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1. Introduction

How can we figure out whether a random variable is a function of other random vari-
ables. The answer is to use statistical indicators / measure of association. For example,
to test whether a random variable is a linear function of another random variable, we
can used Pearson correlation. To check for monotone functional relation, we may used
either Hoeffding’s phi square or Spearman’s rank correlation. But what about the case
of general functional relationship without any specific property. In this case, we can use
measures of complete dependence. Measure of complete dependence is first defined for
random variables [1] (see also [2, 3]). It was later extended to the case of random response
vector in [4]. Unfortunately, [4] only studied mathematical properties of the measures.
No statistical estimators were given. Over the years, several copula estimators are also
given, see for example, [5–9]. However, their convergences are only considered under
Chebyshev distance which is weaker than Sobolev distance. Thus, those results can not
be used to provide estimators for measure of complete dependence. Therefore, we will
need to construct explicitly an estimators for these type of measures.

In this work, we will provide statistical estimator for this measure of complete depen-
dence using kernel-based estimators similarly to the one constructed for the case of random
variables in [1] (Section 3). We will focus, however, only on the case where marginals are
known which is usually the case for semi-parametric models. We will prove asymptotic
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behaviors of this estimator. Simulation study will also been done to confirm the result
(Section 4). Related concepts and terminologies will be given in the next section.

2. Preliminaries

Henceforth, denote R for the set of real numbers, I the unit interval, ~x for a vector
(x1, . . . , xd), ~1 for the vector (1, . . . , 1), and ~0 for the vector (0, . . . , 0). Sklar’s theorem
states that there is a one-to-one correspondence between a continuous joint distribution
function H : Rd → I and a copula C : Id → I via the identification

H (~x) = C (F1 (x1) , . . . , Fd (xd))

for all ~x ∈ Rd. Here, Fi denotes the ith marginal distribution function of H. Since Fi
only contains information of the ith random variable, all dependence structure among
these random variables is contained in the associated copula C. This implies that any
measure of association should be written as a function of copula. For this reason, Dette
et al. [1] defined a measure of regression dependence that quantify the level in which a
random variable Y depends on a random variable X via

r (Y | X) = 6

∫
∂uC (u, v)

2
dudv − 2

where C is the copula associated with the random vector (X,Y ). Note that, we also have

r (Y | X) =

∫
(∂uC (u, v)− C (1, v))

2
dudv∫

C (1, v)− C (1, v)
2
dv

.

Similar measures are also defined in [2, 3]. Thus, it is natural to extend this measure to

the case random vector
(
X, ~Y

)
via

δ
(
~Y | X

)
=

∫
(∂uC (u,~v)− C (1, ~v))

2
dud~v∫

C (1, ~v)− C (1, ~v)
2
d~v

.

The above measure is denoted by δ1 (C) in [4]. Clearly, r (Y | X) is a special case of

δ
(
~Y | X

)
when the response vector ~Y is actually a random variable Y . Basically, the

following properties hold.

(1) 0 ≤ δ
(
~Y | X

)
≤ 1.

(2) δ
(
~Y | X

)
= 0 if and only if ~Y and X are independent.

(3) δ
(
~Y | X

)
= 1 if and only if ~Y is completely dependent on X, that is, ~Y is a

(measurable) function of X.

See [4] for further properties of this measure. Note that measures of complete dependence
are also defined in various setting using various concepts, see [10–13] for example. See
also [14] for a recent survey of the topic.

Similar to other statistical indicators, these measures have to be estimated since the
joint distribution function H and, hence, the copula C is unknown in practice. For this,
Dette et al. [1] used kernel estimators defined below as an estimator of r (Y | X).
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Let (X1, Y1) , . . . , (Xn, Yn) be an i.i.d. sample from a distribution H with associated
copula C and marginal distribution functions F and G, respectively. Denote

Fn (x) =
1

n

n∑
i=1

1(−∞,x] (Xi)

and

Gn (y) =
1

n

n∑
i=1

1(−∞,y] (Yi)

the empirical marginal distribution functions. Let φ denote a symmetric kernel with
support lying in [−1, 1] and let

Φ (t) =

∫ t

−∞
φ (s) ds

for all t ∈ R. Define

τn (u, v) =
1

nh1

n∑
i=1

φ

(
u− F (Xi)

h1

)
Φ

(
v −G (Yi)

h2

)

τ̂n (u, v) =
1

nh1

n∑
i=1

φ

(
u− Fn (Xi)

h1

)
Φ

(
v −Gn (Yi)

h2

)
for all u, v ∈ I.

