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1. Introduction

Exploiting a classical theorem due to Hopf, we presented a series of algorithms in
[1] that give upper bounds on group homology in homological dimensions one and two,
provided coefficients are taken in a finite field. In particular, examples confirmed the
results in [2], as well a new result, concerning the rank two special linear group over rings
of number theoretic interest. This paper can be viewed as both a sequel and expansion
of the results in [1].

The initial motivation for constructing the algorithms was to gain insight into special
cases of a conjecture originally given by Quillen in 1971, which we briefly discuss in
Section 2. However, since the algorithms in [1] depend only upon Hopf’s formula for
H2, the usefulness of these algorithms extends to groups beyond the scope of Quillen’s
Conjecture. Moreover, the algorithms are distinct from existing methods of calculating
low dimensional group homology in that they give an upper bound on the homology of
any finitely-presented group, though the upper bound is, at times, very large.

The main contribution of this paper is in Section 3 wherein we present a technique that
expounds on the algorithms in [1] to find explicit generators of these homology groups.
The technique relies heavily upon the above mentioned Hopf’s formula for the second
homology group of a finitely-presented group; the calculations are carried out with the
computational algebra program GAP [3].
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As a byproduct of the calculations related to Quillen’s Conjecture we are involved in a
long term project of preparing a database for low dimensional group homology of linear
groups over number fields and their rings of integers. This work will be extended to
other classes of finitely-presented groups of interest to computational group theory and
algebraic topology. The first set of these calculations is found in Section 4.

We note that when it is clear from the context, we occasionally omit explicitly writing
the ground ring of linear groups as well as homology coefficients.

2. A Vanishing Conjecture

One motivational problem for low dimensional group homology, which is related to
algebraic K-theory, is the study of homology for groups GLj(R), where GLj is a finite
rank j general linear group and R is the ring of integers in a number field. An approach to
this problem is to consider the diagonal matrices inside GLj . Let Dj denote the subgroup
formed by these matrices. Then the canonical inclusions Dj ⊂ GLj for j = 0, 1, ... induce
homomorphisms on group homology with k-coefficients

ρ : Hi(Dj(R); k)→ Hi(GLj(R); k). (2.1)

In [4] Quillen conjectured:

Conjecture 2.1. The homomorphism ρ, as given above, is an epimorphism for R =
Z[ζp, 1/p], p a regular odd prime, ζp a primitive pth root of unity, k = Fp and any values
of i and j.

Conjecture 2.1 has been proved in a few cases and disproved in infinitely many other
cases. For R = Z[1/2] it was proved by Mitchel in [5] for j = 2 and by Henn in [6] for
j = 3. Anton gave a proof for R = Z[1/3, ζ3] and j = 2 in [7].

Dwyer gave a disproof for the conjecture for R = Z[1/2] and j = 32 in [8] which Henn
and Lannes improved to j = 14 in [9]; this is an improvement in light of Henn’s result in
[10] that states that if Conjecture 2.1 is false for j0 then it is false for all j ≥ j0. Anton
disproved the conjecture for R = Z[1/3, ζ3] and j ≥ 27 also in [7]. The interested reader
should consult [11] for more details.

This conjecture was reformulated and, in a sense, corrected by Anton:

Conjecture 2.2. [12] Given p, k and R as above, the determinant map induces an iso-
morphism:

H2(GL2(R); k) ∼= H2(D1(R); k). (2.2)

Anton’s conjecture led to a proof of Conjecture 2.1 for Z[1/5, ζ5] and i = j = 2. For a
survey on the current status of conjectures 2.1 and 2.2 we cite [2].

2.1. Reduction via a Spectral Sequence

Given a group extension

1→ N → G→ Q→ 1

there is the Hochschild-Serre Spectral Sequence [13, p. 341] with

E2
p,q
∼= Hp(Q;Hq(N ; k)) =⇒ Hp+q(G; k), (2.3)

where we take coefficients in a field k regarded as a trivial G-module. We use this spectral
sequence to reduce a special case of Quillen’s conjecture to an exercise in linear algebra.
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Lemma 2.3. Fix R a Euclidean Ring and field of coefficients k = Fp,

H2(GL2(R); k) ∼= (H2(SL2(R); k)GL1(R)/Im(τ)⊕H2(GL1(R); k), (2.4)

where, for a group G and a G-module M , MG is the group of co-invariants and τ is the
transgression map E3

3,0 → E3
0,2.

