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Abstract In this paper, we dealt with generalized k -fractional conformable integrals. We established
some integral inequalities of the s-Hermite-Hadamard type concerning k-fractional conformable integrals
operators for pre-invex functions. In detail, we generalized Hermite-Hadamard type inequalities via
Riemann-Liouville k-fractional integrals by the way of s-preinvex mapping and whose absolute value of

15t derivative are pre-invex.

MSC: 26D10; 26D15; 26A51

Keywords: s-Hermite-Hadamard inequality; k-fractional integrals; pre-Invex function

Submission date: 31.01.2019 / Acceptance date: 02.11.2021

1. INTRODUCTION

In recent years, inequalities are playing a very significant role in all fields of math-

ematics or precisely, we can say mathematical analysis, and present a very active and
attractive field of research. We have seen many articles on the field of integration which
is dominated by inequalities involving functions and their integrals. One of the famous
integral inequalities is call up as:
Let f : [a,b] C R — R is said to be convex i-e, f(tu+ (1 —t)v) < tf(u)+ (1 —t)f(v) for
all u,v € [a,b] and t € [0,1]. The classical Hermite-Hadamard type inequality provides
lower and upper estimates for the interval average of any convex function defined on a
compact interval, involving the midpoint and endpoints of the domain. More precisely, if
f I — Ris a convex function then it is integrable in the Riemannian sense and

() < /f o < 1050 W

2

where a,b € I with a < b.
The classical definition of pre invex function follows
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Definition 1.1. [1] Let I C R™ be an invex set with respect to n : R™ x R™ — R™. The
function ¢ : I — R™ is said to be a pre-invex on I, if and only if, Vu,v € I, Vv € [0, 1].

¢(u+vn(u,v)) <vp(u) + (1 —v)o(v). (1.2)

Let us now consider f: I C R — R is said to be s-pre-invex, if the following inequality
hold

fla+in(b,a)) < (1 =1)*f(a) +°f(b),

where I is an interval in the real line R, ¢ € [0, 1] and for some fixed s € (0, 1].

It can be easily seen that for s = 1, s-pre-invexity reduces to ordinary pre-invexity of
function defined on all positive real numbers. Since every convex function is pre-invex
with respect to the mapping n(b,a) = b — a.

If f:1=]a,a+n(b,a)] = R be a preinvex function on the interval of the real number I
and and a,b € I with 5(b,a) > 0, then the following inequality hold

a a atn(b.a) a
f<2 £, )) <) Flayar < LOHIO) (1.3)

The both inequality (1.1) and (1.3) are same. The result is analogous to the orginal
Hermite-Hadamard inequality. If (b, a) = b — a, then the inequality (1.3) reduces to the
remarkable Hermite-Hadamard inequality (1.1). For detail information, please refer to
[2-7] and closely related reference therein.

Definition 1.2. Let f € L[a,b].The symbol z1J% f and g J f denote the left and
right Riemann-Liouville fractional integral of order o € R are defined by

1 a+n(b,a)
RLIE0) = o / (atn(ba)— " f(0)dt, atnlba)>a  (14)

I(a)

and

b
R fa) = F(la) /b+n(a7b)(t—(b+n(a,b)))a1f(t) dt, b+nla,b)<b (15

respectively. Here I is the classical Euler gamma function also discussed in [3].

Definition 1.3. The Riemann-Liouville k-fractional integral are respectively reproduced
as

1 a+n(b,a)
RuTE S0 = s [ (i) =) @) dn atn(ba) > a (10

(e _# ’ _ a/k—1
R 10 = s [ = Gt D)0 d (et <b (1)

For o > 0.

Please refer to the papers [9-13] and close related therein for the importance of frac-
tional integral operators reproduced in (1.4), (1.5), (1.6) and (1.7).
We now recall form [I14] to inequalities of the Hermite-Hadamard type-concerning the
Riemann-Liouville fractional integrals as follows.
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Theorem 1.4. [14] Let f : [a,b] = R be a positive function with 0 < a < b and f €
Li[a,b] .Then
b r 1 b
(%57) = g e 0) + rudi )] < HOELE), (19

Theorem 1.5. [141] Let f : [a,b] — R be a differentiable mapping on (a,b) such that a < b
and [’ € Ly[a,b]. Then

'f(a) + () _ T(B+1)
2

[RLJgv f(b) + =iy f(a)]

~2(b—a)™

< 20 (1= L) (1f @]+ 1P o) (1.9

=2+ 2 ' '
Definition 1.6. The left and right fractional conformable integral operations are defined
by

1 atn(®:a) [ (g + (b, a) — a)® — (t — a)® A=t f(t)
B 7o N,
p— L dt
Rija+f( ) F(ﬁ) /a |: a :| (t_a)l—a

and

NN Y (b—(b+n(a,b)* = (b-1*1"""  ft)
RLlljjb*f(a) T T(B) /b+n(a,b) { e’ ] (b—t)t-e a

for « > 0 and 8 > 0. Obviously, if taking & = 0 and o = 1 ,then (1.6) reduce to the
Riemann-liouville fractional integrals (1.2) respectively.

