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Abstract This paper is mainly devoted to the study of fixed point theorems for generalized contractive

type mappings over a complete modular metric space. A new approach for obtaining fixed point result

using a Cantor’s Intersection like Theorem on modular metric spaces has been investigated. The notion
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a result on common fixed point which extends a result due to Jungck.
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1. Introduction

A new direction in fixed point theory was initiated in 2010 when Chistyakov ([1],[2])
introduced the concept of modular metric spaces. He first developed some theory related
to these spaces and then gave some fixed point results [3] on modular metric spaces.
This study continued further with Abdou and Khamsi ([4], [5], [6]) proving many new
theorems. Mongkolkeha et al. [7] explored contraction mappings in this setting to find
fixed point theorems. The theory has evolved with works done by authors like Abdou [8],
Abobaker and Ryan [9], Mitrovic et al. [10] and Hussain [11]. Hitherto many researchers
have been pursuing the study of fixed points in the realm of modular metric spaces (see
[12], [13], [14], [15], [16], [17], [18], [19]).

First we recall briefly the basic concepts and facts in modular metric spaces.

Let X be any arbitrary non-empty set and ω : (0,∞)×X ×X → [0,∞] be written as
ωλ (x, y) = ω (λ, x, y) , for each λ > 0 and x, y ∈ X.
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Definition 1.1. [1, Definition 2.1] Let X be a non-empty set and ω : (0,∞)×X ×X →
[0,∞] satisfy the following:

(1) ωλ(x, y) = 0 for all λ > 0 if and only if x = y;
(2) ωλ(x, y) = ωλ(y, x);
(3) ωλ+µ(x, z) ≤ ωλ(x, y) + ωµ(y, z);

for all λ, µ > 0 and for all x, y, z ∈ X. Then ω is said to be a metric modular on X.

For x, y ∈ X, the function 0 < λ 7→ ωλ(x, y) is nonincreasing on (0,∞).

A metric modular ω on X is said to be convex if, instead of (3), it satisfies the inequality

ωλ+µ(x, z) ≤ λ

λ+ µ
ωλ(x, y) +

µ

µ+ λ
ωµ(y, z)

for all λ, µ > 0 and for all x, y, z ∈ X.
Given a modular ω on X and a point x0 in X, the two sets

Xω ≡ Xω(x0) = {x ∈ X : ωλ(x, x0)→ 0 as λ→∞}
and

X∗ω ≡ X∗ω(x0) = {x ∈ X : ∃λ = λ(x) > 0 such that ωλ(x, x0) <∞}
are each known as modular spaces (around x0).

In general, Xω(x0) ⊂ X∗ω(x0). The modular space Xω can be equipped with a metric
dω, generated by ω and given by

dω(x, y) = inf{λ > 0 : wλ(x, y) ≤ λ}, for all x, y ∈ Xω.

It is known that dω is a well defined metric on X∗ω also. If ω is convex then Xω(x0) =
X∗ω(x0) and this common set can be endowed with a metric d∗ω given by

d∗ω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ 1}, for all x, y ∈ X∗ω.

Definition 1.2. Let Xω be a modular metric space.

(1) A sequence {xn} in Xω is said to be modular convergent or ω-convergent to
an element x ∈ X if there exists a number λ > 0, possibly depending on {xn}
and x, such that

lim
n→∞

ωλ(xn, x) = 0.

Here x is called a modular limit of the sequence {xn}.
(2) A sequence {xn} in Xω is said to be modular Cauchy or ω-Cauchy if there

exists a number λ > 0, possibly depending on the sequence, such that

ωλ(xm, xn)→ 0 as m,n→∞.
(3) The modular space Xω is said to be modular complete or ω-complete if every
ω-Cauchy sequence from Xω is ω-convergent.

Let (X, d) be a metric space with at least two points. There are several ways to define
a metric modular on X.

Example 1.3. [9, Examples 2.1 - 2.3] We take (X, d) to be a metric space.

(1) Let for all x, y ∈ X, ωλ(x, y) = d(x, y). In this case, property (3) in the
definition of a modular is just the triangle inequality for the metric. This modular
is not convex as we can see by taking z = y and µ = λ.
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(2) Let ωλ(x, y) = d(x,y)
λ for all λ > 0. In this case, we can think of ωλ(x, y) as the

average velocity required to travel from x to y in time λ. A simple calculation
with the triangle inequality shows that this modular is convex.

(3) Let ωλ(x, y) = d(x,y)
λ+d(x,y) for all λ > 0. It can be shown that this modular is not

convex if we take z = y and µ = λ.