Proof. Since R is a Euclidean ring, SL2(R) is a perfect group by Lemma 7.2 in [12], and
thus H1(SL2(R)) = 0. Then applying the spectral sequence 2.3 to the extension defined
by the determinant map,

1→ SL2(R)→ GL2(R)→ GL1(R)→ 1, (2.5)

we see that the entries E2
p,1 are all 0. Thus for q < 3 the E3

p,q page is equal to the E2
p,q

page.
We also note that

GL1(R) ∼= D1(R) ∼= R×, (2.6)

where R× is the group of units of R.

Figure 1. E2 page with τ : E3
3,0 → E3

0,2 displayed

Figure 1 displays the E2 page of this spectral sequence, and we have included the
transgression τ : E3

3,0 → E3
0,2 for reference. Note that since E2

p,q
∼= E3

p,q for all p and

for all q < 3 then E2
p,1
∼= E∞p,1. Moreover, E4

p,q
∼= E∞p,q for p, q + 1 < 4 and E4

0,2
∼=

H2(SL2(R))GL1(R)/Im(τ). Since we have chosen field coefficients, any extension problems



1464 Thai J. Math. Vol. 20 (2022) /J. Roberts

are trivial. Thus we have the following decomposition.

H2(GL2(R)) ∼= E4
2,0 ⊕ E4

1,1 ⊕ E4
0,2 (2.7)

∼= H2(SL2(R))GL1(R)/Im(τ)⊕H2(GL1(R)). (2.8)

This immediately implies the following corollary.

Corollary 2.4. As vector spaces over k,

dim H2(GL2(R); k) ≥ dim H2(GL1(R); k) (2.9)

According to equation 2.6 and Lemma 2.3, the Conjecture 2.2 for R a Euclidean ring
is equivalent to the vanishing of the cokernel of the transgression map

τ : H3(GL1(R))→ H2(SL2(R))GL1(R).

In this context, the purpose of [1] was to give a series of algorithms that estimated the
second homology group of any finitely-presented group. More precisely, given a finitely-
presented group G and a finite field k, the second homology group H2(G; k) with coef-
ficients in k is a finite dimensional vector space over k. Our algorithms give an upper
bound for the dimension of H2(G; k) and, in particular cases, the algorithms calculate
precisely this dimension.

The algorithms confirmed results by Anton that Conjecture 2.1 holds for
R = SL2(Z[1/p, ζp]) and k = Fp for p = 3 and p = 5 ([12] and [2]).

3. Generators of Homology Groups

Let 1 → K
i→ F

q→ G → 1 be an exact sequence of groups where F is a finitely
generated free group and K is finitely generated as an F -module with the F -action given
by conjugation, i and q denote inclusion and quotient homomorphism, respectively. That
is, G has finite presentation given by the generators of F modulo the normal closure of
K in F .

Theorem 3.1 (Hopf). Given G,F,K as above, there is an exact sequence

1→ [F,R]→ [F, F ]→ H2(G,Z)→ 1.

This gives an exact sequence

1→ H2(G,Z)→ R

[F,R]
→ F

[F, F ]
→ F

R[F, F ]
→ 1.

The last two terms are finitely generated abelian groups and algorithms exist to give their
structure. Also in [1], we explain how to use this exact sequence to find an upper bound
on the dimension of H2(G; k), where k is the finite field of prime characteristic p.

The inclusion homomorphism i : K → F induces a homomorphism i∗ : A → B where
we have denoted K/Kp[F,K] by A and F/Kp[F, F ] by B. Note that for k ∈ K and f ∈ F
we have that [k, f ] = kfk−1 = 1 in A. Thus kf = k in A which gives that A is a trivial
F -module. Let SK be the set of generators of K as an F -module.

We note that the image of i∗ is generated by the set of all i∗(k) for k ∈ SK . Then
since B is a vector space over k, there is a subset S′K ⊂ SK such that i∗(k

′) with k ∈ S′K
is a basis for the image of i∗.
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The primary interest is on the kernel of i∗, which is isomorphic to H2(G; k). As stated
above, a previous paper gives an upper bound n on the dimension of this vector space.
We seek an explicit description of these n elements of SK . To this end, we restate two
facts:

1. A is a vector space that is spanned by SK
2. S′K ⊂ SK is a subset with i∗(S

′
K) a basis for the image of i∗ in B.

