -Diam $(F_n) \to 0$ as $n \to \infty$ has exactly one point in its intersection. Let $\{x_n\}$ be any ω -Cauchy sequence in X_{ω} . Let G_n be the range of the sequence $\{x_n, x_{n+1}, x_{n+2}, \ldots\}$. Obviously $G_1 \supseteq G_2 \supseteq G_3 \ldots$ and so $\{x_n\}$ is ω -Cauchy. This yields ω -Diam $(G_n) \to 0$ as $n \to 0$ and hence ω -Diam $(\bar{G}_n) \to 0$ as $n \to 0$. Then by hypothesis, $\bigcap \bar{G}_n$ consists of a single point x (say). Thus

$$\omega_{\lambda}(x, x_n) \leq \omega \operatorname{-Diam}(G_n) \to 0.$$

This gives

$$\omega_{\lambda}(x, x_n) \to 0 \text{ as } n \to \infty$$

Hence $\{x_n\}$ converges to x in X_{ω} . Therefore X_{ω} is complete.

Next we prove a fixed point theorem for a mixed type mapping employing Cantor's Intersection like theorem.

Lemma 2.4. Let ω be a metric modular on X and X_{ω} be a modular metric space induced by ω and T be a self mapping on ω satisfying the following condition:

$$\omega_{\lambda}(Tx, Ty) \le \alpha \omega_{\lambda}(x, Tx) + \beta \omega_{\lambda}(y, Ty) + \gamma \omega_{\lambda}(x, y),$$

where $\alpha + \beta + \gamma < 1$ and $\alpha, \beta, \gamma \ge 0$ for all $x, y \in X_{\omega}$.

Let $\{\alpha_n\}$ be a sequence of reals with $0 < \alpha_n < 1$ for all n and $\lim_{n \to \infty} \alpha_n = 0$. For each $n \in \mathbb{N}$, if the set

$$G_n = \{ x \in X_\omega : \omega_\lambda(x, Tx) \le \alpha_n, \lambda > 0 \}$$

is nonempty, then $\{G_n\}$ is a decreasing sequence of sets with ω -Diam $(G_n) \to 0$.

Proof. Clearly, $\{G_n\}$ is a monotone decreasing sequence. Let x, y be elements in G_n so that $\omega_{\lambda}(x, Tx) \leq \alpha_n$ and $\omega_{\lambda}(y, Ty) \leq \alpha_n$. Now

$$\begin{aligned}
\omega_{3\lambda}(x,y) &\leq \omega_{2\lambda}(x,Ty) + \omega_{\lambda}(Ty,y) \\
&\leq \omega_{\lambda}(x,Tx) + \omega_{\lambda}(Tx,Ty) + \omega_{\lambda}(Ty,y) \\
&\leq 2\alpha_n + \omega_{\lambda}(Tx,Ty) \\
&\leq 2\alpha_n + \alpha\omega_{\lambda}(x,Tx) + \beta\omega_{\lambda}(y,Ty) + \gamma\omega_{\lambda}(x,y) \\
&\leq (2 + \alpha + \beta)\alpha_n + \gamma\omega_{\lambda}(x,y) \\
&\leq (2 + \alpha + \beta)\alpha_n + \gamma \omega \text{-Diam}(G_n).
\end{aligned}$$

Then

which

$$\sup\{\omega_{3\lambda}(x,y): x, y \in G_n, \lambda > 0\} \leq (2 + \alpha + \beta) \alpha_n + \gamma \ \omega \text{-Diam}(G_n),$$

gives $\omega \text{-Diam}(G_n)(1 - \gamma) \leq (2 + \alpha + \beta) \alpha_n$, and so

$$\omega$$
-Diam $(G_n) \le \frac{(2+\alpha+\beta)}{1-\gamma} \ \alpha_n \to 0 \text{ as } n \to \infty$

Lemma 2.5. Let ω be a metric modular on X and X_{ω} be a modular metric space induced by ω . If the function $f : X_{\omega} \to \mathbb{R}^+$ defined by $f(x) = \omega_{\lambda}(x, Tx)$ is a ω -lower semicontinuous function then the sets G_n as constructed in Lemma 2.4 are ω -closed.

Proof. It is a consequence of ω -lower semicontinuity property of f.

Lemma 2.6. Let ω be a metric modular on X and X_{ω} be a modular metric space induced by ω . A function $T : X_{\omega} \to X_{\omega}$ be a mapping satisfying the condition of Lemma 2.4. Then $T(G_n) \subset G_n$, where the sets G_n appear there.

Proof. Let $x \in G_n$. Then $\omega_{\lambda}(x, Tx) \leq \alpha_n$. Now

$$\begin{split} \omega_{\lambda}(Tx,T^{2}x) &= \omega_{\lambda}(Tx,T(Tx)) \\ &\leq \alpha \omega_{\lambda}(x,Tx) + \beta \omega_{\lambda}(Tx,T^{2}x) + \gamma \omega_{\lambda}(x,Tx), \\ \text{or, } (1-\beta)\omega_{\lambda}(Tx,T^{2}x) &\leq (\alpha+\gamma)\omega_{\lambda}(x,Tx), \\ &\text{or, } \omega_{\lambda}(Tx,T^{2}x) &\leq \frac{\alpha+\gamma}{1-\beta} \omega_{\lambda}(x,Tx), \\ &\text{or, } \omega_{\lambda}(Tx,T^{2}x) &\leq \frac{\alpha+\gamma}{1-\beta} \alpha_{n} < \alpha_{n} \text{ (since } \alpha+\beta+\gamma<1). \end{split}$$

Then $Tx \in G_n$ and therefore $T(G_n) \subset G_n$.