Denote N
(
0, σ2

)
the normal distribution with mean zero and variance σ2 ≥ 0. The

case N (0, 0) simply refers to the degenerate distribution concentrated at zero.

Theorem 2.1. [1, Theorem 5.1] Assume that the bivariate copula C is three times differ-
entiable with respect to the first variable and two times differentiable with respect to the
second variable and the kernel φ is two times continuously differentiable. If the bandwidth
hj → 0 with

nh31 →∞; nh1h2 →∞; nh41 → 0; nh42 → 0,

then
√
n (r̂n − r)

D→ N
(
0, 144σ2

)
for some σ2 ≥ 0 where r̂n = 6

∫
τ̂2n − 2, r = r (Y | X), τ = ∂uC.

In their proof, they actually show that r̂n can be approximated with rn = 6
∫
τ2n − 2

and that the latter converges to a normal distribution by further approximate it as a sum
of i.i.d. bounded random variables. They also given an explicit expression of σ2 which is
fairly complicated. Therefore, we decided to left it out of the statement.

In the next section, we will prove similar results for δ
(
~Y | X

)
.

3. Main Results

Henceforth, let φ : R → R be a nonnegative symmetric smooth function such that∫
R φ (t) = 1 and φ (t) = 0 whenever |t| ≥ 1. Define φn (t) = 1

hn
φ
(
t
hn

)
, Φ (t) =

∫ t
−∞ φ for
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all t ∈ R,

ω (u,~v) = φ (u) Φ (v1) · · ·Φ (vd)

and

Ω (~v) = Φ (v1) · · ·Φ (vd)

for all u ∈ R and ~v ∈ Rd. Notice that Φ (t) = 0 when t ≤ −1, Φ (t) = 1 when t ≥ 1, and∫ 1

−1 Φ (t) dt = 1 which follows from Fubini’s theorem and the fact that φ is symmetric
and bounded with compact support.

Let
(
X, ~Y

)
be a continuous random vector with associated copula C, τ = ∂1C, and

υ (~v) = C (1, ~v) for all ~v ∈ Id. Denote F the distribution function of X, Gi the distribution
function of Yi, and Fn, Gin their empirical counterparts. For convenience, also denote

~G (~y) = (G1 (y1) , . . . , Gd (yd))

and

~Gn (~y) = (G1n (y1) , . . . , Gdn (yd))

for all ~y ∈ Rd.
Let

(
Xj , ~Yj

)
be i.i.d. random vectors with the same distribution as

(
X, ~Y

)
. Denote

αnj (u,~v) =
1

hn
ω

(
u− F (Xj)

hn
,

1

hn

(
~v − ~G

(
~Yj

)))
and

βnj (~v) = Ω

(
1

hn

(
~v − ~G

(
~Yj

)))
for all (u,~v) ∈ Id+1. Then αnj (u,~v) are also i.i.d random variables for each fixed n so we
can define ᾱn (u,~v) = Eαnj (u,~v) ≥ 0 . Note that

ᾱn (u, v) =

∫
1

hn
ω

(
u− s
hn

,
~v − ~t
hn

)
dC
(
s,~t
)

=

∫
1

hn
φ

(
u− s
hn

) d∏
i=1

Φ

(
vi − ti
hn

)
dC
(
s,~t
)

≤
∫

1

hn
φ

(
u− s
hn

)
dC
(
s,~t
)

=

∫
1

hn
φ

(
u− s
hn

)
ds

= 1

for all (u,~v) ∈ Id+1. Similarly, βnj (~v) ∈ I are also i.i.d random variables for each fixed n
so we can define β̄n (~v) = Eβnj (~v) ∈ I for all ~v ∈ Id.