Definition 1.7. The generalized k-fractional conformable integrals are defined by

a+n(b,a) a a) —a)® — —a)® B/k—1
TR0 = [ |t IO

a (t—a)=
and
b @ aB/k-1
B ga gy — 1 / {(b(bJrﬂ(a,b)) —(b—1) ] f@)
Jp-fla) = dt
RLEJp f(a) k'Fk;(B) btn(a.d) a (b—t)l_a
where a > 0, > 0 and T'k(z) is defined [15-19] by
Tk(z) = lim W
In term of

Mk = { AA+E).(A+(n—-1)k); neN

In this paper we will establish some inequality of the s-hermite-hadamard type concern-
ing generalized k-fractional conformable integral operators and generalize several known
inequalities of the hermite-hadamard type concerning k-fractional conformable integral
operators.
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2. FrIST MAIN RESULTS
For proving our main results, we need the following lemma.

Lemma 2.1. Let f: I — R be a differentiable function such that a < b and f’ € L|a,b]

2f(a) + f(n(b,a)) _ KTk(B + K)o’/
2 n(b, a)O/k

:ma@fﬂélKl;wyw_(l—g—Wj”jf@+mm@Mt

(Rl T £ @) + ril T2 1 0)

a, 5> 0. (2.1)
Proof. Let
1 _ 4o B/k
n= [ () s
1 1—(1=1¢)¢ B/k
Iy :/O ((at)> f'(a+ tn(b,a))dt.
Now integrating I; by parts, we get
L=t flattm®a) [ a=no\E
n=(r) T () resmoa
1 fb) Tw(B+k) 5.4
- n(b,a) Lﬁ/’“ (b, a)ef/ RL’“jbf(a)] ' 22
In similar way
_ 1 fla) Tw(B+k) 5.4
ol b o] =
(2.2) and (2.3) together imply (2.1). ]

Remark 2.2. when « = 1, the equality (2.1) in lemma 2.1 reduce to
2f(a) + f(n(b,a))  kLk(B+ k)
2 n(b, a)s/k

n(b, a)

_ 2/01 {(1 _t)% _ t%} f'(a+tn(b,a))dt

[Rngb*f(a) + RngaJrf(b)}

for 5 > 0.
When &k =1 the equality (2.1) in lemma 2.1, becomes [14, lemma 3.1].

When a = 1 and k£ = 1 the equality (2.1) in lemma 2.1 can be written as
2(n(b, a))~ [RL’“jb’f(a) + Rija*f(b)}

1
=200 [0 - e o+ b )ar

which can be found in [19, lemma 2].
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3. SECOND MAIN RESULTS

We now in the position to establish some inequalities of the s-Hermite-Hadamard type
for pre-invex mapping generalized k-fractional comformable integral operators.

Theorem 3.1. Let f : [a,b] = R be such that f € Lla,b] and a <b. If f is pre-invezx on
[a,b], then

b kT k)aP/k b
(3.1)
for a, 8 > 0.
Proof. Since f is a pre-invex function on [a, b] we have
s <2x +727(y,x)> < @)+ g(n(yw)) 5y € [ab].
Letting = a + tn(b, a) and n(y,z) = b+ tn(a,b) gives
o7 (25 ) < 2ffact ) + 10+ 0.0) (3.2