Theorem 2.7. Let ω be a metric modular on X and X_{ω} be a modular metric space induced by ω . Let X_{ω} be complete and $T : X_{\omega} \to X_{\omega}$ be a self mapping on X_{ω} which satisfies the following conditions :

(1) $\omega_{\lambda}(Tx, Ty) \leq \alpha \omega_{\lambda}(x, Tx) + \beta \omega_{\lambda}(y, Ty) + \gamma \omega_{\lambda}(x, y),$ where $\alpha + \beta + \gamma < 1$ and $\alpha, \beta, \gamma \geq 0$, for all $x, y \in X_{\omega}$, and (2) $\omega_{\lambda}(x, Tx)$ is a ω -lower semicontinuous function on X_{ω} and $\omega_{\lambda}(x, Tx) < \infty$ for all $x \in X_{\omega}$.

Then T has a fixed point in X_{ω} .

Proof. Let $x_0 \in X_{\omega}$. Also let $x_{n+1} = Tx_n$ for all $n \in \mathbb{N} \cup \{0\}$. So we get

$$\begin{aligned} \omega_{\lambda}(x_1, x_2) &= \omega_{\lambda}(Tx_0, Tx_1) \\ &\leq \alpha \omega_{\lambda}(x_0, Tx_0) + \beta \omega_{\lambda}(x_1, Tx_1) + \gamma \omega_{\lambda}(x_0, x_1) \\ &= \alpha \omega_{\lambda}(x_0, Tx_0) + \beta \omega_{\lambda}(x_1, Tx_1) + \gamma \omega_{\lambda}(x_0, x_1), \end{aligned}$$

which implies

$$\omega_{\lambda}(x_1, x_2) \le \left(\frac{\alpha + \gamma}{1 - \beta}\right) \omega_{\lambda}(x_0, x_1).$$

Similarly, $\omega_{\lambda}(x_2, x_3) \leq (\frac{\alpha + \gamma}{1 - \beta})^2 \omega_{\lambda}(x_0, x_1)$ and so on.

Proceeding in this way, we obtain

$$\omega_{\lambda}(x_n, x_{n+1}) \le \left(\frac{\alpha + \gamma}{1 - \beta}\right)^n \omega_{\lambda}(x_0, x_1) \to 0 \text{ as } n \to \infty,$$

since $\left(\frac{\alpha+\gamma}{1-\beta}\right) < 1$ and $\omega_{\lambda}(x,Tx) < \infty$ for all $x \in X_{\omega}$.

Let $\{\alpha_n\}$ be a sequence of real numbers such that $\lim_{n\to\infty} \alpha_n = 0$ where $0 < \alpha_n < 1$ for all n. Let us construct the sets $G_n = \{x \in X_\omega : \omega_\lambda(x, Tx) \le \alpha_n\}$. Then $G_n \ne \phi$ for all n and by Lemma 2.4, $\{G_n\}$ is monotone decreasing with ω -Diam $(G_n) \rightarrow 0$. By condition (2) and Lemma 2.5, it follows that the sets G_n are ω -closed. Now we apply Theorem 2.3 (Cantor's Intersection like Theorem) to obtain $G = \bigcap G_n$ to be a singleton set $\{u\}$ (say). Using Lemma 2.6 we obtain Tu = u. Therefore u is a fixed point of T.

When operator $T: X_{\omega} \to X_{\omega}$ in this theorem is purely of contractive type, i.e., when $\alpha = \beta = 0$, the hypothesis of completeness of the modular metric space is not redundant as supported by the example below.

Example 2.8. Take $X_{\omega} = \mathbb{N}$, the set of natural numbers. We take $\omega : (0, \infty) \times X \times X \rightarrow [0, \infty)$ given by

$$\omega_{\lambda}(m,n) = \begin{cases} 0, & \text{if } m = n, \\ \frac{1}{n\lambda} + \frac{1}{m\lambda}, & \text{if } m \neq n. \end{cases}$$

Then X_{ω} is a modular metric space which is not complete. For, if we consider the sequence $\{n\}$, then $\omega_{\lambda}(m,n) = \frac{1}{n\lambda} + \frac{1}{m\lambda} \longrightarrow 0$ as $n, m \longrightarrow \infty$, $\lambda > 0$ showing that $\{n\}$ is a Cauchy sequence in X_{ω} . But for a fixed number n_0 ,

$$\lim_{n \to \infty} \omega_{\lambda}(n, n_0) = \lim_{n \to \infty} \left(\frac{1}{n\lambda} + \frac{1}{n_0 \lambda} \right) = \frac{1}{n_0 \lambda} > 0.$$

But $\lim_{m,n\to\infty} \omega_{\lambda}(n,m) = 0$. which shows that $\{n\}$ does not ω -converge to any point of \mathbb{N} . So X_{ω} is not ω -complete. Now let us consider a self-mapping T on \mathbb{N} defined by

$$Tn = 2n$$
, for all $n \in \mathbb{N}$.

For any $m, n \in \mathbb{N}, m \neq n$, we have

$$\omega_{\lambda}(Tm,Tn) = \frac{1}{2m\lambda} + \frac{1}{2n\lambda} = \frac{1}{2}\omega_{\lambda}(m,n) < \frac{3}{4}\omega_{\lambda}(m,n)$$

so that T satisfies the condition (1) of Theorem 2.7 with $\alpha = 0 = \beta$, $\gamma = \frac{3}{4}$. Also condition (2) of Theorem 2.7 is satisfied. But T does not have a fixed point in X_{ω} .

