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1. INTRODUCTION

A new direction in fixed point theory was initiated in 2010 when Chistyakov ([1],[2])
introduced the concept of modular metric spaces. He first developed some theory related
to these spaces and then gave some fixed point results [3] on modular metric spaces.
This study continued further with Abdou and Khamsi ([4], [5], [6]) proving many new
theorems. Mongkolkeha et al. [7] explored contraction mappings in this setting to find
fixed point theorems. The theory has evolved with works done by authors like Abdou [3],
Abobaker and Ryan [9], Mitrovic et al. [10] and Hussain [11]. Hitherto many researchers
have been pursuing the study of fixed points in the realm of modular metric spaces (see

[12], [13], [14], [15), 16l [17], 18], [19]).

First we recall briefly the basic concepts and facts in modular metric spaces.

Let X be any arbitrary non-empty set and w : (0,00) x X x X — [0, 00] be written as
wy (z,y) =w (A, z,y), for each A > 0 and z,y € X.
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Definition 1.1. [I, Definition 2.1] Let X be a non-empty set and w : (0,00) x X x X —
[0, 0] satisfy the following:

(1) wa(z,y) =0 for all A > 0 if and only if z = y;

(2) wa(@,y) = waly, 2);

(3) watu(z,2) <wr(®,y) +wuly, 2);
for all A, u > 0 and for all z,y, z € X. Then w is said to be a metric modular on X.

For z,y € X, the function 0 < A — wy(z, y) is nonincreasing on (0, c0).

A metric modular w on X is said to be convex if, instead of (3), it satisfies the inequality

w)x—i-u(xaz) < wk(xvy) + wu(y,z)

"
A+ w+A
for all A\, u > 0 and for all z,y,z € X.
Given a modular w on X and a point x¢ in X, the two sets
X = Xo(xo) ={2 € X : wr(z,20) = 0 as A = oo}
and
X=X (xo) ={z € X :3IX=A=x) > 0 such that wy(z, ) < o0}

are each known as modular spaces (around zg).
In general, X, (z9) C X (x0). The modular space X, can be equipped with a metric
dy,, generated by w and given by

dy(z,y) = inf{A > 0:wxr(z,y) <A}, forall z,y € X,,.
It is known that d,, is a well defined metric on X also. If w is convex then X, (xg) =
X (x0) and this common set can be endowed with a metric d, given by

d(z,y) = inf{\ > 0:wy(z,y) <1}, forall z,y € X.

Definition 1.2. Let X, be a modular metric space.

(1) A sequence {x,} in X, is said to be modular convergent or w-convergent to
an element x € X if there exists a number A > 0, possibly depending on {z,}
and z, such that
lim wy(zn,x) = 0.
n—oo
Here z is called a modular limit of the sequence {x,,}.

(2) A sequence {z,} in X, is said to be modular Cauchy or w-Cauchy if there
exists a number A > 0, possibly depending on the sequence, such that

wx(Tm,Tn) = 0 as m,n — oo.

(3) The modular space X, is said to be modular complete or w-complete if every
w-Cauchy sequence from X, is w-convergent.

Let (X, d) be a metric space with at least two points. There are several ways to define
a metric modular on X.

Example 1.3. [9, Examples 2.1 - 2.3] We take (X, d) to be a metric space.

(1) Let for all z,y € X, wy(z,y) = d(z,y). In this case, property (3) in the
definition of a modular is just the triangle inequality for the metric. This modular
is not convex as we can see by taking z =y and pu = A.
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(2) Let wy(z,y) = M for all A > 0. In this case, we can think of wy(z,y) as the
average velocity required to travel from z to y in time A. A simple calculation
with the triangle inequality shows that this modular is convex.

(3) Let wa(z,y) = )i(dw(’g’)y) for all A > 0. It can be shown that this modular is not
convex if we take z =y and p = A

Example 1.4. [7, Example 3.7] Let X = {(a,0) € R2:0<a <1} U{(0,b) e R?:0 <
b < 1}. Define the mapping w : (0,00) x X x X — [0, 0] by

WA((alvo)v(a%o)) = W’
wr((0,01), (0,b2) = M
A(@,0),0,8) = 35+ =n((0,0),(0,0)).