Example 1.4. [7, Example 3.7] Let X = {(a, 0) ∈ R2 : 0 ≤ a ≤ 1} ∪ {(0, b) ∈ R2 : 0 ≤
b ≤ 1}. Define the mapping ω : (0,∞)×X ×X → [0,∞] by

ωλ((a1, 0), (a2, 0)) =
4|a1 − a2|

3λ
,

ωλ((0, b1), (0, b2)) =
|b1 − b2|

λ
,

ωλ((a, 0), (0, b)) =
4a

3λ
+
b

λ
= ωλ((0, b), (a, 0)).

We note that ωλ((0, 0), (0, 0)) = 0 is satisfied by all three conditions above. Here X = Xω

and Xω is a ω-complete modular metric space.

Let ω be a metric modular on X and Xω be a modular metric space induced by ω.
For any x ∈ Xω and r ≥ 0, the set ω-Bδ(x) = {y ∈ Xω : ωδ(x, y) < r; δ > 0} is called a
modular open ball. A modular closed ball is defined as ω-Bδ[x] = {y ∈ Xω : ωδ(x, y) ≤
r; δ > 0}.

Definition 1.5.

(1) A subset M of Xω is said to be ω-closed if the ω-limit of any ω-convergent
sequence of M is in M .

(2) A subset M of Xω is said to be ω-bounded if

sup{ωλ(x, y) : x, y ∈ X,λ > 0} <∞.
(3) A function f : Xω → R is said to be ω-lower semicontinuous at u ∈ Xω if given
ε > 0, there is a δ > 0 such that

f(x) > f(u)− ε for x ∈ ω-Bδ(u).

2. Main Results

Here we establish a Cantor’s Intersection like theorem in a complete modular metric
space. We begin with the following definition.

Definition 2.1. The diameter of an ω-bounded subsetM ofXω is denoted by ω-Diam(M)
and is defined by

ω-Diam(M) = sup{ωλ(x, y) : x, y ∈ X,λ > 0}.

Lemma 2.2. Let ω be a metric modular on X and Xω be a modular metric space induced
by ω. Let F be a ω-bounded subset of Xω. Then its closure is bounded and ω-Diam(F̄ ) =
ω-Diam(F ).

Proof. Since F ⊆ F̄ , we have

0 ≤ sup{ωλ(x, y) : x, y ∈ F, λ > 0} ≤ sup{ωλ(x, y) : x, y ∈ F̄ , λ > 0}

⇒ ω-Diam(F ) ≤ ω-Diam(F̄ ). (2.1)
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Let u, v ∈ F̄ be such that ωλ(u, v) ≥ 0, for λ > 0. Then given ε > 0, there exist z1, z2 ∈ F
to satisfy ωλ

3
(u, z1) < ε

2 and ωλ
3
(v, z2) < ε

2 . Therefore

ωλ(u, v) ≤ ωλ
3
(u, z1) + ωλ

3
(z1, z2) + ωλ

3
(z2, v)

< ε+ ωλ
3
(z1, z2),

⇒ ωλ(u, v) < ε+ ω-Diam(F ),

⇒ ω-Diam(F̄ ) < ε+ ω-Diam(F ).

As ε > 0 is arbitrary, we get

ω-Diam(F̄ ) ≤ ω-Diam(F ). (2.2)

Combining (2.1) and (2.2), we get ω-Diam(F ) = ω-Diam(F̄ ).

Theorem 2.3. (Cantor’s Intersection like Theorem) Let ω be a metric modular on X
and Xω be a modular metric space induced by ω. Let {Fn} be a monotonically decreasing
sequence of non-empty closed subsets of Xω such that ω-Diam(Fn)→ 0 as n→∞. Then
F =

⋂∞
n=1 Fn contains exactly one point if and only if Xω is a complete modular metric

space.

Proof. We construct a sequence {xn} in Xω by selecting a point xn ∈ Fn for each n.
Since the sets {Fn} are nested, so xn ∈ Fm, for all n ≥ m. Let ε > 0 be given. Since
ω-Diam(Fn)→ 0, there exists a positive integer N such that ω-Diam(FN ) < ε. It is clear
that for all n,m ≥ N , xn, xm ∈ FN and as such we have ωλ(xm, xn) ≤ ω-Diam(FN ) < ε
for all n,m ≥ N . Thus {xn} is a ω-Cauchy sequence in Xω. Since Xω is a complete
modular metric space, so there exists x ∈ Xω such that xn → x.

We now claim that x ∈
⋂
Fn.

Let n be fixed. Then the subsequence {xn, xn+1, xn+2, . . .} of {xn} is contained in Fn
and still converges to x. But Fn being a closed subspace of the complete modular metric
space Xω, it is complete and so x ∈ Fn. This is true for each n ∈ N. Hence x ∈

⋂
Fn.

This shows that
⋂
Fn is nonempty.

Finally to prove that x is the only point in the intersection
⋂
Fn. Let x ∈

⋂
Fn and

y ∈
⋂
Fn. Then x and y both are in Fn, for each n ∈ N. Therefore 0 ≤ ωλ(x, y) ≤

ω-Diam(Fn) → 0 as n → ∞. Then ωλ(x, y) = 0 ⇒ x = y. Hence such x ∈ X is unique
and consequently F =

⋂
Fn is a singleton set.