Let X_{ω} be modular metric space and $T: X_{\omega} \to X_{\omega}$ be a self-map. Let $x \in X_{\omega}$. The set $O(x) = \{T^n(x), n = 0, 1, 2, 3, ...\}$ is called the orbit of x. The mapping T is called orbitally continuous if $\lim_{i\to\infty} T^{n_i}x = z$ implies $\lim_{i\to\infty} TT^{n_i}x = Tz$ for each $x \in X_{\omega}$. The modular space X_{ω} is called T-orbitally complete if every ω -Cauchy sequence of the form $\{T^n(x), n = 0, 1, 2, ...\}, x \in X_{\omega}$ converges in X_{ω} .

Theorem 2.9. Let ω be a metric modular on X and X_{ω} be a modular metric space induced by ω . Let X_{ω} be a T-orbitally complete modular metric space and $T: X_{\omega} \to X_{\omega}$ be an operator satisfying

$$\omega_{\lambda}(Tx,Ty) \leq \alpha[\omega_{\lambda}(x,Tx) + \omega_{\lambda}(y,Ty)] + \beta\omega_{\lambda}(x,y) + \gamma \max\{\omega_{2\lambda}(x,Ty), \omega_{2\lambda}(y,Tx)\},$$

for all $x, y \in X_{\omega}$, where $\alpha, \beta, \gamma \geq 0$ and $(2\alpha + \beta + 2\gamma) < 1$. If $\omega_{\lambda}(Tx, x)$ is a ω -lower semicontinuous function in X_{ω} and $\omega_{\lambda}(Tx, x) < \infty$ for all $x \in X_{\omega}$, then there exists a point $u \in X_{\omega}$ such that Tu = u.

Proof. Let $x_0 \in X_{\omega}$ and we construct the iterative sequence $x_n = Tx_{n-1}, n = 1, 2, 3, \cdots$. We have

$$\begin{split} \omega_{\lambda}(x_{2},x_{1}) &= \omega_{\lambda}(Tx_{1},Tx_{0}) \\ &\leq \alpha[\omega_{\lambda}(x_{1},Tx_{1}) + \omega_{\lambda}(x_{0},Tx_{0})] + \beta\omega_{\lambda}(x_{1},x_{0}) \\ &+ \gamma \max\{\omega_{2\lambda}(x_{1},Tx_{0}),\omega_{2\lambda}(x_{0},Tx_{1})\} \\ &= \alpha[\omega_{\lambda}(x_{1},x_{2}) + \omega_{\lambda}(x_{0},x_{1})] + \beta\omega_{\lambda}(x_{1},x_{0}) \\ &+ \gamma\omega_{2\lambda}(x_{0},Tx_{1}) \\ &\leq \alpha[\omega_{\lambda}(x_{1},x_{2}) + \omega_{\lambda}(x_{0},x_{1})] + \beta\omega_{\lambda}(x_{1},x_{0}) \\ &+ \gamma[\omega_{\lambda}(x_{0},x_{1}) + \omega_{\lambda}(x_{1},Tx_{1})]. \end{split}$$

It follows that

$$(1 - \alpha - \gamma)\omega_{\lambda}(x_2, x_1) \le (\alpha + \beta + \gamma)\omega_{\lambda}(x_1, x_0)$$

and so

$$\omega_{\lambda}(x_2, x_1) \le \left(\frac{\alpha + \beta + \gamma}{1 - \alpha - \gamma}\right) \omega_{\lambda}(x_1, x_0).$$

Proceeding in this way, we obtain $\omega_{\lambda}(x_{n+1}, x_n) \leq r^n \omega_{\lambda}(x_1, x_0)$, where $r = \left(\frac{\alpha + \beta + \gamma}{1 - \alpha - \gamma}\right) < 1$. So $\omega_{\lambda}(x_{n+1}, x_n) \to 0$ as $n \to \infty$ and $\omega_{\lambda}(Tx, x) < \infty$.

Now, for every $m, n \in \mathbb{N}$ such that m > n, we have

$$\begin{split} \omega_{\lambda}(x_{n}, x_{m}) &\leq \omega_{\lambda_{1}}(x_{n}, x_{n+1}) + \omega_{\lambda_{1}}(x_{n+1}, x_{n+2}) + \dots + \omega_{\lambda_{1}}(x_{m-1}, x_{m}) \\ &\leq (r^{n} + r^{n+1} + \dots + r^{m-1})\omega_{\lambda_{1}}(x_{1}, x_{0}) \\ &< r^{n}(1 + r + r^{2} + \dots)\omega_{\lambda_{1}}(x_{1}, x_{0}) \\ &= \frac{r^{n}}{1 - r}\omega_{\lambda_{1}}(x_{1}, x_{0}), \end{split}$$

where $\lambda_1 = \frac{\lambda}{m-n} > 0$. Since $0 \le r < 1$ and $\omega_{\lambda}(Tx, x) < \infty$ for all $\lambda > 0$, letting $m, n \longrightarrow \infty$, we conclude that $\{x_n\}$ is a ω -cauchy sequence in X_{ω} . As X_{ω} is a ω -complete, there exists a point $u \in X_{\omega}$ such that $\lim_{n \to \infty} x_n = u$.

Therefore

$$\lim_{m,n\to\infty} \omega_{\lambda}(x_m, x_n) = \lim_{n\to\infty} \omega_{\lambda}(x_n, u) = \omega_{\lambda}(u, u)$$
$$\Rightarrow 0 = \lim_{n\to\infty} \omega_{\lambda}(x_n, u) = \omega_{\lambda}(u, u).$$

Since $\omega_{\lambda}(Tx, x)$ is a ω -lower semicontinuous function on X_{ω} , given $\epsilon > 0$, we find a $\delta > 0$ such that

$$\omega_{\lambda}(Tx, x) > \omega_{\lambda}(Tu, u) - \epsilon$$
, where $x \in \omega - B_{\delta}(u)$.