We note that wy((0,0), (0,0)) = 0 is satisfied by all three conditions above. Here X = X,
and X, is a w-complete modular metric space.

Let w be a metric modular on X and X, be a modular metric space induced by w.
For any x € X, and r > 0, the set w-Bs(x) = {y € X, : ws(z,y) < r;d > 0} is called a
modular open ball. A modular closed ball is defined as w-Bj[z] = {y € X, : ws(z,y) <
r;0 > 0}.

Definition 1.5.

(1) A subset M of X, is said to be w-closed if the w-limit of any w-convergent
sequence of M is in M.
(2) A subset M of X,, is said to be w-bounded if

sup{wy(z,y) : z,y € X, A > 0} < oo.

(3) A function f: X, — R is said to be w-lower semicontinuous at u € X, if given
€ > 0, there is a § > 0 such that

f(x) > f(u) — e for x € w-Bs(u).

2. MAIN RESULTS

Here we establish a Cantor’s Intersection like theorem in a complete modular metric
space. We begin with the following definition.

Definition 2.1. The diameter of an w-bounded subset M of X, is denoted by w-Diam(M)
and is defined by

w-Diam(M) = sup{wx(z,y) : ,y € X, A > 0}.

Lemma 2.2. Let w be a metric modular on X and X, be a modular metric space induced
by w. Let F be a w-bounded subset of X,,. Then its closure is bounded and w-Diam(F) =
w-Diam(F).

Proof. Since F' C F, we have
0 < sup{wa(z,9) : z,y € F,A > 0} < sup{wa(z,y) : 7,y € F, A > 0}

= w-Diam(F') < w-Diam(F). (2.1)
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Let u,v € F be such that wy(u,v) > 0, for A > 0. Then given ¢ > 0, there exist 2,22 € F
to satisfy wa (u,21) < § and wa (v,22) < §. Therefore

wa(u,v) < wa(u,21) +wa(21,22) + wa (22,0)

€ +LU%(21,ZQ),

<
= wy(u,v) < €+ w-Diam(F),
<

= w-Diam(F) € + w-Diam(F).
As e > 0 is arbitrary, we get
w-Diam(F) < w-Diam(F). (2.2)
Combining (2.1) and (2.2), we get w-Diam(F) = w-Diam(F). L]

Theorem 2.3. (Cantor’s Intersection like Theorem) Let w be a metric modular on X
and X, be a modular metric space induced by w. Let {F,} be a monotonically decreasing
sequence of non-empty closed subsets of X, such that w-Diam(F,) — 0 asn — co. Then
F =, F, contains ezxactly one point if and only if X,, is a complete modular metric
space.

Proof. We construct a sequence {z,} in X, by selecting a point z,, € F, for each n.
Since the sets {F,} are nested, so x, € F,, for all n > m. Let ¢ > 0 be given. Since
w-Diam(F,,) — 0, there exists a positive integer N such that w-Diam(Fy) < e. It is clear
that for all n,m > N, z,,z,, € Fy and as such we have wy(z,, z,) < w-Diam(Fy) < ¢
for all n,m > N. Thus {z,} is a w-Cauchy sequence in X,. Since X, is a complete
modular metric space, so there exists x € X, such that z,, — «.

We now claim that z € () F,.

Let n be fixed. Then the subsequence {z,, Tn41, Tni2, ...} of {z,} is contained in F,

and still converges to z. But F;, being a closed subspace of the complete modular metric
space X,,, it is complete and so « € F,,. This is true for each n € N. Hence = € () F,.
This shows that [ F}, is nonempty.
Finally to prove that x is the only point in the intersection () F,. Let z € [\ F, and
y € () Fn. Then z and y both are in F,, for each n € N. Therefore 0 < wy(z,y) <
w-Diam(F,,) — 0 as n — oo. Then wy(z,y) = 0 = = = y. Hence such x € X is unique
and consequently F' = [ F,, is a singleton set.