Multiplying on both side of (3.2) by (%)f}/"“_lta_1 dt and integrating with respect ¢
over [0, 1] leads to

of (2atn(b.a) /1 LN
2 0 (0%

1 a\ B/k=1 ! o\ PR
<[[(55) eeermoaans [ (F25) T o0 e
0 0 “

«

1 a+n(b,a) 1_(2:72)(1 B/k—1 b—u a—1
o l a (=2) 2w

_b ’ ﬂ o <va>a—1
—|-77(b7 a) /bJrn(a’b) [ o ] b—a f(v)dv

| /H"@’@ [n(b,a)“(bu)“r/kl 20,

~ (b, a)oB/* o (b—u)t—e
1 b n(b,a)* — (v — a)ar/’“ f(v)
S _ L g
+n(ba a)aﬁ/k /bJrn(a,b) |: « (U - a)l—a
2kT
W [RLfJboi fa) + ropJo f(b)} :
From

a+n(b,a) 1 _ B/k—1 jot gy _ k
; « = Ballt
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it follow that
2a + n(b, a) kT (B + k)ozﬁ/k
/ <
2 1(b, a)>B/*

which can be written as the left side of inequality (3.1).
Making use of the pre-invexity arrives at

fla+tn(b,a)) < (1 —=1)°f(a) +°f(b)

[Rijboi fla) + roiy TS f(b)

and

fo+tn(a,b)) < (1=1)°f(b) +t°f(a)
adding the above two inequality yields

fla+in(b,a)) + f(b+tn(a, b)) < (1 =#)° +°)(f(a) + f(b)).

Now, integrating above inequality, we get

W [Rngb‘)if(a) + Rijﬁf(b)} <2 <W>
which can be rewritten as the right hand side of inequality (3.1). The proof of theorem
(3.1) is complete. ]
Remark 3.2. If o =1 then the inequality (3.1) reduce to
fla) + £(b)

; <za+n(b,a)> kTR(B+R)

2 |02l Ty fla) + RLQ T F)] <

2n(b, a)P/k s+1

for 5 > 0.

If £ =1 then then the inequality (3.1) in theorem 3.1, becomes [14, Theorem 2.1].

If « = 1,s =1 and k = 1 then the inequality (3.1) in theorem 3.1 can be rearranged as
(1.8).

Theorem 3.3. Let f : [a,b] — R be a differentiable function such that a < b and
f € Lla,b]. If | f'| is preinvez function on |a,b], then

2f(a) + f(n(b,a)) _ kTw(B + k)"
2 n(b, a)aﬁ/k

{RLQJJ{ fla)+ Rijf+ f(b)} ‘

<10 gy (L040) s (L0 D) wr@i+iron e

for a, 8 > 0.
Proof. By lemma 2.1 and the pre-invexity of |f’|, we have

‘ 2f(a) + f(n(b,a))  kTx(B+ k)al/*
2 n(b,a)P/k

T2
[0y ey

[RLfJboi f(a) + Rijﬁ f(b)] ’

n(b, a)a’’*
2

<

(A=) 1f (@) + £ (D))
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g bl (YT (200N e e

(07

+M // (Wy/k B (1 E ta)m (=01 (@) + 11 (B))

« (]

- ’W{U'(a)f [(1—@5 (1;”)5 -y (““a‘”)] a
o [ (55 () o
Hf' |/[1—t e t))ﬂ -0 (25) ]dt
HEO) / [ts (““Cj’f)a)'“—ﬁ(l;”)i] dt}, (3.4

changing variable by = t* and y = (1 — ¢)® results in

1 B
3 S(1—tNE 18 s+1 8
[ramor(55) a=m B (Rr ) e (0]
P11 pe\* 1 18 +1 8
2 s — . b _ s P
/Ot (a ) dt_aiﬂ[ (a,k+1) B( u ,k+1>
1

=w

(3.6)

/05(1 —t)* (W)B/k Y ag/lkH{B (s jl- 1’§+ 1)_321& (s z 17 % . 1)}
(3.7)

substituting the equalities (3.5), (3.6) and (3.7) into the equality (3.4) leads to (3.3).
The proof of theorem 3.3 is completed. [

Remark 3.4. If o = 1 then the inequality (3.3) in theorem 3.3 reduce to

’f(a) + f(n(b,a))  kIk(B+k)
1(b, a)B/*

n(b, a) /
gwm( —) (1F (@] + 17 0))

[RLka fla) + Rng(fr f(b)} ‘

for 5 > 0.
When &k =1 then the inequality (3.3) in theorem 3.3, becomes [14, Theorem 3.1].
If a« =1, and k = 1, then the inequality (3.3) in theorem 3.3 can be reformulated as (1.9).
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4. CONCLUDING REMARKS

In this article, we obtained some s-Hermite-Hadamard type concerning k-fractional
conformable integrals for pre-invex functions via Riemann-liouville fractional integrals
operators. The analogous results for convex functions also established. The results ob-
tained in this monograph generalizing the existing results in literature cited herein.
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