Now, we will state our first main result.
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Theorem 3.1. Assume nh2n →∞ while nh4n → 0 and that all first partial derivatives of
τ are continuous and bounded. Then

√
n

∫ ∫
 1

n

n∑
j=1

(αnj (u,~v)− βnj (~v))

2

dud~v −
∫ ∫

(τ (u,~v)− υ (~v))
2
dud~v


D→ N

(
0, 4σ2

)
as n→∞ where

σ2 =

∫ ∫ ∫
(τ (s,~v)− υ (~v)) (τ (s, ~q)− υ (~q)) (τ (s,~v ∧ ~q)− υ (~v ∧ ~q)) dsd~vd~q

−
(∫ ∫

τ (u,~v) (τ (u,~v)− υ (~v)) dud~v

)2

.

Proof. For this, denote

An =

∫ ∫  1

n

n∑
j=1

(αnj (u,~v)− βnj (~v))

2

dud~v

and

T =

∫ ∫
(τ (u,~v)− υ (~v))

2
dud~v.

Notice that
An − T

=

∫ ∫ (
1

n
(αnj (u,~v)− βnj (~v))

)2

dud~v −
∫ ∫

(τ (u,~v)− υ (~v))
2
dud~v

=

∫ ∫  1

n

n∑
j=1

(αnj (u,~v)− βnj (~v))− τ (u,~v) + υ (~v)

2

dud~v

+ 2

∫ ∫
(τ (u,~v)− υ (~v))

 1

n

n∑
j=1

(αnj (u,~v)− βnj (~v))− τ (u,~v) + υ (~v)

dud~v.
Let

Qn =

∫ ∫  1

n

n∑
j=1

(αnj (u,~v)− βnj (~v))− τ (u,~v) + υ (~v)

2

dud~v,

Ljn =

∫ ∫
(τ (u,~v)− υ (~v))

(
αnj (u,~v)− ᾱn (u,~v)− βnj (~v) + β̄n (~v)

)
dud~v

=

∫ ∫
(τ (u,~v)− υ (~v)) (αnj (u,~v)− ᾱn (u,~v)) dud~v,

and

Rn =

∫ ∫
(τ (u,~v)− υ (~v))

(
ᾱn (u,~v)− β̄n (~v)− τ (u,~v) + υ (~v)

)
dud~v

=

∫ ∫
(τ (u,~v)− υ (~v)) (ᾱn (u,~v)− τ (u,~v)) dud~v
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so that

An − T = Qn + 2
1

n

n∑
j=1

Ljn + 2Rn.

Here, simplifications of Ljn and Rn follows from the fact that
∫

(τ (u,~v)− υ (~v)) du = 0.
We claim that

√
nQn → 0 in probability and

√
nRn → 0 which implies

√
n (An − T ) =

√
nQn + 2

1√
n

n∑
j=1

Ljn + 2
√
nRn

has the same limiting distribution as 2 1√
n

∑n
j=1 Ljn. The proofs of these two claims are

given in the appendix under Claim 1 and Claim 2. Now, Ljn are i.i.d. samples with
mean zero. Its variance converges to σ2 as shown in Claim 3. If σ2 = 0, we are done.
Otherwise, the fact that Ljn are bounded (Claim 3) implies

lim
n→∞

1√
nσ3

n

E |Ljn|3 ≤
8

σ3
lim
n→∞

1√
n

= 0.

In any case, the result must follow.

Using similar arguments, we can also show that

Var

(∫
βn (~v)− βn (~v)

2
d~v

)
= O

(
1

n

)
.

Therefore, we have
√
n
(
δn − δ

(
~Y | X

))
converges to a normal distribution where

δn =

∫ ∫ (
1
n

∑n
j=1 (αnj (u,~v)− βnj (~v))

)2
dud~v∫

βn (~v)− βn (~v)
2
d~v

.

In other words, δn can be used as an estimator of δ
(
~Y | X

)
.

Next, we will discuss simulation result.

4. Simulation Study

In this section, we will provide a simulation study for the estimators

δn =

∫ ∫ (
1
n

∑n
j=1 (αnj (u,~v)− βnj (~v))

)2
dud~v∫

βn (~v)− βn (~v)
2
d~v

.