Conversely, let for every decreasing sequence {F,} of non-empty closed sets with
w-Diam(F,,) — 0 as n — oo has exactly one point in its intersection. Let {z,} be
any w-Cauchy sequence in X,,. Let Gy, be the range of the sequence {x,, Tp11, Tni2, ...}
Obviously G1 2 G2 2 G3... and so {x,} is w-Cauchy. This yields w-Diam(G,) — 0 as
n — 0 and hence w-Diam(G,,) — 0 as n — 0. Then by hypothesis, (|G, consists of a
single point z (say). Thus

wi(z, 2,) < w-Diam(G,,) — 0.
This gives
wx(z,z,) = 0 as n — oo.

Hence {z,} converges to x in X,,. Therefore X, is complete. [ ]

Next we prove a fixed point theorem for a mixed type mapping employing Cantor’s
Intersection like theorem.



Fixed Points of Various Types of Operators in Modular Metric Spaces 1523

Lemma 2.4. Let w be a metric modular on X and X,, be a modular metric space induced
by w and T be a self mapping on w satisfying the following condition:
UJ}\(T‘rv Ty) < O[(.d)\(fE, TiC) + Bw)\(yv Ty) + ’}/UJ)\(LE, y)v

where a + 8 +v <1 and o, 3,7 > 0 for all x,y € X,,.
Let {an} be a sequence of reals with 0 < a,, < 1 for alln and lim a, = 0. For each

n—oo

n € N, if the set

G, ={x e X, :w\(z,Tx) < ap, A >0}
is nonempty, then {G,} is a decreasing sequence of sets with w-Diam(G,,) — 0.
Proof. Clearly, {G,} is a monotone decreasing sequence. Let x,y be elements in G,, so
that wy(z, Tz) < ay, and wy(y, Ty) < a,,. Now
war (@, Ty) + wA(Ty,y)
wx(z, Tz) + wr(Tz, Ty) + wxr(Ty,y)
20, + wi(Tz, Ty)
20, + awy (z, Tx) + Bwi(y, Ty) + ywar(x, y)
(24 a+ B)ay, + ywa(x,y)
(2+ a+ fB)a, + v w-Diam(G,,).

W3\ (117, y)

(VAN VAN VAN VAN VANRR VAN

Then
sup{wsr(z,y) : 2,y € Gp, A >0} < (24 a+ ) an + v w-Diam(G,,),
which gives w-Diam(G,,)(1 —7) < (2+ a + ) an, and so

)
2+ a+p)

-Diam(G,,) <
w-Diam(G,,) < T

a, — 0 asn — .
n

Lemma 2.5. Let w be a metric modular on X and X, be a modular metric space in-
duced by w. If the function f : X, — RT defined by f(z) = wi(z,Tx) is a w-lower
semicontinuous function then the sets G, as constructed in Lemma 2.4 are w-closed.

Proof. 1t is a consequence of w-lower semicontinuity property of f. [

Lemma 2.6. Let w be a metric modular on X and X,, be a modular metric space induced
by w. A function T : X, — X, be a mapping satisfying the condition of Lemma 2.4.
Then T(G,,) C Gy, where the sets G,, appear there.

Proof. Let x € Gy,. Then wy(z,Tz) < a,. Now

w(Tz, T?z) = wx(Tz,T(Tx))
< awy(z, Tx) + Bws (T, T?x) + ywa (2, Tx),
or, (1 — Bwr(Tz, T?z) < (a+y)wr(z, Tx),
or, wy(Tx, T?z) < ?+g wy(z, Tx),
or, w(Tx, T?z) < T—’_; ap, < oy, (since a + 4+ v < 1).

Then Tz € G,, and therefore T(G,,) C G,. n
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Theorem 2.7. Let w be a metric modular on X and X, be a modular metric space
induced by w. Let X, be complete and T : X, — X, be a self mapping on X, which
satisfies the following conditions :
(1) wA(Tz, Ty) < awx(z, Tx) + Bwx(y, Ty) + ywa(z, y),
where a + f+v <1 and o, 8,7 > 0, for all x,y € X, and
(2) wi(x,Tx) is a w-lower semicontinuous function on X, and wy(x,Tx) < co for
all x € X,,.