Let v ∈ A, then v =
∑
λ∈SK

cλλ, where cλ ∈ k, by (1). Note that i∗(v) = 0 is equivalent

to
∑
λ∈SK

cλi∗(λ) = 0 in B.

Moreover, each i∗(λ) =
∑
µ∈S′K

aλ,µi∗(µ), where aλ,µ ∈ k, by (2). Therefore, i∗(v) = 0 in

B if and only if ∑
µ∈S′K

( ∑
λ∈SK

cλaλ,µ

)
i∗(µ) = 0 in B,

which is true if and only if ∑
λ∈SK

cλaλ,µ = 0

for all µ ∈ S′K . We must solve for the cλ coefficients to find a basis for the solutions.

If a ∈ A then a = kf11 k
f2
2 · · · = k1k2 · · · = k1 + k2 + · · · in Fp. We use linear algebra in

B to find a basis for the image of i∗ {i∗(k) : k ∈ K}. The following commutative diagram
illustrates the above discussion.

F
Kp[F, F ]

$$
K

Kp[F,K]

i∗
::

j∗ // F
Kp[F,K]

3.1. At the Prime 7

We consider the group G = SL2(Z[1/7, ζ7]), where ζp is a primitive pth root of unity.
In [2] it is proven that this group is generated by

S = {z, u1, u2, u3, a, b, b0, b1, b2, b3, b4, b5, b6, w}

modulo the relators

R = {b−1t z3tbz3ta,w−1z4u1u2u3, z
7, [z, ui], [ui, uj ], a

4, [a2, z], [a2, ui],
a−1zaz, a−1uiaui, [bs, bt] , b

−3a2, b−3b0b1b2b3b4b5b6, b
−7
t w−1b−1t w,

(b0b
−1
1 a−1u1)3, (b0b

−1
2 a−1u2)3, (b0b

−1
3 a−1u3)3,

(b0b
−1
1 b−12 b3a

−1u1u2)3, (b0b
−1
1 b−13 b4a

−1u1u3)3, (b0b
−1
2 b−13 b5a

−1u2u3)3,
(b0b

−1
1 b−12 b3b4b5b

−1
6 a−1u1u2u3)3, a−2b−1uibz

−3ib−1b−10 z3ibz−iui}

where i, j ∈ {1, 2, 3} and s, t ∈ {1, 2, 3, 4, 5, 6}.
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That is, there is a short exact sequence 1 → N(R) → F (S) → G → 1 with the
set S generating the free group F (S) and the set R normally generating the subgroup
N(R) ⊂ F (S).

We begin by reducing the number of generators and relators in F (S)/N(R) in order
to simplify the final calculations. Via GAP, it is easy to verify the following.

Proposition 3.2. There is an isomorphism of finitely-presented groups that maps the
generators of the free group F (S) to the free group generated by S′ = {z, u1, u2, u3, a, b1}
in the following way:

z 7→ z
u1 7→ u1
u2 7→ u2
u3 7→ u3
a 7→ a
b 7→ z−3b1z

3a−1

b0 7→ z−3b1z
3

b1 7→ b1
b2 7→ z3b1z

−3

b3 7→ z−1b1z
b4 7→ z2b1z

−2

b5 7→ z−2b1z
2

b6 7→ zb1z
−1

w 7→ z−2u1z
−1u2u3.

Moreover, the isomorphic finitely-presented group has set of 32 relators

R′ = {zu3z−1u−13 , u2u3u
−1
2 u−13 ,

u1u2u
−1
1 u−12 ,

u3au3a
−1,

u1au1a
−1,

zu2z
−1u−12 ,

a4,
u1u3u

−1
1 u−13 ,

zaza−1,
zu1z

−1u−11 ,
u2au2a

−1,
z7,
b1z
−1b1zb

−1
1 z−1b−11 z,

b1z
−2b1z

2b−11 z−2b−11 z2,
z−3b1z

−1a−1b1z
−1a−1b1z

3a,
b1z
−3b1z

−2b−21 z−1a−1u3a
−1z−1b−11 u3,

b1z
−1b−21 z−1b1a

−1z3u2a
−1z−2b−11 u2,

b1z
−1b1z

−3b−21 z−1u−11 a−2z−2b−11 u1,
b1z
−3b1z

3b−11 z−3b−11 z3,
z−1b−1 7zu−12 zu−13 u−11 zb−11 z−1u1z

−1u2u3,
b−1 7u−12 zu−13 u−11 z2b−11 z−3u1u2u3,
z−3b−1 7z−1u−12 z−2u−13 u−11 z−1b−11 u1u2u3,

