On the Difference Equations

$$
x_{n+1}=\frac{x_{n-5}}{ \pm 1-x_{n-2} x_{n-5}}
$$

E. M. Elsayed

Abstract : We study the solutions of the following difference equations

$$
\begin{aligned}
x_{n+1} & =\frac{x_{n-5}}{1-x_{n-2} x_{n-5}} \\
x_{n+1} & =\frac{x_{n-5}}{-1-x_{n-2} x_{n-5}}, \quad n=0,1, \ldots
\end{aligned}
$$

where initial values are non zero real numbers.
Keywords : recursive sequence, solutions of difference equations.
2000 Mathematics Subject Classification : 39A10

1 Introduction

Recently there has been a lot of interest in studying the global attractivity, boundedness character and the periodic nature of nonlinear difference equations. For some results in this area, see for example [1-10]. Cinar [2-4] investigated the solutions of the following difference equations

$$
x_{n+1}=\frac{x_{n-1}}{1+x_{n} x_{n-1}}, \quad x_{n+1}=\frac{x_{n-1}}{-1+x_{n} x_{n-1}}, \quad x_{n+1}=\frac{a x_{n-1}}{1+b x_{n} x_{n-1}}
$$

Aloqeili [1] has obtained the solutions of the difference equation

$$
x_{n+1}=\frac{x_{n-1}}{a-x_{n} x_{n-1}}
$$

Elabbasy et al. [5] investigated the global stability, periodicity character and gave the solution of special case of the following recursive sequence

$$
x_{n+1}=a x_{n}-\frac{b x_{n}}{c x_{n}-d x_{n-1}} .
$$

Elabbasy et al. [7] investigated the global stability, periodicity character and gave the solution of some special cases of the difference equation

$$
x_{n+1}=\frac{d x_{n-l} x_{n-k}}{c x_{n-s}-b}+a
$$

Elsayed [8] has obtained the solutions of the difference equations

$$
x_{n+1}=\frac{x_{n}}{x_{n-1}\left(x_{n} \pm 1\right)} .
$$

Karatas et al.[9] gave that the solution of the difference equation

$$
x_{n+1}=\frac{x_{n-5}}{1+x_{n-2} x_{n-5}} .
$$

In this paper a solution of the following two difference equations

$$
\begin{align*}
& x_{n+1}=\frac{x_{n-5}}{1-x_{n-2} x_{n-5}}, \quad n=0,1, \ldots \tag{1.1}\\
& x_{n+1}=\frac{x_{n-5}}{-1-x_{n-2} x_{n-5}}, \quad n=0,1, \ldots \tag{1.2}
\end{align*}
$$

where the initial conditions $x_{-5}, x_{-4}, x_{-3}, x_{-2}, x_{-1}, x_{0}$ are arbitrary non zero real numbers are investigated.
Definition 1. (Periodicity)
A sequence $\left\{x_{n}\right\}_{n=-k}^{\infty}$ is said to be periodic with period p if $x_{n+p}=x_{n}$ for all $n \geq-k$.

2 MAIN RESULTS

2.1 Equation (1)

In this section we give a specific form of the solutions of Eq.(1)

Theorem 2.1. Let $\left\{x_{n}\right\}_{n=-5}^{\infty}$ be a solution of Eq.(1). Then for $n=0,1, \ldots$

$$
\begin{array}{ll}
x_{6 n-5}=f_{i=0}^{n-1}\left(\frac{1-2 i f c}{1-(2 i+1) f c}\right), & x_{6 n-4}=e_{i=0}^{n-1}\left(\frac{1-2 i e b}{1-(2 i+1) e b}\right) \\
x_{6 n-3}=d_{i=0}^{n-1}\left(\frac{1-2 i d a}{1-(2 i+1) d a}\right), & x_{6 n-2}=c_{i=0}^{n-1}\left(\frac{1-(2 i+1) f c}{1-(2 i+2) f c}\right) \tag{2.1}\\
x_{6 n-1}=b_{i=0}^{n-1}\left(\frac{1-(2 i+1) e b}{1-(2 i+2) e b}\right), & x_{6 n}=a_{i=0}^{n-1}\left(\frac{1-(2 i+1) d a}{1-(2 i+2) d a}\right)
\end{array}
$$

where $x_{-5}=f, x_{-4}=e, x_{-3}=d, x_{-2}=c, x_{-1}=b, x_{-0}=a$.
Proof: For $n=0$ the result holds. Now suppose that $n>0$ and that our assumption holds for $n-1$. That is;