Then T has a fized point in X,,.
Proof. Let xg € X,,,. Also let 2,11 = T, for all n € NU{0}. So we get

wr(xy,w2) = wA(Two, T1)

IN

awy (zo, Txo) + Pwr(z1, Tx1) + ywi(To, 1)
awy (zo, Tzo) + Pwa(z1, Tx1) + ywi(zo, 1),

which implies

Similarly, wy (22, 23) < (%)Zou(xo,xl) and so on.
Proceeding in this way, we obtain

a—+y
1-p

since (%) < 1and wy(z,Tzr) < oo forall z € X,, .

Let {ay,} be a sequence of real numbers such that lim,, o @, = 0 where 0 < o, < 1
for all n. Let us construct the sets G,, = {z € X, : wa(z,Tz) < ap}. Then G,, # ¢
for all n and by Lemma 2.4, {G,} is monotone decreasing with w-Diam(G,) — 0. By
condition (2) and Lemma 2.5, it follows that the sets G,, are w-closed. Now we apply
Theorem 2.3 (Cantor’s Intersection like Theorem) to obtain G = [ G,, to be a singleton
set {u} (say). Using Lemma 2.6 we obtain Tu = u. Therefore u is a fixed point of T. =

n
) wx(zo,x1) = 0 as n — oo,

W)\(xna xn+1) S (

When operator T : X, — X, in this theorem is purely of contractive type, i.e., when
a = B = 0, the hypothesis of completeness of the modular metric space is not redundant
as supported by the example below.

Example 2.8. Take X, = N, the set of natural numbers. We take w : (0,00) x X x X —
[0, 00) given by

( ) 0, if m =n,
wr(m,n) = .

’ ﬁ + %, if m #n.
Then X, is a modular metric space which is not complete. For, if we consider the sequence
{n}, then wy(m,n) = 4 + -5 — 0 as n,m — 0o, A > 0 showing that {n} is a Cauchy
sequence in X,. But for a fixed number ng,

li ( = i L L _L 0
A wa(nno) = lim | %t 2or ) = s > 0,
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But limy, p—sc0 wa (1, m) = 0. which shows that {n} does not w-converge to any point of
N. So X, is not w-complete. Now let us consider a self-mapping T on N defined by

Tn = 2n, for alln € N.

For any m,n € N, m # n, we have
1 1 1 3
wx(Tm,Tn) = In + = iwA(m, n) < Zo.»\(m,n)
so that T satisfies the condition (1) of Theorem 2.7 with « = 0 = 3, v = 3. Also condition
(2) of Theorem 2.7 is satisfied. But T' does not have a fixed point in X,,,.

Let X, be modular metric space and T : X, — X, be a self-map. Let z € X,,. The
set O(z) = {T"™(x),n = 0,1,2,3,...} is called the orbit of z. The mapping T is called
orbitally continuous if lim; ., 7" x = z implies lim; o, TT™x = Tz for each = € X|,,.
The modular space X, is called T-orbitally complete if every w-Cauchy sequence of the
form {T™(x),n=0,1,2,...}, x € X, converges in X,.

Theorem 2.9. Let w be a metric modular on X and X, be a modular metric space
induced by w. Let X, be a T-orbitally complete modular metric space and T : X, — X,
be an operator satisfying
wA(Tz,Ty) < afwr(z, Tz) +wa(y, Ty)] + fwa(z,y)
oy ma{un (2, Ty), waa (9, T)
for all z,y € X, where o, 8,7 > 0 and 2a+ B+ 2v) < 1. If wx(Tx,z) is a w-lower

semicontinuous function in X, and wx(Tz,z) < oo for all x € X,, , then there exists a
point u € X, such that Tu = u.

Proof. Let x¢ € X, and we construct the iterative sequence x,, = Txp_1,n=1,2,3,---.
We have
wr(z2,21) = wr(Txy,Txp)
afwy(x1,T21) + wr(zo, Txo)] + Bwi (21, 20)
+v max{way(z1, Txo),war(xo, Tx1)}
alwy (1, x2) + wr(zo, 21)] + Bwr (1, Z0)
+ywax (o, Tr1)
afwy(x1, 22) + wal(zo, 21)] + Pwr(z1, z0)

+vlwa(zo, 1) + wa(z1, Tx1)].