zb−1 7u−12 u−13 u−11 z3b−11 z−3u1z
−1u2u3,
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z3b−1 7u−12 z−2u−13 u−11 z−2b−11 zu1u2u3,
z2b1z

−3b1z
−3b1zb1zb1z

3b1z
−1b1a

−2,
z−3b1z

−1b−11 u−12 a−1b1z
−1b−11 z−3u−12

a−1z−3b1z
−1b−11 z−3u−12 a−1,

z−1b−11 z−2b1z
3u−13 a−1z−1b−11 z−2b1z

3

u−13 a−1z−1b−11 z−2b1z
3u−13 a−1,

b−11 z−3b1za
−1z−2u1b

−1
1 z−3b1z

3u−11 a−1

b−11 z−3b1z
3u−11 a−1,

b−11 z−1b1z
−2b1z

−1b−11 a−1z3u1u2z
3b−11

zb1z
2b1zb

−1
1 u−11 a−1u2z

3b−11 zb1z
2b1zb

−1
1

u−11 a−1u2,
b−11 z−1b−11 z−2b1z

−2b1z
−1u−11 z−1a−1u3

z−3b1z
2b−11 zb−11 z2b1u

−1
1 z−2a−1u3z

−1b−11 z−2

b1z
3b−11 z2b1u

−1
1 z−2a−1u3,

b−11 z3b−11 z−1b1z
−1b1za

−1

z−2u3u2z
−3b1z

−1b−11 z2b1zb
−1
1 z

u−13 a−1u2z
−3b1z

−1b−11 z2b1zb
−1
1 zu−13 a−1u2z

3,
zb1z

−3b−11 z−3b1zu
−1
1 za−1u2u3z

−3b1z
−1b−11

z−1b1z
3b1z

2b−11 zb−11 z−1u−11 a−1u2u3z
−3b1z

−1

b−11 z−1b1z
3b1z

2b−11 zb−11 z−1u−11 a−1u2
u3b
−1
1 z2b1zb

−1
1 }.

By [1], the dimension of H2(G;F7) as a vector space over F7 is at most 6. We now seek
generators of of this vector space. For simplicity, we denote F (S′) by F and N(R′) by N .

An application of the FindBasis algorithm from the same paper gives that N
N7[F,N ]