Conversely, let for every decreasing sequence {Fn} of non-empty closed sets with
ω-Diam(Fn) → 0 as n → ∞ has exactly one point in its intersection. Let {xn} be
any ω-Cauchy sequence in Xω. Let Gn be the range of the sequence {xn, xn+1, xn+2, . . .}.
Obviously G1 ⊇ G2 ⊇ G3 . . . and so {xn} is ω-Cauchy. This yields ω-Diam(Gn) → 0 as
n → 0 and hence ω-Diam(Ḡn) → 0 as n → 0. Then by hypothesis,

⋂
Ḡn consists of a

single point x (say). Thus

ωλ(x, xn) ≤ ω-Diam(Ḡn)→ 0.

This gives

ωλ(x, xn)→ 0 as n→∞.

Hence {xn} converges to x in Xω. Therefore Xω is complete.

Next we prove a fixed point theorem for a mixed type mapping employing Cantor’s
Intersection like theorem.
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Lemma 2.4. Let ω be a metric modular on X and Xω be a modular metric space induced
by ω and T be a self mapping on ω satisfying the following condition:

ωλ(Tx, Ty) ≤ αωλ(x, Tx) + βωλ(y, Ty) + γωλ(x, y),

where α+ β + γ < 1 and α, β, γ ≥ 0 for all x, y ∈ Xω.
Let {αn} be a sequence of reals with 0 < αn < 1 for all n and lim

n→∞
αn = 0. For each

n ∈ N, if the set

Gn = {x ∈ Xω : ωλ(x, Tx) ≤ αn, λ > 0}
is nonempty, then {Gn} is a decreasing sequence of sets with ω-Diam(Gn)→ 0.

Proof. Clearly, {Gn} is a monotone decreasing sequence. Let x, y be elements in Gn so
that ωλ(x, Tx) ≤ αn and ωλ(y, Ty) ≤ αn. Now

ω3λ(x, y) ≤ ω2λ(x, Ty) + ωλ(Ty, y)

≤ ωλ(x, Tx) + ωλ(Tx, Ty) + ωλ(Ty, y)

≤ 2αn + ωλ(Tx, Ty)

≤ 2αn + αωλ(x, Tx) + βωλ(y, Ty) + γωλ(x, y)

≤ (2 + α+ β)αn + γωλ(x, y)

≤ (2 + α+ β)αn + γ ω-Diam(Gn).

Then

sup{ω3λ(x, y) : x, y ∈ Gn, λ > 0} ≤ (2 + α+ β) αn + γ ω-Diam(Gn),

which gives ω-Diam(Gn)(1− γ) ≤ (2 + α+ β) αn, and so

ω-Diam(Gn) ≤ (2 + α+ β)

1− γ
αn → 0 as n→∞.

Lemma 2.5. Let ω be a metric modular on X and Xω be a modular metric space in-
duced by ω. If the function f : Xω → R+ defined by f(x) = ωλ(x, Tx) is a ω-lower
semicontinuous function then the sets Gn as constructed in Lemma 2.4 are ω-closed.

Proof. It is a consequence of ω-lower semicontinuity property of f .

Lemma 2.6. Let ω be a metric modular on X and Xω be a modular metric space induced
by ω. A function T : Xω → Xω be a mapping satisfying the condition of Lemma 2.4.
Then T (Gn) ⊂ Gn, where the sets Gn appear there.

Proof. Let x ∈ Gn. Then ωλ(x, Tx) ≤ αn. Now

ωλ(Tx, T 2x) = ωλ(Tx, T (Tx))

≤ αωλ(x, Tx) + βωλ(Tx, T 2x) + γωλ(x, Tx),

or, (1− β)ωλ(Tx, T 2x) ≤ (α+ γ)ωλ(x, Tx),

or, ωλ(Tx, T 2x) ≤ α+ γ

1− β
ωλ(x, Tx),

or, ωλ(Tx, T 2x) ≤ α+ γ

1− β
αn < αn (since α+ β + γ < 1).

Then Tx ∈ Gn and therefore T (Gn) ⊂ Gn.
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Theorem 2.7. Let ω be a metric modular on X and Xω be a modular metric space
induced by ω. Let Xω be complete and T : Xω → Xω be a self mapping on Xω which
satisfies the following conditions :

(1) ωλ(Tx, Ty) ≤ αωλ(x, Tx) + βωλ(y, Ty) + γωλ(x, y),
where α+ β + γ < 1 and α, β, γ ≥ 0, for all x, y ∈ Xω, and

(2) ωλ(x, Tx) is a ω-lower semicontinuous function on Xω and ωλ(x, Tx) <∞ for
all x ∈ Xω.