IN

IN

It follows that

(1 —a—y)wr(ze,71) < (a4 B+ y)wa(z1, 20)

and so

a+p+
wr(ze, 1) < (M

l—a—vy

>w,\(z1,x0).

Proceeding in this way, we obtain wy(zp+1, n) < r"wx (21, o), where r = (%’@f;’) <

1. So wx(Tpt1,2n) — 0 as n — oo and wy(Tx, x) < co.
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Now, for every m,n € N such that m > n, we have
WA (T, ) S Wi, (T, Tg1) + Wy (Trg1s Tnga) + -+ Wy (Tm—1, Tm)
< (" 4"t ™ Yy (1, 20)
<rt(A4r4rgea.. Ywa, (1, x0)
o
1o r
where \; = mi > 0. Since 0 < r < 1 and wy(Tz,z) < oo for all A > 0, letting

n
m,n — oo, we conclude that {z,} is a w-cauchy sequence in X,,. As X, is a w-

complete, there exists a point v € X, such that lim x, = u.
n—r oo

wx, (%1, Z0),

Therefore

mligoo W (T, ) = nler;OwA(xn,u) = wy(u,u)

=0= nli_}ngowx(a:n,u) = wy(u, u).

Since wy(Tz, z) is a w-lower semicontinuous function on X,,, given € > 0, we find a § > 0
such that

wx(Tz,x) > wr(Tu,u) — €, where z € w-Bs(u).
Now lim,, oo wx(@n,u) = 0 implies that z,, € w-Bs(u) eventually, i.e.,

wx(zn,u) < 0 for all n > my for some mgy € N.
S0 wA(TZp, xy) > wr(Tu,u) — € which further implies that

wx(Tu,u) < wr(Txp, xy) + €.

As n — 00, wx(Txy,xy) — 0, we have wy(u,Tu) < e. As e > 0 is arbitrary, we have
wx(u,Tu) = 0 and we get u = T'u. Therefore u is a fixed point of T' and the proof is
complete. -

The statement of Caristi like theorem in modular metric spaces is as follows.

Theorem 2.10. (Caristi like Theorem) Let w be a metric modular on X and X, be a
modular metric space induced by w. Let X, be T-orbitally complete, where T is a self
mapping on X,, and let ¢ : X, — R, where RT = {z € R: x > 0} satisfy the following
condition :

wx(Tz,z) < ¢(x) — ¢(Tx),Vr € X,,.
If T is orbitally continuous at a point xog € X, then lim, oo T"xo = u for some u € X,
such that Tu = u.

Proof. Let xg € X, be arbitrary. Let us consider the orbit
O(Z‘o) = {T"(mo),n = 0, 1, 2, .. }
and assume 1 # T, where x,, = T™(xq). Then

WA(Tnt1,2n) = wr(Tzp, )
= ¢(zn) — ¢(Tnt1)-
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n o0
Therefore > wx(zi+1, i) < ¢(x1)—d(xnt1) < d(x1). That means the series > wir(Tpt1, Tn)
i=1 n=1
is w-convergent. If m,n are two positive integers, and m > n then

Wry (@ms ) WA (Tos T—1) + WA (Trm—1, Tm—2) + .. + WA(Trt1, Tn),

—1
where Ay = (m — n)A > 0, e, wr, (Tm,2n) < > wrl@it1,x;). Since the series

3

i=n
0

> wx(Tpt1,xn) is convergent, so for arbitrary e > 0, there exists a positive integer
n=1
ng such that

m—1

Z wA(Tit1, i) <€

i=n

when m > n > ng. So when m > n > ng, we get from the above that wy, (T, z,) < €
This implies that {z,} is an w-Cauchy sequence in X,,. Since X, is T-orbitally complete,
there exists u € X, such that

lim z, =u= lim T"xz, = u.
n—oo n—oo

Since T is orbitally continuous at xg, so we have lim,,_, o T(T"x¢) = T'u, or, lim,, 00 Tpt1 =

Tu, i.e., uw = Tu. Therefore u is a fixed point of T'. =

The next example justifies the necessity of incorporation of the function ¢ in the above
theorem.