is

generated by the 12 elements

[ f1*f5*f1*f5^-1,

f2*f3*f2^-1*f3^-1,

f2*f5*f2*f5^-1,

f7*f5^-1*f7*f5^-1*f7*f5,

f3*f7*f1^-2*f7*f1*f7^-2*f5^-1*f3*f1^-1*f5^-1*f7^-1,

f4*f7*f1^2*f7^-2*f1^2*f7*f5^-1*f1^-2*f4*f1^-1*f5^-1*f7^-1,

f2*f7*f1*f5^-1*f1^-2*f5*f7^-2*f1^3*f7*f5^-1*f2*f1^-1*f5^-1*f7^-1,

f1^2*f7^-7*f1^-1*f3^-1*f1^-1*f4^-1*f2^-1*f1^-2*f7^-1*f1^2*f2*f3*f4,

f7*f1*f7*f1^2*f7*f1*f7*f1^2*f7*f1^3*f7*f1^3*f7*f1*f5^-1*f1^-1*f5^-1,

f7*f1^2*f7^-1*f1^-1*f4^-1*f1^-1*f5^-1*f7*f1^2*f7^-1*f4^-1*f1^-2*

f5^-1*f7*f1^2*f7^-1*f4^-1*f1^-2*f5^-1,

f1^-1*f7^-1*f1*f7*f1*f7*f1*f7^-1*f4^-1*f5^-1*f3*f1*f7^-1*f1*f7*f1^2*

f7^-1*f1^-1*f7*f1^-1*f4^-1*f5^-1*f3*f1^-1*f7^-1*f1*f7*f1^2*f7^-1*

f1^-1*f7*f1^-1*f4^-1*f5^-1*f3,

f7*f1^-2*f7*f1*f7^-1*f1^2*f7*f1^2*f7^-1*f1*f7^-1*f1*f5^-1*f1^-2*f2*f3*

f4*f7*f1^-2*f7*f1*f7^-1*f1^2*f7*f1^2*f7^-1*f1*f7^-1*f5^-1*f1^-3

*f2*f3*f4*f7*f1^-2*f7*f1*f7^-1*f1^2*f7*f1^2*f7^-1*f1*

f7^-1*f5^-1*f1^-3*f2*f3*f4 ]

By reducing these elements in F
[F, F ]N7 we obtain
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[ <identity ...>, <identity ...>, <identity ...>,

<identity ...>, <identity ...>, <identity ...>,

f1^3, f7^-1, f2^-1, f1*f2, f1, f1^-1 ]

Thus the last six elements form a basis for the 6-dimensional vector space over F7,
F/[F, F ]N7. This implies that the 6 vanishing elements are in the kernel of

N

N7[F,N ]
→ F

N7[F, F ]

and therefore are generators of H2. Thus the following theorem is established.

Theorem 3.3. The Hopf second homology mod 7 of the group SL2(Z[ζ7,
1
7 ]) has the

following six generators

{zaza−1,
u1u2u

−1
1 u−12 ,

u1au1a
−1,

b1a
−1b1a

−1b1a,
u2b1z

−2b1zb
−2
1 a−1u2z

−1a−1b−11 ,
u3b1z

2b−21 z2b1a
−1z−2u3z

−1a−1b−11 }

in terms of the group presentation in Proposition 3.2.

However, the possibility still exists that any, or all, of these may be trivial in H2.

4. Homology Calculations

The following tables give the results of the algorithms in [1] applied to various linear
groups. For the second table, a “less than” symbols indicates that the rewriting system
involved in the calculation was not confluent, so only an upper bound was found. Oth-
erwise, the rewriting system was confluent and the exact dimension was found; the code
to implement these groups in GAP [14] is given below. We note that while none of the
results in the table below are new, the previous results were found by a wide variety of
methods, many of which are not computational in nature.

H1(−;F2) H1(−;F3) H1(−;F5) H1(−;F7)
GL2(Z) 2 0 0 0
SL2(Z) 1 1 0 0
SL2(Z2) 1 0 0 0
SL2(Z3) 0 1 0 0
SL2(Z5) 0 0 1 0
SL2(Z[i]) 1 0 0 0
SL2(Z[ω]), ω3 = −1 0 1 0 0

SL2(Z[
√
−5]) 3 2 1 1

PSL2(Z) 1 1 0 0

Table 1. Dimensions of First Homology Groups
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H2(−;F2) H2(−;F3) H2(−;F5) H2(−;F7)
GL2(Z) ≤ 4 ≤ 2 ≤ 2 ≤ 2
SL2(Z) ≤ 2 ≤ 2 ≤ 1 ≤ 1
SL2(Z2) 1 0 0 0
SL2(Z3) 0 1 0 0
SL2(Z5) 0 0 1 0
SL2(Z[i]) 1 0 0 0
SL2(Z[ω]), ω3 = −1 ≤ 1 ≤ 2 ≤ 1 ≤ 1

SL2(Z[
√
−5]) ≤ 3 ≤ 3 0 0

PSL2(Z) ≤ 1 ≤ 1 0 0

Table 2. Dimensions of Second Homology Groups

5. Conclusion

The motivation for the algorithms used in this paper and in [1] grew from work on
Quillen’s conjecture. The utility of these algorithms is more general. In theory, they can
be used to calculate or estimate the first and second homology of any finitely-presented
group, provided homology coefficients are in a finite field.

Future work will involve refining and using the algorithms on a larger collection of
groups with the goal of constructing the aforementioned database of calculations. In the
context of the original problem, however, work to calculate the image of the transgression
τ in Figure 1 is necessary to make progress on the conjecture.
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