Now $\lim_{n\to\infty} \omega_{\lambda}(x_n, u) = 0$ implies that $x_n \in \omega$ - $B_{\delta}(u)$ eventually, i.e.,

 $\omega_{\lambda}(x_n, u) < \delta$ for all $n > m_0$ for some $m_0 \in \mathbb{N}$.

So $\omega_{\lambda}(Tx_n, x_n) > \omega_{\lambda}(Tu, u) - \epsilon$ which further implies that

$$\omega_{\lambda}(Tu, u) < \omega_{\lambda}(Tx_n, x_n) + \epsilon$$

As $n \to \infty$, $\omega_{\lambda}(Tx_n, x_n) \to 0$, we have $\omega_{\lambda}(u, Tu) \leq \epsilon$. As $\epsilon > 0$ is arbitrary, we have $\omega_{\lambda}(u, Tu) = 0$ and we get u = Tu. Therefore u is a fixed point of T and the proof is complete.

The statement of Caristi like theorem in modular metric spaces is as follows.

Theorem 2.10. (Caristi like Theorem) Let ω be a metric modular on X and X_{ω} be a modular metric space induced by ω . Let X_{ω} be T-orbitally complete, where T is a self mapping on X_{ω} and let $\phi : X_{\omega} \to \mathbb{R}^+$, where $\mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$ satisfy the following condition :

$$\omega_{\lambda}(Tx, x) \le \phi(x) - \phi(Tx), \forall x \in X_{\omega}$$

If T is orbitally continuous at a point $x_0 \in X_\omega$, then $\lim_{n\to\infty} T^n x_0 = u$ for some $u \in X_\omega$ such that Tu = u.

Proof. Let $x_0 \in X_{\omega}$ be arbitrary. Let us consider the orbit

$$O(x_0) = \{T^n(x_0), n = 0, 1, 2, \ldots\}$$

and assume $x_{n+1} \neq x_n$, where $x_n = T^n(x_0)$. Then

$$\begin{aligned}
\omega_{\lambda}(x_{n+1}, x_n) &= \omega_{\lambda}(Tx_n, x_n) \\
&\leq \phi(x_n) - \phi(Tx_n) \\
&= \phi(x_n) - \phi(x_{n+1}).
\end{aligned}$$

Therefore $\sum_{i=1}^{n} \omega_{\lambda}(x_{i+1}, x_i) \leq \phi(x_1) - \phi(x_{n+1}) \leq \phi(x_1)$. That means the series $\sum_{n=1}^{\infty} \omega_{\lambda}(x_{n+1}, x_n)$ is ω -convergent. If m, n are two positive integers, and m > n then

$$\omega_{\lambda_1}(x_m, x_n) \le \omega_{\lambda}(x_m, x_{m-1}) + \omega_{\lambda}(x_{m-1}, x_{m-2}) + \dots + \omega_{\lambda}(x_{n+1}, x_n),$$

where $\lambda_1 = (m-n)\lambda > 0$, i.e., $\omega_{\lambda_1}(x_m, x_n) \leq \sum_{i=n}^{m-1} \omega_{\lambda}(x_{i+1}, x_i)$. Since the series $\sum_{n=1}^{\infty} \omega_{\lambda}(x_{n+1}, x_n)$ is convergent, so for arbitrary $\epsilon > 0$, there exists a positive integer n_0 such that

$$\sum_{i=n}^{m-1} \omega_{\lambda}(x_{i+1}, x_i) < \epsilon,$$

when $m > n \ge n_0$. So when $m > n \ge n_0$, we get from the above that $\omega_{\lambda_1}(x_m, x_n) < \epsilon$. This implies that $\{x_n\}$ is an ω -Cauchy sequence in X_{ω} . Since X_{ω} is *T*-orbitally complete, there exists $u \in X_{\omega}$ such that

$$\lim_{n \to \infty} x_n = u \Rightarrow \lim_{n \to \infty} T^n x_0 = u$$

Since T is orbitally continuous at x_0 , so we have $\lim_{n\to\infty} T(T^n x_0) = Tu$, or, $\lim_{n\to\infty} x_{n+1} = Tu$, i.e., u = Tu. Therefore u is a fixed point of T.

The next example justifies the necessity of incorporation of the function ϕ in the above theorem.

Example 2.11. Let $X_{\omega} = [0, 1]$ and the metric modular $\omega : (0, \infty) \times X \times X \to [0, \infty]$ is defined by

$$\omega_{\lambda}(x,y) = \max\left\{\frac{x}{\lambda}, \frac{y}{\lambda}\right\}.$$

Let $T: X_{\omega} \to X_{\omega}$ be an operator on X_{ω} where

$$Tx = \begin{cases} 1, & \text{if } x = 0, \\ 0, & \text{otherwise.} \end{cases}$$

Clearly T has no fixed point and T is orbitally continuous at $0 \in X_{\omega}$. We suppose that there exists $\phi : X_{\omega} \longrightarrow \mathbb{R}^+$ which satisfies

$$\omega_{\lambda}(Tx, x) \le \phi(x) - \phi(Tx), \text{ for all } x \in X_{\omega}.$$

Then if we take x = 0, we find that

$$\omega_{\lambda}(1,0) = \omega_{\lambda}(T0,0) \le \phi(0) - \phi(1), \tag{1}$$

and taking $x = 1$, we get
$$\omega_{\lambda}(0,1) \le \phi(1) - \phi(0). \tag{2}$$

The two inequalities (1) and (2) cannot hold simultaneously. So there is no such function ϕ as wanted in Theorem 2.10.

Also the assumption of orbital continuity of T is not redundant in Caristi like theorem as seen in the example below.