Then T has a fixed point in Xω.

Proof. Let x0 ∈ Xω. Also let xn+1 = Txn for all n ∈ N ∪ {0}. So we get

ωλ(x1, x2) = ωλ(Tx0, Tx1)

≤ αωλ(x0, Tx0) + βωλ(x1, Tx1) + γωλ(x0, x1)

= αωλ(x0, Tx0) + βωλ(x1, Tx1) + γωλ(x0, x1),

which implies

ωλ(x1, x2) ≤
(
α+ γ

1− β

)
ωλ(x0, x1).

Similarly, ωλ(x2, x3) ≤ (α+γ1−β )2ωλ(x0, x1) and so on.

Proceeding in this way, we obtain

ωλ(xn, xn+1) ≤
(
α+ γ

1− β

)n
ωλ(x0, x1)→ 0 as n→∞,

since (α+γ1−β ) < 1 and ωλ(x, Tx) <∞ for all x ∈ Xω .

Let {αn} be a sequence of real numbers such that limn→∞ αn = 0 where 0 < αn < 1
for all n. Let us construct the sets Gn = {x ∈ Xω : ωλ(x, Tx) ≤ αn}. Then Gn 6= φ
for all n and by Lemma 2.4, {Gn} is monotone decreasing with ω-Diam(Gn) → 0. By
condition (2) and Lemma 2.5, it follows that the sets Gn are ω-closed. Now we apply
Theorem 2.3 (Cantor’s Intersection like Theorem) to obtain G =

⋂
Gn to be a singleton

set {u} (say). Using Lemma 2.6 we obtain Tu = u. Therefore u is a fixed point of T .

When operator T : Xω → Xω in this theorem is purely of contractive type, i.e., when
α = β = 0, the hypothesis of completeness of the modular metric space is not redundant
as supported by the example below.

Example 2.8. Take Xω = N, the set of natural numbers. We take ω : (0,∞)×X×X →
[0,∞) given by

ωλ(m,n) =

{
0, if m = n,
1
nλ + 1

mλ , if m 6= n.

Then Xω is a modular metric space which is not complete. For, if we consider the sequence
{n}, then ωλ(m,n) = 1

nλ + 1
mλ −→ 0 as n,m −→∞, λ > 0 showing that {n} is a Cauchy

sequence in Xω. But for a fixed number n0,

lim
n→∞

ωλ(n, n0) = lim
n→∞

(
1

nλ
+

1

n0λ

)
=

1

n0λ
> 0.
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But limm,n→∞ ωλ(n,m) = 0. which shows that {n} does not ω-converge to any point of
N. So Xω is not ω-complete. Now let us consider a self-mapping T on N defined by

Tn = 2n, for all n ∈ N.

For any m,n ∈ N, m 6= n, we have

ωλ(Tm, Tn) =
1

2mλ
+

1

2nλ
=

1

2
ωλ(m,n) <

3

4
ωλ(m,n)

so that T satisfies the condition (1) of Theorem 2.7 with α = 0 = β, γ = 3
4 . Also condition

(2) of Theorem 2.7 is satisfied. But T does not have a fixed point in Xω.

Let Xω be modular metric space and T : Xω → Xω be a self-map. Let x ∈ Xω. The
set O(x) = {Tn(x), n = 0, 1, 2, 3, . . .} is called the orbit of x. The mapping T is called
orbitally continuous if limi→∞ Tnix = z implies limi→∞ TTnix = Tz for each x ∈ Xω.
The modular space Xω is called T -orbitally complete if every ω-Cauchy sequence of the
form {Tn(x), n = 0, 1, 2, . . .}, x ∈ Xω converges in Xω.

Theorem 2.9. Let ω be a metric modular on X and Xω be a modular metric space
induced by ω. Let Xω be a T -orbitally complete modular metric space and T : Xω → Xω

be an operator satisfying

ωλ(Tx, Ty) ≤ α[ωλ(x, Tx) + ωλ(y, Ty)] + βωλ(x, y)

+γmax{ω2λ(x, Ty), ω2λ(y, Tx)},

for all x, y ∈ Xω, where α, β, γ ≥ 0 and (2α + β + 2γ) < 1. If ωλ(Tx, x) is a ω-lower
semicontinuous function in Xω and ωλ(Tx, x) < ∞ for all x ∈ Xω , then there exists a
point u ∈ Xω such that Tu = u.

Proof. Let x0 ∈ Xω and we construct the iterative sequence xn = Txn−1, n = 1, 2, 3, · · · .
We have

ωλ(x2, x1) = ωλ(Tx1, Tx0)

≤ α[ωλ(x1, Tx1) + ωλ(x0, Tx0)] + βωλ(x1, x0)

+γmax{ω2λ(x1, Tx0), ω2λ(x0, Tx1)}
= α[ωλ(x1, x2) + ωλ(x0, x1)] + βωλ(x1, x0)

+γω2λ(x0, Tx1)

≤ α[ωλ(x1, x2) + ωλ(x0, x1)] + βωλ(x1, x0)

+γ[ωλ(x0, x1) + ωλ(x1, Tx1)].