The sample will be drawn from the Clayton copula Cθ defined by

Cθ (~v) =

(∑
i

(
v−θi − 1

)
+ 1

)−1/θ
when θ > 0 and C0 = limθ→0+ Cθ is the product copula. The true value δ (Cθ) is
numerically computed using the cubature method with the maximum tolerance sets to
10−3 for better performance. Samples are simulated using multivariate quantile transform.
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A simple kernel φ (t) =
(
1− t2

)2
1{−1≤t≤1} is used. To reduce the boundary effects, we

adapted the method presented in [15, 16] where φ
(
u−s
h

)
is replaced by φ

(
u−s
b(u)h

)
k (u, s, h)

where b (u) = min
(√
u,
√

1− u
)

and

k (u, s, h) =
a2 (u, h)− a1 (u, h) s

a0 (u, h) a2 (u, h)− a21 (u, h)
1{u−1

h ≤s≤
u
h}

with

ai (u, h) =

∫ u/h

(u−1)/h
tiφ (t) dt.

The function Φ is also redefined analogously. To improve on the speed of computation,
δn (Cθ) will be computed using Riemann sums over a grid of 50 points in each dimension.

To be precise, samples (X,Y1, Y2) of sizes n = 50, 100, 200 will be drawn from a trivari-
ate Clayton copula Cθ to compute δn (Cθ). The simulation was repeated 1000 times for
each θ = 0, 0.5, 1.0, 1.5, 2.0. We observed, in this case, that estimators provide a reason-
able precision for δn when the sample size is at least 100. The results of simulation are
reported in the following figures.

Figure 1. Mean square errors for δn.

Figure 2. Histograms for δn (Cθ) with sample size n = 200 and θ =
0, 1, 2 (left to right).

5. Conclusion and Discussion

In this work, we constructed a kernel-based estimator for measure of complete de-
pendence defined in [4] in the case that the marginal distributions are known which is
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usually the case for semi-parametric models. The estimator is proved to be consistent
and its asymptotic variance has been computed. Its limiting distribution is confirmed to
be normal. A simulation study have also been done to verify the result.

It should also be mentioned that measures of complete dependence has also been defined
for random vectors [10, 11]. The formulation, however, does not rely on copulas. Thus,
different strategies for estimators are required in those cases.
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Appendix

Claim 1.
√
nQn → 0 in probability.

Proof. For convenience, denote

Q̃n =

∫  1

n

n∑
j=1

(αnj (u,~v)− βnj (~v))− ᾱn (u,~v) + β̄n (~v)

2

dud~v,

Q̄n =

∫ (
ᾱn (u,~v)− β̄n (~v)− τ (u,~v) + υ (~v)

)2
dud~v, and

Q̂n =

∫  1

n

n∑
j=1

(αnj (u,~v)− βnj (~v))− ᾱn (u,~v) + β̄n (~v)


×
(
ᾱn (u,~v)− β̄n (~v)− τ (u,~v) + υ (~v)

)
dud~v.

Then

Qn = Q̃n + Q̄n + 2Q̂n.

By Cauchy–Schwarz inequality,∣∣∣Q̂n∣∣∣ ≤√Q̃nQ̄n
which means

√
nQ̂n → 0 in probability whenever

√
nQ̃n → 0 in probability and

√
nQ̄n →

0. Therefore, the proof is finished when we show these two facts.
For the first fact, we will actually prove that

√
nEQ̃n → 0 which is a stronger result.