Example 2.12. Let $X_{\omega} = [0, 1]$ and the metric modular be as in Example 2.11. We define an operator $T: X_{\omega} \to X_{\omega}$ by

$$Tx = \begin{cases} 1, & \text{if } x = 0, \\ \frac{x}{2}, & \text{if } 0 < x \le 1. \end{cases}$$

Then T has no fixed point in X_{ω} and T is not orbitally continuous at any $x \in X_{\omega}$. However there is a function $\phi: X_{\omega} \longrightarrow \mathbb{R}^+$ which satisfies the condition

$$\omega_{\lambda}(Tx, x) \leq \phi(x) - \phi(Tx)$$
, for all $x \in X$,

as assumed in Theorem 2.10. Let us take $\phi: X_{\omega} \to \mathbb{R}^+$ given by

$$\phi(x) = \begin{cases} \frac{3}{\lambda}, & \text{if } x = 0, \\ \frac{2x}{\lambda}, & \text{if } 0 < x \le 1. \end{cases}$$

This auxiliary function ϕ serves the purpose.

Now we deal with a Ćirić operator in this setting and prove a fixed point result in modular metric spaces.

Definition 2.13. An operator $T : X_{\omega} \to X_{\omega}$, where X_{ω} is a modular metric space associated with the metric modular ω on X, is said to be a Ćirić Operator if

$$\omega_{\lambda}(T^n x, T^n y) \le q^n(x, y)\delta(x, y), n = 1, 2, 3, \dots,$$

for all $x, y \in X_{\omega}$, where q and δ are two non-negative real valued functions over $X_{\omega} \times X_{\omega}$ satisfying q(x, y) < 1 for all $(x, y) \in X_{\omega} \times X_{\omega}$ with $\sup_{x,y \in X_{\omega}} q(x, y) = 1$ and $\delta(x, Tx) < \infty$ for all $x \in X_{\omega}$.

Theorem 2.14. Let ω be a metric modular on X and X_{ω} be a modular metric space induced by ω . Let X_{ω} be T-orbitally complete where T is a self mapping on X_{ω} . Let us suppose further $T: X_{\omega} \to X_{\omega}$ is a Ciric operator satisfying the condition

$$\omega_{\lambda}(Tx, Ty) \leq \alpha \omega_{\lambda}(x, Tx) + \beta \max\{\omega_{\lambda}(y, Ty) + \omega_{3\lambda}(x, y), \omega_{2\lambda}(x, Ty), \omega_{2\lambda}(y, Tx)\}$$

for all $x, y \in X_{\omega}$, where $\alpha \ge 0, 0 \le \beta < 1$. Then T has a fixed point in X_{ω} .

Proof. Let $x_0 \in X_{\omega}$ and $x_n = T^n(x_0)$ where $n = 1, 2, 3, \ldots$ Then

$$\begin{aligned} & \omega_{\lambda}(T^{m}x_{0},T^{n}x_{0}) \\ &= \omega_{\lambda}(T(T^{m-1}x_{0}),T(T^{n-1}x_{0})) \\ &\leq & \alpha\omega_{\lambda}(T^{m-1}x_{0},T^{m}x_{0}) + \beta \max\{\omega_{\lambda}(T^{n-1}x_{0},T^{n}x_{0}) \\ & +\omega_{3\lambda}(T^{m-1}x_{0},T^{n-1}x_{0}), \omega_{2\lambda}(T^{m-1}x_{0},T^{n}x_{0}), \omega_{2\lambda}(T^{n-1}x_{0},T^{m}x_{0})\}. \end{aligned}$$

 So

$$\begin{split} & \omega_{\lambda}(T^{m}x_{0},T^{m}x_{0}) \\ & \leq & \alpha\omega_{\lambda}(T^{m-1}x_{0},T^{m}x_{0}) \\ & +\beta \max\{\omega_{\lambda}(T^{n-1}x_{0},T^{n}x_{0}) + \omega_{\lambda}(T^{m-1}x_{0},T^{m}x_{0}) \\ & +\omega_{\lambda}(T^{m}x_{0},T^{n}x_{0}) + \omega_{\lambda}(T^{n}x_{0},T^{n-1}x_{0})\}, \omega_{\lambda}(T^{m-1}x_{0},T^{m}x_{0}) \\ & +\omega_{\lambda}(T^{m}x_{0},T^{n}x_{0}), \omega_{\lambda}(T^{n-1}x_{0},T^{n}x_{0}) + \omega_{\lambda}(T^{n}x_{0},T^{m}x_{0})\} \\ & = & \alpha\omega_{\lambda}(T^{m-1}x_{0},T^{m}x_{0}) \\ & +\beta[2\omega_{\lambda}(T^{n-1}x_{0},T^{n}x_{0}) + \omega_{\lambda}(T^{m-1}x_{0},T^{m}x_{0}) + \omega_{\lambda}(T^{m}x_{0},T^{n}x_{0})] \\ & \leq & \left(\frac{\alpha+\beta}{1-\beta}\right)\omega_{\lambda}(T^{m-1}x_{0},T^{m}x_{0}) + \left(\frac{2\beta}{1-\beta}\right)\omega_{\lambda}(T^{n-1}x_{0},T^{n}x_{0}) \\ & \leq & \left(\frac{\alpha+\beta}{1-\beta}\right)q^{m-1}(x_{0},Tx_{0})\delta(x_{0},Tx_{0}) \\ & + \left(\frac{2\beta}{1-\beta}\right)q^{n-1}(x_{0},Tx_{0})\delta(x_{0},Tx_{0}) \\ & \to 0 \text{ as } m, n \to \infty \text{ and } \delta(x,Tx) < \infty. \end{split}$$

Then $\{T^n x_0\}$ is a ω -Cauchy sequence in X_ω which is T-orbitally complete. So there exists $u \in X_\omega$ such that

$$\lim_{m,n\to\infty}\omega_{\lambda}(T^mx_0,T^nx_0)=\lim_{n\to\infty}\omega_{\lambda}(T^nx_0,u)=\omega_{\lambda}(u,u)=0.$$