$$
\begin{aligned}
x_{6 n-11} & =f_{i=0}^{n-2}\left(\frac{1-2 i f c}{1-(2 i+1) f c}\right), & x_{6 n-10}=e_{i=0}^{n-2}\left(\frac{1-2 i e b}{1-(2 i+1) e b}\right) \\
x_{6 n-9} & =d_{i=0}^{n-2}\left(\frac{1-2 i d a}{1-(2 i+1) d a}\right), & x_{6 n-8}=c_{i=0}^{n-2}\left(\frac{1-(2 i+1) f c}{1-(2 i+2) f c}\right) \\
x_{6 n-7} & =b_{i=0}^{n-2}\left(\frac{1-(2 i+1) e b}{1-(2 i+2) e b}\right), & x_{6 n-6}=a_{i=0}^{n-2}\left(\frac{1-(2 i+1) d a}{1-(2 i+2) d a}\right)
\end{aligned}
$$

Now, it follows from Eq.(1) that

$$
\begin{aligned}
x_{6 n-5} & =\frac{x_{6 n-11}}{1-x_{6 n-8} x_{6 n-11}}=\frac{f_{i=0}^{n-2}\left(\frac{1-2 i f c}{1-(2 i+1) f c}\right)}{1-c_{i=0}^{n-2}\left(\frac{1-(2 i+1) f c}{1-(2 i+2) f c}\right) f_{i=0}^{n-2}\left(\frac{1-2 i f c}{1-(2 i+1) f c}\right)} \\
& =\frac{f_{i=0}^{n-2}\left(\frac{1-2 i f c}{1-(2 i+1) f c}\right)}{1-f c\left(\frac{1}{1-(2 n-2) f c}\right)}=\frac{f_{i=0}^{n-2}\left(\frac{1-2 i f c}{1-(2 i+1) f c}\right)(1-(2 n-2) f c)}{(1-(2 n-2) f c)-f c} \\
& =f_{i=0}^{n-2}\left(\frac{1-2 i f c}{1-(2 i+1) f c}\right)\left(\frac{1-2(n-1) f c}{1-(2 n-1) f c}\right) .
\end{aligned}
$$

Hence, we have

$$
x_{6 n-5}=f_{i=0}^{n-1}\left(\frac{1-2 i f c}{1-(2 i+1) f c}\right)
$$

Also, we see from Eq.(1) that

$$
\begin{gathered}
x_{6 n-3}=\frac{x_{6 n-9}}{1-x_{6 n-6} x_{6 n-9}}=\frac{d_{i=0}^{n-2}\left(\frac{1-2 i d a}{1-(2 i+1) d a}\right)}{1-a_{i=0}^{n-2}\left(\frac{1-(2 i+1) d a}{1-(2 i+2) d a}\right) d_{i=0}^{n-2}\left(\frac{1-2 i d a}{1-(2 i+1) d a}\right)} \\
=\frac{d_{i=0}^{n-2}\left(\frac{1-2 i d a}{1-(2 i+1) d a}\right)}{1-\left(\frac{d a}{1-(2 n-2) d a}\right)}\left(\frac{1-(2 n-2) d a}{1-(2 n-2) d a}\right)=d_{i=0}^{n-2}\left(\frac{1-2 i d a}{1-(2 i+1) d a}\right)\left(\frac{1-2(n-1) d a}{1-(2 n-1) d a}\right) .
\end{gathered}
$$

Hence, we have

$$
x_{6 n-2}=d_{i=0}^{n-1}\left(\frac{1-2 i d a}{1-(2 i+1) d a}\right)
$$

Similarly, one can easily obtain the other relations. Thus, the proof is completed.
Theorem 2.2. Eq.(1) has a unique equilibrium point which is the number zero.
Proof: For the equilibrium points of Eq.(1), we can write

$$
\bar{x}=\frac{\bar{x}}{1-\bar{x}^{2}} .
$$

Then we have

$$
\bar{x}-\bar{x}^{3}=\bar{x}
$$

or,

$$
-\bar{x}^{3}=0
$$

Thus the equilibrium point of Eq.(1) is $\bar{x}=0$.

Numerical examples

For confirming the results of this section, we consider numerical examples which represent different types of solutions to Eq. (1).
Example 1. We consider $x_{-5}=8, x_{-4}=3, x_{-3}=5, x_{-2}=11, x_{-1}=1, x_{0}=2$ See Fig. 1.