It follows that

(1− α− γ)ωλ(x2, x1) ≤ (α+ β + γ)ωλ(x1, x0)

and so

ωλ(x2, x1) ≤
(
α+ β + γ

1− α− γ

)
ωλ(x1, x0).

Proceeding in this way, we obtain ωλ(xn+1, xn) ≤ rnωλ(x1, x0), where r =
(
α+β+γ
1−α−γ

)
<

1. So ωλ(xn+1, xn) → 0 as n→∞ and ωλ(Tx, x) <∞.
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Now, for every m,n ∈ N such that m > n, we have

ωλ(xn, xm) ≤ ωλ1
(xn, xn+1) + ωλ1

(xn+1, xn+2) + · · ·+ ωλ1
(xm−1, xm)

≤ (rn + rn+1 + · · ·+ rm−1)ωλ1(x1, x0)

< rn(1 + r + r2 + · · · · · · )ωλ1
(x1, x0)

=
rn

1− r
ωλ1

(x1, x0),

where λ1 = λ
m−n > 0. Since 0 ≤ r < 1 and ωλ(Tx, x) < ∞ for all λ > 0, letting

m,n −→ ∞, we conclude that {xn} is a ω-cauchy sequence in Xω. As Xω is a ω-
complete, there exists a point u ∈ Xω such that lim

n→∞
xn = u.

Therefore

lim
m,n→∞

ωλ(xm, xn) = lim
n→∞

ωλ(xn, u) = ωλ(u, u)

⇒ 0 = lim
n→∞

ωλ(xn, u) = ωλ(u, u).

Since ωλ(Tx, x) is a ω-lower semicontinuous function on Xω, given ε > 0, we find a δ > 0
such that

ωλ(Tx, x) > ωλ(Tu, u)− ε, where x ∈ ω-Bδ(u).

Now limn→∞ ωλ(xn, u) = 0 implies that xn ∈ ω-Bδ(u) eventually, i.e.,

ωλ(xn, u) < δ for all n > m0 for some m0 ∈ N.

So ωλ(Txn, xn) > ωλ(Tu, u)− ε which further implies that

ωλ(Tu, u) < ωλ(Txn, xn) + ε.

As n → ∞, ωλ(Txn, xn) → 0, we have ωλ(u, Tu) ≤ ε. As ε > 0 is arbitrary, we have
ωλ(u, Tu) = 0 and we get u = Tu. Therefore u is a fixed point of T and the proof is
complete.

The statement of Caristi like theorem in modular metric spaces is as follows.

Theorem 2.10. (Caristi like Theorem) Let ω be a metric modular on X and Xω be a
modular metric space induced by ω. Let Xω be T -orbitally complete, where T is a self
mapping on Xω and let φ : Xω → R+, where R+ = {x ∈ R : x > 0} satisfy the following
condition :

ωλ(Tx, x) ≤ φ(x)− φ(Tx),∀x ∈ Xω.

If T is orbitally continuous at a point x0 ∈ Xω, then limn→∞ Tnx0 = u for some u ∈ Xω

such that Tu = u.

Proof. Let x0 ∈ Xω be arbitrary. Let us consider the orbit

O(x0) = {Tn(x0), n = 0, 1, 2, . . .}
and assume xn+1 6= xn, where xn = Tn(x0). Then

ωλ(xn+1, xn) = ωλ(Txn, xn)

≤ φ(xn)− φ(Txn)

= φ(xn)− φ(xn+1).
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Therefore
n∑
i=1

ωλ(xi+1, xi) ≤ φ(x1)−φ(xn+1) ≤ φ(x1). That means the series
∞∑
n=1

ωλ(xn+1, xn)

is ω-convergent. If m,n are two positive integers, and m > n then

ωλ1(xm, xn) ≤ ωλ(xm, xm−1) + ωλ(xm−1, xm−2) + ...+ ωλ(xn+1, xn),

where λ1 = (m − n)λ > 0, i.e., ωλ1
(xm, xn) ≤

m−1∑
i=n

ωλ(xi+1, xi). Since the series

∞∑
n=1

ωλ(xn+1, xn) is convergent, so for arbitrary ε > 0, there exists a positive integer

n0 such that

m−1∑
i=n

ωλ(xi+1, xi) < ε,

when m > n ≥ n0. So when m > n ≥ n0, we get from the above that ωλ1
(xm, xn) < ε.

This implies that {xn} is an ω-Cauchy sequence in Xω. Since Xω is T -orbitally complete,
there exists u ∈ Xω such that

lim
n→∞

xn = u⇒ lim
n→∞

Tnx0 = u.