This implies that $\lim_{n\to\infty} [\omega_{\lambda}(T^n x_0, u)] = 0$. Now

$$\begin{aligned}
& \omega_{\lambda}(T^{n}x_{0}, Tu) \\
&= \omega_{\lambda}(T(T^{n-1}x_{0}), Tu) \\
&\leq \alpha\omega_{\lambda}(T^{n-1}x_{0}, T^{n}x_{0}) + \beta \max\{\omega_{\lambda}(u, Tu) + \omega_{3\lambda}(T^{n-1}x_{0}, u), \\
& \omega_{2\lambda}(T^{n-1}x_{0}, Tu), \omega_{2\lambda}(u, T^{n}x_{0})\} \\
&\leq \alpha\omega_{\lambda}(T^{n-1}x_{0}, T^{n}x_{0}) + \beta \max\{\omega_{\lambda}(u, Tu) + \omega_{\lambda}(T^{n-1}x_{0}, u), \\
& \omega_{2\lambda}(T^{n-1}x_{0}, Tu), \omega_{\lambda}(u, T^{n}x_{0})\}.
\end{aligned}$$

Passing on limit as $n \to \infty$,

$$\lim_{n \to \infty} \omega_{\lambda}(T^{n}x_{0}, Tu) \leq \beta \max\{\omega_{\lambda}(u, Tu), \lim_{n \to \infty} \omega_{2\lambda}(T^{n-1}x_{0}, Tu)\}.$$

If $\max\{\omega_{\lambda}(u, Tu), \lim_{n \to \infty} \omega_{2\lambda}(T^{n-1}x_0, Tu)\} = \omega_{\lambda}(u, Tu)$, then

$$\lim_{n \to \infty} \omega_{\lambda}(T^n x_0, Tu) \le \beta \omega_{\lambda}(u, Tu) < \omega_{\lambda}(u, Tu) \text{ as } \beta < 1,$$

which yields

$$\lim_{n \to \infty} \omega_{2\lambda}(T^n x_0, Tu) \le \lim_{n \to \infty} \omega_{\lambda}(T^n x_0, Tu) < \omega_{\lambda}(u, Tu),$$

and so

$$\lim_{n \to \infty} \{ \omega_{\lambda}(T^n x_0, u) + \omega_{\lambda}(u, Tu) \} < \omega_{\lambda}(u, Tu),$$

giving rise to $\omega_{\lambda}(u, Tu) < \omega_{\lambda}(u, Tu)$, which is not true. Hence

$$\max\left\{\omega_{\lambda}(u,Tu),\lim_{n\to\infty}\omega_{2\lambda}(T^{n-1}x_0,Tu)\right\}=\lim_{n\to\infty}\omega_{2\lambda}(T^{n-1}x_0,Tu).$$

Then

$$\lim_{n \to \infty} \omega_{2\lambda}(T^n x_0, Tu) \le \beta \lim_{n \to \infty} \omega_{2\lambda}(T^{n-1} x_0, Tu).$$

Since $\beta < 1$, we have $\lim_{n \to \infty} \omega_{2\lambda}(T^n x_0, Tu) = 0$ which gives us

$$\lim_{n \to \infty} \{\omega_{\lambda}(T^n x_0, u) + \omega_{\lambda}(u, Tu)\} = 0$$

Then we get $\omega_{\lambda}(u, Tu) = 0$. Therefore we have

$$\omega_{\lambda}(u, u) = \omega_{\lambda}(Tu, Tu) = \omega_{\lambda}(u, Tu) = 0,$$

which implies that u = Tu. Hence u is a fixed point of T.

We finish this section with an analogue of Jungck theorem [20] for modular metric spaces.

Theorem 2.15. (Jungck Theorem in a modular metric space) Let ω be a metric modular on X and X_{ω} be a modular metric space induced by ω . Let X_{ω} be a complete modular metric space, and T and I be commuting mappings of X_{ω} into itself satisfying the inequality

$$\omega_{\lambda}(Tx, Ty) \le \mu \omega_{\lambda}(Ix, Iy), \tag{2.3}$$

for all $x, y \in X_{\omega}$ and $0 < \mu < 1$. If $\omega_{\lambda}(Ix, Iy) < \infty$ for all $x, y \in X_{\omega}$ and the range of I contains the range of T and further I is continuous, then T and I have a unique common fixed point.

Proof. Let $x_0 \in X_{\omega}$ be arbitrary. Then Tx_0 and Ix_0 are well defined. Since $Tx_0 \in T(X_{\omega})$ and the range of I contains the range of T, there exists $x_1 \in X_{\omega}$ such that $Ix_1 = Tx_0$. In general, if $x_n \in X_{\omega}$ is chosen, then there exists a point $x_{n+1} \in X_{\omega}$ such that $Ix_{n+1} = Tx_n$. As $\omega_{\lambda}(Tx, Ty) \leq \mu \omega_{\lambda}(Ix, Iy)$ for all $x, y \in X_{\omega}$ and $0 < \mu < 1$, we have

$$\omega_{\lambda}(Ix_{m+k}, Ix_{n+k}) = \omega_{\lambda}(Tx_{m+k-1}, Tx_{n+k-1}) \le \mu\omega_{\lambda}(Ix_{m+k-1}, Ix_{n+k-1})$$

So, for all $k \in \mathbb{N}$,

$$\omega_{\lambda}(Ix_{m+k}, Ix_{n+k}) \le \mu^{\kappa} \omega_{\lambda}(Ix_m, Ix_n).$$
(2.4)

Case-I: If $Ix_{n+1} = Ix_n$ for some n, then $Tx_n = Ix_n = p$. Here p is a common fixed point of T and I. Indeed, $Tp = T(Ix_n) = I(Tx_n) = Ip$. If we consider $\omega_{\lambda}(p, Tp) > 0$, then we have

$$\omega_{\lambda}(p, Tp) = \omega_{\lambda}(Tx_n, Tp)$$

$$\leq \mu \omega_{\lambda}(Ix_n, Ip)$$

$$= \mu \omega_{\lambda}(p, Ip)$$

$$= \mu \omega_{\lambda}(p, Tp)$$

$$< \omega_{\lambda}(p, Tp),$$

which is a contradiction.