Example 2.11. Let X, = [0,1] and the metric modular w : (0,00) x X x X — [0, 00] is
defined by

wi(z,y) = max{%, %}

Let T : X, — X, be an operator on X, where

Tw — 1, ifz=0,
0, otherwise.

Clearly T has no fixed point and T is orbitally continuous at 0 € X,,.
We suppose that there exists ¢ : X,, — R* which satisfies

wx(Tz,x) < ¢(x) — ¢(Tx), for all z € X,,,.

Then if we take x = 0, we find that

w)\(]-v 0) = W)\(Tov 0) < ¢(0) - (b(]-)v (1)
and taking x = 1, we get
wx(0,1) < &(1) — ¢(0). (2)

The two inequalities (1) and (2) cannot hold simultaneously. So there is no such function
¢ as wanted in Theorem 2.10.

Also the assumption of orbital continuity of 7" is not redundant in Caristi like theorem
as seen in the example below.
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Example 2.12. Let X, = [0,1] and the metric modular be as in Example 2.11. We
define an operator T : X, — X, by

Tm:{l, if 2 =0,

2 ifo<x <l

Then T has no fixed point in X, and T is not orbitally continuous at any =z € X,.
However there is a function ¢ : X,, — RT which satisfies the condition

wx(Tz,z) < ¢(x) — ¢(Tx), for all z € X,

as assumed in Theorem 2.10. Let us take ¢ : X, — R™ given by

b(z) = {g\; ifx=0,

=, ifo<z <1
This auxiliary function ¢ serves the purpose.

Now we deal with a Ciri¢ operator in this setting and prove a fixed point result in
modular metric spaces.

Definition 2.13. An operator T : X, — X,, where X, is a modular metric space
associated with the metric modular w on X, is said to be a Ciri¢ Operator if

WA(TnxaTny) < q"(x,y)(S(w,y),n = 1a2537 R

for all x,y € X,,, where ¢ and § are two non-negative real valued functions over X, x X,
satisfying ¢(x,y) < 1for all (z,y) € X, x X, withsup, ,cx_q(z,y) = Land §(z,Tz) < o0
for all x € X,,.

Theorem 2.14. Let w be a metric modular on X and X, be a modular metric space
induced by w. Let X, be T-orbitally complete where T is a self mapping on X,,. Let us
suppose further T : X, — X, is a Ciri¢ operator satisfying the condition

wx(Tz,Ty) < awy(z,Tx)
+Bmax{w(y, Ty) + wsa(@,y), waa (@, Ty), war(y, T2)},

forall x,y € X, where « > 0,0 < 5 < 1. Then T has a fized point in X,,.
Proof. Let zy € X, and x,, = T™(z¢) where n =1,2,3,.... Then

(.d,\(Tm$07 Tn(E())
WA(T(T™ o), T(T™ 1))
awy (T™ 2o, T™x0) + B max{wy (T xq, T"x0)

Fwax(T™ g, T T xg), wor (T™ L mo, T o), wor (T *wo, T x0) }-

IA
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So

w) (Tmito, T”xo)

< awn(T™ tag, T™xo)
+Bmax{wx(T" tzg, T"20) + wr(T™ tzg, T™x0)
Fwr (T xg, T" o) + wr (T w0, T txo)}, wn(T™ Lo, T™20)
Fwr (T xg, T"x0), wr (T 20, T"x0) + wr (T 20, T™x0)}
= awx(T™ tag, T™20)
FBR2wA (T g, T™20) + wr(T™ Lwg, T™xg) + wr (T 20, T™20)]
2
< <?j§> wA (T o, T™xg) + (&) WA (T g, T™xo)
< (?—i—g) q" (w0, Txo )6 (0, To)
2 _
+ (1_ﬁﬂ> q" l(l'o,Txo)(S(.’Eme())

— 0 as m,n — oo and d(x,Tz) < co.