Example 2. See Fig. 2, since $x_{-5}=-2, x_{-4}=3, x_{-3}=5, x_{-2}=-3, x_{-1}=11, x_{0}=-9$.

2.2 Equation (2)

Here we obtain a form of the solutions of Eq.(2)
Theorem 2.3. Let $\left\{x_{n}\right\}_{n=-5}^{\infty}$ be a solution of Eq.(2). Then every solution of Eq.(2) is unbounded and for $n=0,1, \ldots$

$$
\begin{align*}
& x_{6 n-5}=\frac{(-1)^{n} f}{(1+c f)^{n}}, \quad x_{6 n-4}=\frac{e(-1)^{n}}{(1+b e)^{n}}, \\
& x_{6 n-3}=\frac{(-1)^{n} d}{(1+a d)^{n}}, \quad x_{6 n-2}=c(-1)^{n}(1+c f)^{n}, \tag{2.2}\\
& x_{6 n-1}=(-1)^{n} b(1+b e)^{n}, \quad x_{6 n}=a(-1)^{n}(1+a d)^{n},
\end{align*}
$$

where $x_{-5}=f, x_{-4}=e, x_{-3}=d, x_{-2}=c, x_{-1}=b, x_{-0}=a, x_{-5} x_{-2} \neq-1, x_{-4} x_{-1} \neq$ $-1, x_{-3} x_{0} \neq-1$.

Proof: For $n=0$ the result holds. Now suppose that $n>0$ and that our assumption holds for $n-1$. That is;

$$
\begin{aligned}
x_{6 n-11} & =\frac{(-1)^{n-1} f}{(1+c f)^{n-1}}, \quad x_{6 n-10}=\frac{e(-1)^{n-1}}{(1+b e)^{n-1}} \\
x_{6 n-9} & =\frac{(-1)^{n-1} d}{(1+a d)^{n-1}}, \quad x_{6 n-8}=c(-1)^{n-1}(1+c f)^{n-1} \\
x_{6 n-7} & =(-1)^{n-1} b(1+b e)^{n-1}, \quad x_{6 n-6}=a(-1)^{n-1}(1+a d)^{n-1}
\end{aligned}
$$

Now, it follows from Eq.(2) that

$$
\begin{aligned}
& x_{6 n-5}=\frac{x_{6 n-11}}{-1-x_{6 n-8} x_{6 n-11}}=\frac{\frac{(-1)^{n-1} f}{(1+c f)^{n-1}}}{-1-c(-1)^{n-1}(1+c f)^{n-1} \frac{(-1)^{n-1} f}{(1+c f)^{n-1}}} \\
&=\frac{(-1)^{n-1} f}{(1+c f)^{n-1}} \\
&-1-c f
\end{aligned} .
$$

Hence, we have

$$
x_{6 n-5}=\frac{(-1)^{n} f}{(1+c f)^{n}} .
$$

Similarly

$$
\begin{aligned}
& x_{6 n-3}=\frac{x_{6 n-9}}{-1-x_{6 n-6} x_{6 n-9}}=\frac{\frac{(-1)^{n-1} d}{(1+a d)^{n-1}}}{-1+a(-1)^{n-1}(1+a d)^{n-1} \frac{(-1)^{n-1} d}{(1+a d)^{n-1}}} \\
&=\frac{(-1)^{n-1} d}{(1+a d)^{n-1}} \\
&-1-a d
\end{aligned} .
$$

Hence, we have

$$
x_{6 n-2}=\frac{(-1)^{n} d}{(1+a d)^{n}}
$$

Similarly, one can easily obtain the other relations. Thus, the proof is completed.
Theorem 2.4. Eq.(2) has a unique equilibrium point which is the number zero.
Proof: For the equilibrium points of Eq.(1), we can write

$$
\bar{x}=\frac{\bar{x}}{-1-\bar{x}^{2}} .
$$

Then we have

$$
-\bar{x}-\bar{x}^{3}=\bar{x},
$$

or,

$$
\bar{x}\left(\bar{x}^{2}+2\right)=0 .
$$

Thus the equilibrium point of Eq.(2) is $\bar{x}=0$.
Theorem 2.5. Eq.(2) has a periodic solutions of period six iff $c f=b e=a d=-2$ and will be take the form $\{f, e, d, c, b, a, f, e, d, c, b, a, \ldots\}$.