Since T is orbitally continuous at x0, so we have limn→∞ T (Tnx0) = Tu, or, limn→∞ xn+1 =
Tu, i.e., u = Tu. Therefore u is a fixed point of T .

The next example justifies the necessity of incorporation of the function φ in the above
theorem.

Example 2.11. Let Xω = [0, 1] and the metric modular ω : (0,∞)×X ×X → [0,∞] is
defined by

ωλ(x, y) = max
{x
λ
,
y

λ

}
.

Let T : Xω → Xω be an operator on Xω where

Tx =

{
1, if x = 0,

0, otherwise.

Clearly T has no fixed point and T is orbitally continuous at 0 ∈ Xω.
We suppose that there exists φ : Xω −→ R+ which satisfies

ωλ(Tx, x) ≤ φ(x)− φ(Tx), for all x ∈ Xω.

Then if we take x = 0, we find that
ωλ(1, 0) = ωλ(T0, 0) ≤ φ(0)− φ(1), (1)

and taking x = 1, we get
ωλ(0, 1) ≤ φ(1)− φ(0). (2)

The two inequalities (1) and (2) cannot hold simultaneously. So there is no such function
φ as wanted in Theorem 2.10.

Also the assumption of orbital continuity of T is not redundant in Caristi like theorem
as seen in the example below.
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Example 2.12. Let Xω = [0, 1] and the metric modular be as in Example 2.11. We
define an operator T : Xω → Xω by

Tx =

{
1, if x = 0,
x
2 , if 0 < x ≤ 1.

Then T has no fixed point in Xω and T is not orbitally continuous at any x ∈ Xω.
However there is a function φ : Xω −→ R+ which satisfies the condition

ωλ(Tx, x) ≤ φ(x)− φ(Tx), for all x ∈ X,

as assumed in Theorem 2.10. Let us take φ : Xω → R+ given by

φ(x) =

{
3
λ , if x = 0,
2x
λ , if 0 < x ≤ 1.

This auxiliary function φ serves the purpose.

Now we deal with a Ćirić operator in this setting and prove a fixed point result in
modular metric spaces.

Definition 2.13. An operator T : Xω → Xω, where Xω is a modular metric space
associated with the metric modular ω on X, is said to be a Ćirić Operator if

ωλ(Tnx, Tny) ≤ qn(x, y)δ(x, y), n = 1, 2, 3, . . . ,

for all x, y ∈ Xω, where q and δ are two non-negative real valued functions over Xω ×Xω

satisfying q(x, y) < 1 for all (x, y) ∈ Xω×Xω with supx,y∈Xω q(x, y) = 1 and δ(x, Tx) <∞
for all x ∈ Xω.

Theorem 2.14. Let ω be a metric modular on X and Xω be a modular metric space
induced by ω. Let Xω be T -orbitally complete where T is a self mapping on Xω. Let us
suppose further T : Xω → Xω is a Ćirić operator satisfying the condition

ωλ(Tx, Ty) ≤ αωλ(x, Tx)

+βmax{ωλ(y, Ty) + ω3λ(x, y), ω2λ(x, Ty), ω2λ(y, Tx)},

for all x, y ∈ Xω, where α ≥ 0, 0 ≤ β < 1. Then T has a fixed point in Xω.

Proof. Let x0 ∈ Xω and xn = Tn(x0) where n = 1, 2, 3, . . .. Then

ωλ(Tmx0, T
nx0)

= ωλ(T (Tm−1x0), T (Tn−1x0))

≤ αωλ(Tm−1x0, T
mx0) + βmax{ωλ(Tn−1x0, T

nx0)

+ω3λ(Tm−1x0, T
n−1x0), ω2λ(Tm−1x0, T

nx0), ω2λ(Tn−1x0, T
mx0)}.
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So

ωλ(Tmx0, T
nx0)

≤ αωλ(Tm−1x0, T
mx0)

+βmax{ωλ(Tn−1x0, T
nx0) + ωλ(Tm−1x0, T

mx0)

+ωλ(Tmx0, T
nx0) + ωλ(Tnx0, T

n−1x0)}, ωλ(Tm−1x0, T
mx0)

+ωλ(Tmx0, T
nx0), ωλ(Tn−1x0, T

nx0) + ωλ(Tnx0, T
mx0)}

= αωλ(Tm−1x0, T
mx0)

+β[2ωλ(Tn−1x0, T
nx0) + ωλ(Tm−1x0, T

mx0) + ωλ(Tmx0, T
nx0)]

≤
(
α+ β

1− β

)
ωλ(Tm−1x0, T

mx0) +

(
2β

1− β

)
ωλ(Tn−1x0, T

nx0)

≤
(
α+ β

1− β

)
qm−1(x0, Tx0)δ(x0, Tx0)

+

(
2β

1− β

)
qn−1(x0, Tx0)δ(x0, Tx0)

→ 0 as m,n→∞ and δ(x, Tx) <∞.