Case-II: If $Ix_{n+1} \neq Ix_n$ for all $n \ge 0$, then $Ix_{n+k} \neq Ix_n$ for all $n \ge 0$ and $k \ge 1$, viz., if $Ix_n = Ix_{n+k}$ for some $n \ge 0$ and $k \ge 1$, then we have

$$\omega_{\lambda}(Ix_{n+1}, Ix_{n+k+1}) = \omega_{\lambda}(Tx_n, Tx_{n+k}) \le \mu\omega_{\lambda}(Ix_n, Ix_{n+k}) = 0.$$

So we have $Ix_{n+k} = Ix_{n+k+1}$. Then (2.4) implies that

$$\begin{aligned}
\omega_{\lambda}(Ix_{n+1}, Ix_n) &= \omega_{\lambda}(Ix_{n+k+1}, Ix_{n+k}) \\
&\leq \mu^k \omega_{\lambda}(Ix_{n+1}, Ix_n) \\
&< \omega_{\lambda}(Ix_{n+1}, Ix_n),
\end{aligned}$$

which is a contradiction.

Thus we assume that $Ix_n \neq Ix_m$ for all distinct $n, m \in \mathbb{N}$. Note that $Ix_{m+k} \neq Ix_{n+k}$ for all $k \in \mathbb{N}$ and for all distinct $n, m \in \mathbb{N}$ and $Ix_{n+k}, Ix_{m+k} \in X \setminus \{Ix_n, Ix_m\}$. Then

$$\omega_{\lambda}(Ix_m, Ix_n) \leq \omega_{\lambda_1}(Ix_m, Ix_{m+n_0}) + \omega_{\lambda_2}(Ix_{m+n_0}, Ix_{n+n_0})$$

+ $\omega_{\lambda_3}(Ix_{n+n_0}, Ix_n),$

where $\lambda = (\lambda_1 + \lambda_2 + \lambda_3) > 0$ and $n_0 \in \mathbb{N}$ and each $\lambda_i > 0$ for i = 1, 2, 3. So using the result (2.4), we get

$$\begin{aligned} & \omega_{\lambda}(Ix_{m}, Ix_{n}) \\ \leq & \mu^{m}\omega_{\lambda_{1}}(Ix_{0}, Ix_{n_{0}}) + \mu^{n_{0}}\omega_{\lambda_{2}}(Ix_{m}, Ix_{n}) + \mu^{n}\omega_{\lambda_{3}}(Ix_{0}, Ix_{n_{0}}) \\ \leq & \mu^{m}\omega_{\lambda_{1}}(Ix_{0}, Ix_{n_{0}}) + \mu^{m-1+n_{0}}\omega_{\lambda_{2}}(Ix_{1}, Ix_{n-m+1}) \\ & + \mu^{n}\omega_{\lambda_{3}}(Ix_{0}, Ix_{n_{0}}). \end{aligned}$$

We then obtain $\omega_{\lambda}(Ix_m, Ix_n) \to 0$ as $m, n \to \infty$ and $\omega_{\lambda}(Ix, Iy) < \infty$ which implies $\{Ix_m\}$ is a ω -Cauchy sequence in X_{ω} . By completeness of X_{ω} there exists $p \in X_{\omega}$ such that

$$\lim_{n \to \infty} Ix_n = \lim_{n \to \infty} Tx_{n-1} = p.$$

Since I is continuous, (2.3) implies that both I and T are continuous. Since T and I commute, we obtain

$$Ip = I\left(\lim_{n \to \infty} Tx_n\right) = \lim_{n \to \infty} IT(x_n) = \lim_{n \to \infty} TI(x_n) = T\left(\lim_{n \to \infty} Ix_n\right) = Tp.$$

Let Tp = Ip = q. If possible, let $Tp \neq Tq$. Then we have Tq = TIp = ITp = Iq. Further, from (2.3) we obtain

$$\begin{aligned}
\omega_{\lambda}(Tp, Tq) &\leq \mu \omega_{\lambda}(Ip, Iq) \\
&= \mu \omega_{\lambda}(Tp, Tq) \\
&< \omega_{\lambda}(Tp, Tq),
\end{aligned}$$

which is a contradiction. So Tp = Tq and hence we have Tq = Iq = q and q is a common fixed point of T and I. Condition (2.3) implies that q is a unique common fixed point of T and I.

Corollary 2.16. Let I and T be commuting mappings of a modular metric space X_{ω} such that ω is complete and

$$\omega_{\lambda}(T^{\kappa}(x), T^{\kappa}(y)) \le \mu \omega_{\lambda}(Ix, Iy),$$

for all $x, y \in X_{\omega}$ and $0 < \mu < 1$ and k be any positive integer. If $\omega_{\lambda}(Ix, Iy) < \infty$, I is continuous and $T(X_{\omega}) \subset I(X_{\omega})$, Then T and I have a unique common fixed point in X_{ω} .