Notice that

EQ̃n =

∫
1

n2

n∑
j=1

Var (αnj (u,~v)− βnj (~v)) dud~v

≤ 2

n

∫ (
Eα2

n1 (u,~v) + Eβ2
n1 (~v)

)
dud~v

=
2

nh2n

∫ ∫
φ2
(
u− t
hn

)
dtdu+

2

n

≤ 2

nhn
‖φ‖+

2

n

which implies
√
nEQ̃n ≤ 2√

nhn
‖φ‖+ 2√

n
→ 0.
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For the second fact, set γn (u,~v) =
∫

1
hn
φ
(
u−s
hn

)
1{~t≤~1∧(~v+hn~1)} dC

(
s,~t
)
. Using the

fact that Φ (x) = 1 whenever x ≥ 1, we have

|ᾱn (u,~v)− γn (u,~v)|

≤
∫

1

hn
φ

(
u− s
hn

)(∫
1{~t≤~1∧(~v+hn~1)}1{∃i,ti≥0∨(vi−hn)} τ

(
s, d~t

))
ds

≤
∫

1

hn
φ

(
u− s
hn

)( d∑
i=1

∫
1{0∨(vi−hn)≤ti≤1∧(vi+hn),0≤tj≤1∀j 6=i} τ

(
s, d~t

))
ds

≤
d+1∑
i=2

∫
1

hn
φ

(
u− s
hn

)(
τ
(
s,~1 ∧ (~v + hn~ei)

)
− τ

(
s,~0 ∨ (~v − hn~ei)

))
ds

≤
d+1∑
i=2

∫
1

hn
φ

(
u− s
hn

)
(2hn ‖∂iτ‖) ds

= O (hn)

and

γn (u,~v)− τ (u,~v)

=

∫
1

hn
φ

(
u− s
hn

)(
1{~t≤~1∧(~v+hn~1)} − 1{~t≤~v}

)
dC
(
s,~t
)

+

∫
1

hn
φ

(
u− s
hn

)
1{~t≤~v} dC

(
s,~t
)
−
∫

1

hn
φ

(
u− s
hn

)
τ (u,~v) ds

=

∫
1

hn
φ

(
u− s
hn

)(
1∪d

i=1{vi≤ti≤1∧(vi+hn),0≤tj≤1∧(vj+hn)∀j 6=i}

)
dC
(
s,~t
)

+

∫
φ (w) (τ (u− whn, ~v)− τ (u,~v)) dw

so that |γn (u,~v)− τ (u,~v)| = O (hn). It follows that |ᾱn (u,~v)− τ (u,~v)| = O (hn) also.
This leads to

√
n

∫ ∫
(ᾱn (u,~v)− τ (u,~v))

2
dud~v = O

(√
nh2n

)
→ 0.

Similarly,∣∣β̄n (~v)− υ (~v)
∣∣ =

∣∣∣∣∣
∫ ( d∏

i=1

Φ

(
vi − ti
hn

)
− 1{~t≤~v}

)
dυ
(
~t
)∣∣∣∣∣

= O (hn)

so that
√
n

∫ (
β̄n (~v)− υ (~v)

)2
d~v = O

(√
nh2n

)
→ 0.

Therefore,

0 ≤
√
nQ̄n ≤ 2

√
n

∫ ∫
(ᾱn (u,~v)− τ (u,~v))

2
dud~v + 2

√
n

∫ (
β̄n (~v)− υ (~v)

)2
d~v

→ 0

as desired.
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Claim 2.
√
nRn → 0.

Proof. We will separate Rn into two parts:

R̂n =

∫ ∫
τ (u,~v) (ᾱn (u,~v)− τ (u,~v)) dud~v

and

R̃n =

∫ ∫
υ (~v) (ᾱn (u,~v)− τ (u,~v)) dud~v

so that Rn = R̂n − R̃n.
We will first focus on R̃n which is easier to deal with. Since |ᾱn (u,~v)− τ (u,~v)| =

O (hn), we have

R̃n =

∫ ∫
1{−hn≤u≤1+hn}υ (~v) (ᾱn (u,~v)− τ (u,~v)) dud~v +O

(
h2n
)

=

∫
υ (~v)

(∫
1{−hn≤u≤1+hn}ᾱn (u,~v) du− υ (~v)

)
d~v +O

(
h2n
)

=

∫
υ (~v)

(∫ d∏
i=1

Φ

(
vi − ti
hn

)
dυ
(
~t
)
− υ (~v)

)
d~v +O

(
h2n
)

=

∫
υ (~v)

∫ ( d∏
i=1

Φ

(
vi − ti
hn

)
− 1{~t≤~v}

)
dυ
(
~t
)
d~v +O

(
h2n
)