Then {Tnx0} is a ω-Cauchy sequence in Xω which is T -orbitally complete. So there exists
u ∈ Xω such that

lim
m,n→∞

ωλ(Tmx0, T
nx0) = lim

n→∞
ωλ(Tnx0, u) = ωλ(u, u) = 0.

This implies that limn→∞[ωλ(Tnx0, u)] = 0. Now

ωλ(Tnx0, Tu)

= ωλ(T (Tn−1x0), Tu)

≤ αωλ(Tn−1x0, T
nx0) + βmax{ωλ(u, Tu) + ω3λ(Tn−1x0, u),

ω2λ(Tn−1x0, Tu), ω2λ(u, Tnx0)}
≤ αωλ(Tn−1x0, T

nx0) + βmax{ωλ(u, Tu) + ωλ(Tn−1x0, u),

ω2λ(Tn−1x0, Tu), ωλ(u, Tnx0)}.

Passing on limit as n→∞,

lim
n→∞

ωλ(Tnx0, Tu) ≤ βmax{ωλ(u, Tu), lim
n→∞

ω2λ(Tn−1x0, Tu)}.

If max{ωλ(u, Tu), limn→∞ ω2λ(Tn−1x0, Tu)} = ωλ(u, Tu), then

lim
n→∞

ωλ(Tnx0, Tu) ≤ βωλ(u, Tu) < ωλ(u, Tu) as β < 1,

which yields

lim
n→∞

ω2λ(Tnx0, Tu) ≤ lim
n→∞

ωλ(Tnx0, Tu) < ωλ(u, Tu),

and so

lim
n→∞

{ωλ(Tnx0, u) + ωλ(u, Tu)} < ωλ(u, Tu),

giving rise to ωλ(u, Tu) < ωλ(u, Tu), which is not true. Hence

max
{
ωλ(u, Tu), lim

n→∞
ω2λ(Tn−1x0, Tu)

}
= lim
n→∞

ω2λ(Tn−1x0, Tu).
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Then

lim
n→∞

ω2λ(Tnx0, Tu) ≤ β lim
n→∞

ω2λ(Tn−1x0, Tu).

Since β < 1, we have limn→∞ ω2λ(Tnx0, Tu) = 0 which gives us

lim
n→∞

{ωλ(Tnx0, u) + ωλ(u, Tu)} = 0.

Then we get ωλ(u, Tu) = 0. Therefore we have

ωλ(u, u) = ωλ(Tu, Tu) = ωλ(u, Tu) = 0,

which implies that u = Tu. Hence u is a fixed point of T .

We finish this section with an analogue of Jungck theorem [20] for modular metric
spaces.

Theorem 2.15. (Jungck Theorem in a modular metric space) Let ω be a metric modular
on X and Xω be a modular metric space induced by ω. Let Xω be a complete modu-
lar metric space, and T and I be commuting mappings of Xω into itself satisfying the
inequality

ωλ(Tx, Ty) ≤ µωλ(Ix, Iy), (2.3)

for all x, y ∈ Xω and 0 < µ < 1. If ωλ(Ix, Iy) <∞ for all x, y ∈ Xω and the range of I
contains the range of T and further I is continuous, then T and I have a unique common
fixed point.

Proof. Let x0 ∈ Xω be arbitrary. Then Tx0 and Ix0 are well defined. Since Tx0 ∈ T (Xω)
and the range of I contains the range of T , there exists x1 ∈ Xω such that Ix1 = Tx0. In
general, if xn ∈ Xω is chosen, then there exists a point xn+1 ∈ Xω such that Ixn+1 = Txn.
As ωλ(Tx, Ty) ≤ µωλ(Ix, Iy) for all x, y ∈ Xω and 0 < µ < 1, we have

ωλ(Ixm+k, Ixn+k) = ωλ(Txm+k−1, Txn+k−1) ≤ µωλ(Ixm+k−1, Ixn+k−1).

So, for all k ∈ N,

ωλ(Ixm+k, Ixn+k) ≤ µkωλ(Ixm, Ixn). (2.4)

.
Case-I: If Ixn+1 = Ixn for some n, then Txn = Ixn = p. Here p is a common fixed
point of T and I. Indeed, Tp = T (Ixn) = I(Txn) = Ip. If we consider ωλ(p, Tp) > 0,
then we have

ωλ(p, Tp) =ωλ(Txn, Tp)

≤µωλ(Ixn, Ip)

=µωλ(p, Ip)

=µωλ(p, Tp)

<ωλ(p, Tp),

which is a contradiction.
Case-II: If Ixn+1 6= Ixn for all n ≥ 0, then Ixn+k 6= Ixn for all n ≥ 0 and k ≥ 1, viz.,
if Ixn = Ixn+k for some n ≥ 0 and k ≥ 1, then we have