Proof. Clearly, T^k commutes with I and $T^k(X_{\omega}) \subset T(X_{\omega}) \subset I(X_{\omega})$. Thus the theorem pertains to T^k and I. So there is a unique $p \in X_{\omega}$ such that $p = I(p) = T^k(p)$. Since I and T commute, we can write

$$T(p) = T(I(p)) = I(T(p)) = T^{k}(T(p)),$$

which says that T(p) is a common fixed point of I and T^k . The uniqueness of p implies that p = T(p) = I(p).

We give the following example in support of our theorem.

Example 2.17. Let $X = \mathbb{R}^7$. We define a mapping $\omega : (0, \infty) \times X \times X \to [0, \infty]$ by

$$\omega_{\lambda}(x,y) = \sum_{i=1}^{7} \frac{|x_i - y_i|}{\lambda},$$

where $x = (x_1, x_2, x_3, x_4, x_5, x_6, x_7), y = (y_1, y_2, y_3, y_4, y_5, y_6, y_7) \in \mathbb{R}^7$.

If we take $\lambda \to \infty$, then $X = X_{\omega}$ and also X_{ω} is a complete modular metric space.

Let us define $T, I: X_{\omega} \to X_{\omega}$ by

$$T(x) = \left(\frac{5x_1 - 63}{14}, \frac{2x_2 - 15}{5}, \frac{x_3 - 30}{11}, \frac{5x_4 + 1}{4}, 2x_5 - 1, \frac{x_6 + 20}{5}, \frac{2x_7 + 21}{9}\right),$$

$$I(x) = \left(\frac{6x_1 - 7}{7}, \frac{11x_2 + 30}{5}, \frac{7x_3 + 12}{3}, \frac{7x_4 + 4}{3}, 5x_5 - 4, 3x_6 - 10, \frac{11x_7 - 15}{6}\right)$$

Then T and I are commuting. Also

$$\omega_{\lambda}(Tx, Ty) \le k\omega_{\lambda}(Ix, Iy)$$

where k = 15/28.

It is clear that I is continuous and $T(X_{\omega}) \subset I(X_{\omega})$. Therefore we can conclude that T and I have a unique common fixed point.

Here, $(-7, -5, -3, -1, 1, 5, 3) \in \mathbb{R}^7$ is a common fixed point of both T and I.

Acknowledgement. The authors are grateful to the referees for the constructive comments which has led to a valuable improvement of this paper.

References

- V.V. Chistyakov, Modular metric spaces, I: Basic concepts, Nonlinear Anal. 72 (1) (2010) 1-14.
- [2] V.V. Chistyakov, Modular metric spaces, II: Application to superposition operators, Nonlinear Anal. 72(1) (2010) 15-30.
- [3] V.V. Chistyakov, A fixed point theorem for contractions in modular metric spaces, arXiv e-prints (2011).
- [4] A.A.N. Abdou, M.A. Khamsi, Fixed point results of pointwise contractions in modular metric spaces, Fixed Point Theory Appl. (2013) 2013:163.
- [5] A.A.N. Abdou, M.A. Khamsi, On the fixed points of nonexpansive mappings in modular metric spaces, Fixed Point Theory Appl. 2013:229.
- [6] A.A.N. Abdou, M.A. Khamsi, Fixed points of multivalued contraction mappings in modular metric spaces, Fixed Point Theory Appl. (2014) 2014:249.

- [7] C. Mongkolkeha, W. Sintunavarat, P. Kumam, Fixed point theorems for contraction mappings in modular metric spaces, Fixed Point Theory Appl. (2011) 2011:93.
- [8] A.A.N. Abdou, Some fixed point theorems in modular metric spaces, J. Nonlinear Sci. Appl. 9 (2016) 4381-4387.
- [9] H. Abobaker, R.A. Ryan, Modular Metric Spaces, Irish Math. Soc. Bull. 80 (2017) 35-44.
- [10] Z.D. Mitrović, S. Radenović, H. Aydi, A.A. Altasan, C. Özel, On two new approaches in modular spaces, Ital. J. Pure Appl. Math. 41 (2019) 679-690.
- [11] S. Hussain, Non-unique fixed point theorems in modular metric spaces, Symmetry 11 (4) (2019) 549.
- [12] P. Chaipunya, C. Mongkolkeha, W. Sintuvarat, P. Kumam, Fixed-point theorems for multivalued mappings in modular metric spaces. Abstr. Appl. Anal. (2012) article ID 503504.
- [13] H. Rahimpoor, A. Ebadian, M.E. Gordji, A. Zohri, Common fixed point theorems in modular metric spaces, Int.J.Pure Appl.Math. 99 (3) (2015) 373-383.
- [14] D. Jain, A. Padcharoen, P. Kumam, D. Gopal, A new approach to study fixed point of multivalued mappings in modular metric spaces and applications, Mathematics 4 (3) (2016) 51.
- [15] U. Aksoy, E. Karapınar, I.M. Erhan, Fixed point theorems in complete modular metric spaces and an application to anti-periodic boundary value problems, Filomat 31 (17) (2017) 5475-5488.
- [16] A. Padcharoen, P. Kumam, D. Gopal, Coincidence and periodic point results in a modular metric space endowed with a graph and applications, Creative Mathematics and Informatics 26 (1) (2017) 95-104.
- [17] D. Turkoglu, N. Manav, Fixed point theorems in a new type of modular metric spaces, Fixed Point Theory Appl. (2018) 2018:25.
- [18] A. Mutlu, K. Ozkan, U. Gürdal, A new fixed point theorem in Modular metric spaces, Int. J. Anal. Appl. 16 (4) (2018) 472-483.
- [19] G.A. Okeke, D. Francis, M. de la Sen, Some fixed point theorems for mappings satisfying rational inequality in modular metric spaces with applications, Heliyon 6(2020) e04785.
- [20] G. Jungck, Commuting Mappings and Fixed Points. Amer. Math. Monthly. 83 (1974) 261-263.