Then {T"xz¢} is a w-Cauchy sequence in X, which is T-orbitally complete. So there exists

u € X,, such that

lm  wx(T™xg, T"x0) = lim wy(T"zg,u) = wy(u,u) = 0.
m,n— 00 n— oo

This implies that lim,,_, o [wr(T"x0,u)] = 0. Now
wA(T"xo, Tu)
W (T(T”_lxo), TU)

< awn (T twg, T"xo) + Bmax{wy (u, Tu) + wsx(T™ txo,u),
wWor (T g, Tu), won(u, T"x0)}
< awn (T o, T xg) + Bmax{w (u, Tu) + wx(T" Taq,u),

wor (T Yoy, Tu), wy (u, T"x0) }.
Passing on limit as n — oo,

lim wy(T™z, Tu) < Bmax{wy(u, Tu), im wox(T" 'xo, Tu)}.
n—oo n—o0

If max{wy (u, Tu),lim, o wor (T 2o, Tu)} = wx(u, Tu), then
nleréowA(T"xo,Tu) < Bwr(u, Tu) < wx(u,Tu) as f < 1,
which yields
lim wor(T"xg, Tu) < lim wy(T"zo, Tu) < wx(u, Tu),

n—oo n— oo

and so
lim {wx(T"zo, u) + wa(u, Tu)} < wx(u, Tu),
n—oo

giving rise to wy(u, Tu) < wy(u,Tu), which is not true. Hence

max {w)\(u, Tu), lim ng(T”_lxo,TU)} = lim wox(T" g, Tu).
n—oo n—oo
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Then
nh_}rr;o wor(T"xo, Tu) < Bnli_g;o wor (T g, T).

Since 8 < 1, we have lim,,_, o, wor(T"xg, Tu) = 0 which gives us
nan;O{wA(T"xo, u) + wx(u, Tu)} = 0.

Then we get wy(u, Tu) = 0. Therefore we have

wx(u, u) = wx(Tu, Tu) = wy(u, Tu) =0,

which implies that u = Tu. Hence u is a fixed point of T [
We finish this section with an analogue of Jungck theorem [20] for modular metric
spaces.

Theorem 2.15. (Jungck Theorem in a modular metric space) Let w be a metric modular
on X and X, be a modular metric space induced by w. Let X, be a complete modu-
lar metric space, and T and I be commuting mappings of X, into itself satisfying the
inequality

wA(Tz,Ty) < pwx(Iz, 1y), (2.3)
forallx,y € X, and 0 < p < 1. If wr(Iz,Iy) < oo for all x,y € X, and the range of T

contains the range of T and further I is continuous, then T and I have a unique common
fized point.

Proof. Let xg € X,, be arbitrary. Then Tzy and Iz are well defined. Since Tzy € T(X,,)
and the range of I contains the range of T', there exists z1 € X, such that Ix; = Tzg. In
general, if x,, € X, is chosen, then there exists a point x,, 1 € X, such that Iz, 1 = Tz,.
As wy(Tz, Ty) < pwr(Iz, Iy) for all 2,y € X, and 0 < p < 1, we have

W (It Ingk) = N(TTmpr—1, TTpyr—1) < px(Txpmqp—1, [Tnip—1)-
So, for all k € N,

WAt ks IZngk) < ukwA(Ixm,I;vn). (2.4)

Case-1: If Iz, = Iz, for some n, then Tz, = Iz, = p. Here p is a common fixed
point of T and I. Indeed, Tp = T(Iz,) = I[(Tz,) = Ip. If we consider wy(p, Tp) > 0,
then we have
WX (p7 Tp) =W (Txna Tp)

S,LL(U)\([IW,, Ip)

=pwx(p, Ip)

=uwx(p, T'p)

<wy (p, Tp)a

which is a contradiction.
Case-1I: If Ix,41 # Iz, for all n > 0, then Iz, # Iz, for all n > 0 and k > 1, viz.,
if Iz, = Ix,4 for some n > 0 and k > 1, then we have

wx(Ixpq1, 1xpypp1) = Wn(Txy, Topqr) < pwx(Izp, [2545) = 0.
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So we have Iz, = [z, 4p+1. Then (2.4) implies that

wx(Ixps1, Iz,) = wx(Ixpikt1, [Tnik)
< prwus(Tzpygq, Iz,)
< wa(Izpy1,Ixy),
which is a contradiction.