=

∫
υ (~v)

∫
1{~t≤~v+hn~1,ti≥vi−hn ∃i}

(
d∏
i=1

Φ

(
vi − ti
hn

)
− 1{~t≤~v}

)
dυ
(
~t
)
d~v

+O
(
h2n
)

=

d∑
i=1

∫
υ (~v)

∫ [
1{vi+hn≥ti≥vi−hn,tj≤vj−hn ∀j 6=i}

×
(

Φ

(
vi − ti
hn

)
− 1{ti≤vi}

)]
dυ
(
~t
)
d~v +O

(
h2n
)

=

d∑
i=1

∫ [
υ (~v) d (v1, . . . , vi−1, vi+1, . . . , vd)

×
∫

1{vi+hn≥ti≥vi−hn}

(
Φ

(
vi − ti
hn

)
− 1{ti≤vi}

)
dti

]
dvi +O

(
h2n
)

=

d∑
i=1

∫ [
υ (~v) d (v1, . . . , vi−1, vi+1, . . . , vd)

×
(∫

1{−1≤w≤1}hnΦ (w) dw − hn
)]

dv +O
(
h2n
)
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which implies∣∣∣R̃n∣∣∣ ≤ d ∣∣∣∣∫ 1{−1≤w≤1}hnΦ (w) dw − hn
∣∣∣∣+O

(
h2n
)

= O
(
h2n
)
.

Next, write

R̂n =

∫ ∫
τ (u,~v)

∫ [
1

hn
φ

(
u− s
hn

)
×
∫ d∏

i=1

Φ

(
vi − ti
hn

) (
τ
(
s, d~t

)
− τ

(
u, d~t

))
ds

]
dud~v

+

∫ ∫
τ (u,~v)

∫ [
1

hn
φ

(
u− s
hn

)
×
∫ ( d∏

i=1

Φ

(
vi − ti
hn

)
− 1{~t≤~v}

)
τ
(
u, d~t

)
dw

]
dud~v

= R̂1n + R̂2n.

For the first term, we have

R̂1n =

∫ ∫
τ (u,~v)

∫ [
1

hn
φ

(
u− s
hn

)
× 1{u≤s}

∫ d∏
i=1

Φ

(
vi − ti
hn

) (
τ
(
s, d~t

)
− τ

(
u, d~t

))
ds

]
dud~v

+

∫ ∫
τ (u,~v)

∫ [
1

hn
φ

(
u− s
hn

)
1{s≤u}

×
∫ d∏

i=1

Φ

(
vi − ti
hn

) (
τ
(
s, d~t

)
− τ

(
u, d~t

))
ds

]
dud~v

=

∫ ∫ ∫ [
1

hn
φ

(
u− s
hn

)
(τ (u,~v)− τ (s,~v)) 1{u≤s}

×
∫ d∏

i=1

Φ

(
vi − ti
hn

) (
τ
(
s, d~t

)
− τ

(
u, d~t

))
ds

]
dud~v

=

∫ ∫ ∫ [
φ (w) (τ (u,~v)− τ (u− whn, ~v)) 1{0≤w≤1}

×
∫ d∏

i=1

Φ

(
vi − ti
hn

) (
τ
(
u− whn, d~t

)
− τ

(
u, d~t

))
dw

]
dud~v

= O
(
h2n
)

where the second equality is done via interchanging u and s and the last equality follows
from the fact that τ has continuous and bounded first order derivatives.

For the second term, we have

R̂2n =

d∑
i=1

∫ ∫
τ (u,~v)

∫
1

hn
φ

(
u− s
hn

)
R̂3nτ

(
u, d~t

)
dwdu+O

(
h2n
)



Empirical Measure of Multivariate Complete Dependence 1503

where

R̂3n =

∫
1{vi+hn≥ti≥vi−hn,tj≤vj−hn ∀j 6=i}

(
Φ

(
vi − ti
hn

)
− 1{ti≤vi}

)
d~v

=

∫
1{tj≤vj−hn ∀j 6=i}d~v

(
hn

∫
Φ (z) dz − hn

)
= 0.