Proof: First suppose that there exists a prime period six solution

$$
f, e, d, c, b, a, f, e, d, c, b, a, \ldots
$$

of Eq.(2), we see from Eq.(4) that

$$
\begin{aligned}
f & =\frac{(-1)^{n} f}{(1+c f)^{n}}, \quad e=\frac{e(-1)^{n}}{(1+b e)^{n}} \\
d & =\frac{(-1)^{n} d}{(1+a d)^{n}}, \quad c=c(-1)^{n}(1+c f)^{n} \\
b & =(-1)^{n} b(1+b e)^{n}, \quad a=a(-1)^{n}(1+a d)^{n},
\end{aligned}
$$

or,

$$
(1+c f)^{n}=(-1)^{n},(1+b e)^{n}=(-1)^{n},(1+a d)^{n}=(-1)^{n} .
$$

Then

$$
c f=-2, \quad b e=-2, \quad a d=-2 .
$$

Second suppose $c f=-2$, $b e=-2$, $a d=-2$. Then we see from Eq.(4) that

$$
\begin{array}{ll}
x_{6 n-5}=f, & x_{6 n-4}=e, \\
x_{6 n-3}=d, & x_{6 n-2}=c, \\
x_{6 n-1}=b, & x_{6 n}=a .
\end{array}
$$

Thus we have a period six solution and the proof is complete.
Numerical examples
Example 3. Consider $x_{-5}=8, x_{-4}=7, x_{-3}=12, x_{-2}=4, x_{-1}=3, x_{0}=5 \quad$ See Fig. 3.

Example 4. See Fig. 4, since $x_{-5}=0.2, x_{-4}=0.7, x_{-3}=1.2, x_{-2}=0.4, x_{-1}=$ $0.3, x_{0}=0.2$.

Example 5. In Fig. 5, we assume $x_{-5}=11, x_{-4}=1 / 9, x_{-3}=-2 / 15, x_{-2}=$ $-2 / 11, x_{-1}=-18, x_{0}=15$.

References

[1] M. Aloqeili, Dynamics of a rational difference equation, Appl. Math. Comp., 176(2) (2006), 768-774.
[2] C. Cinar, On the positive solutions of the difference equation $x_{n+1}=\frac{x_{n-1}}{1+x_{n} x_{n-1}}$, Appl. Math. Comp., 150 (2004) 21-24.
[3] C. Cinar, On the difference equation $x_{n+1}=\frac{x_{n-1}}{-1+x_{n} x_{n-1}}$, Appl. Math. Comp., 158 (2004), 813-816.
[4] C. Cinar, On the positive solutions of the difference equation $x_{n+1}=\frac{a x_{n-1}}{1+b x_{n} x_{n-1}}$,
Appl. Math. Comp., 156 (2004), 587-590.
[5] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, On the difference equation $\quad x_{n+1}=a x_{n}-\frac{b x_{n}}{c x_{n}-d x_{n-1}}$, Adv. Differ. Equ., Volume 2006 (2006), Article ID 82579,1-10.
[6] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, On the difference equations $x_{n+1}=\frac{\alpha x_{n-k}}{\beta+\gamma \prod_{i=0}^{k} x_{n-i}}$, J. Conc. Appl. Math., 5(2) (2007), 101-113.
[7] E. M. Elabbasy, H. El-Metwally and E. M. Elsayed, Qualitative behavior of higher order difference equation, Soochow Journal of Mathematics, 33(4) (2007), 861-873.
[8] E. M. Elsayed, On the solution of recursive sequence of order two, Fasciculi Mathematici, 40 (2008), 5-13.
[9] R. Karatas, C. Cinar and D. Simsek, On positive solutions of the difference equation $x_{n+1}=\frac{x_{n-5}}{1+x_{n-2} x_{n-5}}$, Int. J. Contemp. Math. Sci., 1(10) (2006), 495-500.
[10] D. Simsek, C. Cinar and I. Yalcinkaya, On the Recursive Sequence $x_{n+1}=$ $\frac{x_{n-3}}{1+x_{n-1}}$, Int. J. Contemp. Math. Sci., 1(10) (2006), 475-480.
(Received 30 Sebtember 2008)

[^0]
[^0]: E. M. Elsayed.

 Mathematics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
 e-mail: emelsayed@mans.edu.eg and emmelsayed@yahoo.com.