Thus we assume that [z, # Iz, for all distinct n,m € N. Note that Iz,,+r # [T,k
for all k € N and for all distinct n,m € N and T2, 1%, [Zmir € X \ {Izy, [z }. Then

W (IIm, Izn) S WX, (Ixma Ixm,+n0) + Wi, (Ixm+ng 5 Ixn+n0)
+ Wi, (Il'n—i-nolen)a

where A = (A1 + A2 + A3) > 0 and np € N and each A\; > 0 for ¢ = 1,2,3. So using the
result (2.4), we get
wx(Tzpm, Lxy,)
" wx, (I, [xn,) + 1" 0w, (I, T2n) + pwx; (120, [20,)
pwx, (Tao, Tag,) + p™ = 0wy, (T2, I —my1)
+u"wx, (Tzo, [zn,).
We then obtain wx(I%m,,[z,) — 0 as m,n — oo and wyx([z,Iy) < oo which implies

{Iz;,} is a w-Cauchy sequence in X,,. By completeness of X, there exists p € X, such
that

lim Iz, = lim Tx,_1 =p.
n—oo n—oo

Since I is continuous, (2.3) implies that both I and T are continuous. Since T and [
commute, we obtain

Ip=1 ( lim Txn) — lim IT(zn) = lim TI(z,) =T ( lim Ixn) — Tp.
n—oo

n—oo n—oo n—oo
Let Tp = Ip = q. If possible, let T'p # T'q. Then we have T'q = TIp = ITp = Iq. Further,
from (2.3) we obtain
wA(Tp, Tq) < pwx(Ip,Iq)
= pwx(Tp,Tq)
< wx(Tp,Tq),
which is a contradiction. So Tp = T'q and hence we have T'q = Iq = q and ¢ is a common

fixed point of T and I. Condition (2.3) implies that ¢ is a unique common fixed point of
T and I. L]

Corollary 2.16. Let I and T be commuting mappings of a modular metric space X,
such that w is complete and

wx(T*(x), T* (y)) < por(Iz, Iy),

for all z,y € X, and 0 < pu < 1 and k be any positive integer. If wy(Ix,Iy) < oo, I is
continuous and T'(X ) C I(Xy), Then T and I have a unique common fized point in X,,.
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Proof. Clearly, T* commutes with I and T%(X,) C T(X,,) C I(X,). Thus the theorem
pertains to T% and I. So there is a unique p € X, such that p = I(p) = T*(p). Since I
and T commute, we can write

T(p) =T(I(p)) = I(T(p)) = T*(T(p)),
which says that T'(p) is a common fixed point of I and T*. The uniqueness of p implies
that p = T(p) = I(p). [

We give the following example in support of our theorem.

Example 2.17. Let X = R”. We define a mapping w : (0,00) x X x X — [0, 00] by
7
_ \Il - yz‘
LU)\(,T,y) - ; A\ 5

where x = (‘rly X2,T3,T4,T5,T6, .’L'7), Yy = (yh Y2,Y3,Y4, Y5, Y6, 97) € R7'
If we take A — oo, then X = X, and also X, is a complete modular metric space.

Let us define T, I : X, — X, by

T@) = 5x1 — 63 229 —15 23 —30 dxq4+1 9pe — 1 ze +20 27+ 21
- 14 ) 5 ) 11 ) 4 ) 5 ) 5 ) 9 )
-7 11 12 4 1la7 —1
I(x) (6m17 7’ x25+ 30’ 7x3; ’ 7x43+ Sis — 4,34 — 10, :r76 5) '

Then T and I are commuting. Also
wx(Tz, Ty) < kwy(Iz, Iy),

where k = 15/28.

It is clear that I is continuous and T'(X,,) C I(X,). Therefore we can conclude that
T and I have a unique common fixed point.

Here, (—7,—5,—3,—1,1,5,3) € R is a common fixed point of both T and I.
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