Therefore, R̂n = O
(
h2n
)

as desired.

Claim 3. For any fix n, Ljn are i.i.d. with ELjn = 0 and

Var (Ljn)

→
∫ ∫ ∫

(τ (s,~v)− υ (~v)) (τ (s, ~q)− υ (~q)) (τ (s,~v ∧ ~q)− υ (~v ∧ ~q)) dsd~vd~q

−
(∫ ∫

τ (u,~v) (τ (u,~v)− υ (~v)) dud~v

)2

.

Moreover, |Ljn| ≤ 2 almost surely.

Proof. The fact that Ljn are i.i.d. simply follows from the fact that
(
Xj , ~Yj

)
are i.i.d.

Also,

ELjn = E
∫ ∫

(τ (u,~v)− υ (~v)) (αnj (u,~v)− ᾱn (u,~v)) dud~v

=

∫ ∫
(τ (u,~v)− υ (~v)) (Eαnj (u,~v)− ᾱn (u,~v)) dud~v

= 0

by Fubini’s Theorem.
Denote

Kn (s,~v, ~q) =

∫ ∫ [
1

h2n
φ

(
u− s
hn

)
φ

(
p− s
hn

)
× (τ (u,~v)− υ (~v)) (τ (p, ~q)− υ (~q))

]
dudp

and

K (s,~v, ~q) = (τ (s,~v)− υ (~v)) (τ (s, ~q)− υ (~q)) .

The fact that τ is continuous implies that Kn → K pointwisely.
Similarly, let

Mn (s,~v, ~q) =

∫ d∏
j=1

Φ

(
vj − tj
hn

) d∏
j=1

Φ

(
qj − tj
hn

) (
τ
(
s, d~t

)
− dυ

(
~t
))

and

M (s,~v, ~q) =

∫
1{~t≤~v}1{~t≤~q}

(
τ
(
s, d~t

)
− dυ

(
~t
))

= τ (s,~v ∧ ~q)− υ (~v ∧ ~q) .
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Then Mn →M pointwisely by the Bounded Convergence Theorem and the fact that

lim
n→∞

Φ

(
v − t
hn

)
=


1, t < v;
1
2 , t = v;

0, t > v.

Now,

Var (Ljn)

= E
(∫ ∫

αnj (u,~v) (τ (u,~v)− υ (~v)) dud~v

)2

−
(∫ ∫

ᾱn (u,~v) (τ (u,~v)− υ (~v)) dud~v

)2

=

∫ ∫ ∫ ∫
E (αnj (u,~v)αnj (p, ~q)) (τ (u,~v)− υ (~v)) (τ (p, ~q)− υ (~q)) dud~vdpd~q

−
(∫ ∫

ᾱn (u,~v) (τ (u,~v)− υ (~v)) dud~v

)2

=

∫ ∫ ∫
Kn (s,~v, ~q)Mn (s,~v, ~q) dsd~vd~q

−
(∫ ∫

ᾱn (u,~v) (τ (u,~v)− υ (~v)) dud~v

)2

→
∫ ∫ ∫

K (s,~v, ~q)M (s,~v, ~q) dsd~vd~q −
(∫ ∫

τ (u,~v) (τ (u,~v)− υ (~v)) dud~v

)2

where the last step follows again from the Bounded Convergence Theorem.
Last, notice that ᾱn, βnj , β̄n, τ, υ ∈ [0, 1] and αnj ≥ 0 so that

Ljn ≤
∫ ∫

τ (u,~v)αnj (u,~v) dud~v +

∫ ∫
υ (~v) ᾱn (u,~v) dud~v

≤
∫ ∫

αnj (u,~v) dud~v +

∫ ∫
υ (~v) d~v

≤ 1 +
1

2
≤ 2

and

−Ljn ≤
∫ ∫

τ (u,~v) ᾱn (u,~v) dud~v +

∫ ∫
υ (~v)αnj (u,~v) dud~v

≤
∫ ∫

τ (u,~v) dud~v +

∫ ∫
υ (~v) d~v

≤ 1

2
+

1

2
≤ 1

as desired.
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