ωλ(Ixn+1, Ixn+k+1) = ωλ(Txn, Txn+k) ≤ µωλ(Ixn, Ixn+k) = 0.
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So we have Ixn+k = Ixn+k+1. Then (2.4) implies that

ωλ(Ixn+1, Ixn) = ωλ(Ixn+k+1, Ixn+k)

≤ µkωλ(Ixn+1, Ixn)

< ωλ(Ixn+1, Ixn),

which is a contradiction.
Thus we assume that Ixn 6= Ixm for all distinct n,m ∈ N. Note that Ixm+k 6= Ixn+k

for all k ∈ N and for all distinct n,m ∈ N and Ixn+k, Ixm+k ∈ X \ {Ixn, Ixm}. Then

ωλ(Ixm, Ixn) ≤ ωλ1(Ixm, Ixm+n0) + ωλ2(Ixm+n0 , Ixn+n0)

+ ωλ3(Ixn+n0 , Ixn),

where λ = (λ1 + λ2 + λ3) > 0 and n0 ∈ N and each λi > 0 for i = 1, 2, 3. So using the
result (2.4), we get

ωλ(Ixm, Ixn)

≤ µmωλ1
(Ix0, Ixn0

) + µn0ωλ2
(Ixm, Ixn) + µnωλ3

(Ix0, Ixn0
)

≤ µmωλ1(Ix0, Ixn0) + µm−1+n0ωλ2(Ix1, Ixn−m+1)

+µnωλ3(Ix0, Ixn0).

We then obtain ωλ(Ixm, Ixn) → 0 as m,n → ∞ and ωλ(Ix, Iy) < ∞ which implies
{Ixm} is a ω-Cauchy sequence in Xω. By completeness of Xω there exists p ∈ Xω such
that

lim
n→∞

Ixn = lim
n→∞

Txn−1 = p.

Since I is continuous, (2.3) implies that both I and T are continuous. Since T and I
commute, we obtain

Ip = I
(

lim
n→∞

Txn

)
= lim
n→∞

IT (xn) = lim
n→∞

TI(xn) = T
(

lim
n→∞

Ixn

)
= Tp.

Let Tp = Ip = q. If possible, let Tp 6= Tq. Then we have Tq = TIp = ITp = Iq. Further,
from (2.3) we obtain

ωλ(Tp, Tq) ≤ µωλ(Ip, Iq)

= µωλ(Tp, Tq)

< ωλ(Tp, Tq),

which is a contradiction. So Tp = Tq and hence we have Tq = Iq = q and q is a common
fixed point of T and I. Condition (2.3) implies that q is a unique common fixed point of
T and I.

Corollary 2.16. Let I and T be commuting mappings of a modular metric space Xω

such that ω is complete and

ωλ(T k(x), T k(y)) ≤ µωλ(Ix, Iy),

for all x, y ∈ Xω and 0 < µ < 1 and k be any positive integer. If ωλ(Ix, Iy) < ∞, I is
continuous and T (Xω) ⊂ I(Xω), Then T and I have a unique common fixed point in Xω.
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Proof. Clearly, T k commutes with I and T k(Xω) ⊂ T (Xω) ⊂ I(Xω). Thus the theorem
pertains to T k and I. So there is a unique p ∈ Xω such that p = I(p) = T k(p). Since I
and T commute, we can write

T (p) = T (I(p)) = I(T (p)) = T k(T (p)),

which says that T (p) is a common fixed point of I and T k. The uniqueness of p implies
that p = T (p) = I(p).

We give the following example in support of our theorem.

Example 2.17. Let X = R7. We define a mapping ω : (0,∞)×X ×X → [0,∞] by

ωλ(x, y) =

7∑
i=1

|xi − yi|
λ

,

where x = (x1, x2, x3, x4, x5, x6, x7), y = (y1, y2, y3, y4, y5, y6, y7) ∈ R7.
If we take λ→∞, then X = Xω and also Xω is a complete modular metric space.

Let us define T, I : Xω → Xω by

T (x) =

(
5x1 − 63

14
,

2x2 − 15

5
,
x3 − 30

11
,

5x4 + 1

4
, 2x5 − 1,

x6 + 20

5
,

2x7 + 21

9

)
,

I(x) =

(
6x1 − 7

7
,

11x2 + 30

5
,

7x3 + 12

3
,

7x4 + 4

3
, 5x5 − 4, 3x6 − 10,

11x7 − 15

6

)
.

Then T and I are commuting. Also

ωλ(Tx, Ty) ≤ kωλ(Ix, Iy),

where k = 15/28.
It is clear that I is continuous and T (Xω) ⊂ I(Xω). Therefore we can conclude that

T and I have a unique common fixed point.
Here, (−7,−5,−3,−1, 1, 5, 3) ∈ R7 is a common fixed point of both T and I.
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