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On the Difference Equations
xn+1 =

xn−5

±1− xn−2xn−5
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Abstract : We study the solutions of the following difference equations

xn+1 =
xn−5

1− xn−2xn−5
,

xn+1 =
xn−5

−1− xn−2xn−5
, n = 0, 1, ...

where initial values are non zero real numbers.
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1 Introduction

Recently there has been a lot of interest in studying the global attractivity, boundedness
character and the periodic nature of nonlinear difference equations. For some results in this
area, see for example [1-10]. Cinar [2-4] investigated the solutions of the following difference
equations

xn+1 =
xn−1

1 + xnxn−1
, xn+1 =

xn−1

−1 + xnxn−1
, xn+1 =

axn−1

1 + bxnxn−1
.

Aloqeili [1] has obtained the solutions of the difference equation

xn+1 =
xn−1

a− xnxn−1
,

Elabbasy et al. [5] investigated the global stability, periodicity character and gave the
solution of special case of the following recursive sequence

xn+1 = axn − bxn

cxn − dxn−1
.

Elabbasy et al. [7] investigated the global stability, periodicity character and gave the
solution of some special cases of the difference equation

xn+1 =
dxn−lxn−k

cxn−s − b
+ a.
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Elsayed [8] has obtained the solutions of the difference equations

xn+1 =
xn

xn−1(xn ± 1)
.

Karatas et al.[9] gave that the solution of the difference equation

xn+1 =
xn−5

1 + xn−2xn−5
.

In this paper a solution of the following two difference equations

xn+1 =
xn−5

1− xn−2xn−5
, n = 0, 1, ... (1.1)

xn+1 =
xn−5

−1− xn−2xn−5
, n = 0, 1, ... (1.2)

where the initial conditions x−5, x−4, x−3, x−2, x−1, x0 are arbitrary non zero real numbers
are investigated.
Definition 1. (Periodicity)

A sequence {xn}∞n=−k is said to be periodic with period p if xn+p = xn for all n ≥ −k.

2 MAIN RESULTS

2.1 Equation (1)

In this section we give a specific form of the solutions of Eq.(1)

Theorem 2.1. Let {xn}∞n=−5 be a solution of Eq.(1). Then for n = 0, 1, ...

x6n−5 = fn−1
i=0

(
1− 2ifc

1− (2i + 1) fc

)
, x6n−4 = en−1

i=0

(
1− 2ieb

1− (2i + 1) eb

)
,

x6n−3 = dn−1
i=0

(
1− 2ida

1− (2i + 1) da

)
, x6n−2 = cn−1

i=0

(
1− (2i + 1)fc

1− (2i + 2) fc

)
, (2.1)

x6n−1 = bn−1
i=0

(
1− (2i + 1)eb
1− (2i + 2) eb

)
, x6n = an−1

i=0

(
1− (2i + 1)da

1− (2i + 2) da

)
,

where x−5 = f, x−4 = e, x−3 = d, x−2 = c, x−1 = b, x−0 = a.

Proof: For n = 0 the result holds. Now suppose that n > 0 and that our assumption holds
for n− 1. That is;

x6n−11 = fn−2
i=0

(
1− 2ifc

1− (2i + 1) fc

)
, x6n−10 = en−2

i=0

(
1− 2ieb

1− (2i + 1) eb

)
,

x6n−9 = dn−2
i=0

(
1− 2ida

1− (2i + 1) da

)
, x6n−8 = cn−2

i=0

(
1− (2i + 1)fc

1− (2i + 2) fc

)
,

x6n−7 = bn−2
i=0

(
1− (2i + 1)eb
1− (2i + 2) eb

)
, x6n−6 = an−2

i=0

(
1− (2i + 1)da

1− (2i + 2) da

)
.
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Now, it follows from Eq.(1) that

x6n−5 =
x6n−11

1− x6n−8x6n−11
=

fn−2
i=0

(
1− 2ifc

1− (2i + 1) fc

)

1− cn−2
i=0

(
1− (2i + 1)fc

1− (2i + 2) fc

)
fn−2

i=0

(
1− 2ifc

1− (2i + 1) fc

)

=
fn−2

i=0

(
1− 2ifc

1− (2i + 1) fc

)

1− fc

(
1

1− (2n− 2) fc

) =
fn−2

i=0

(
1− 2ifc

1− (2i + 1) fc

)
(1− (2n− 2) fc)

(1− (2n− 2) fc)− fc

= fn−2
i=0

(
1− 2ifc

1− (2i + 1) fc

)(
1− 2 (n− 1) fc

1− (2n− 1) fc

)
.

Hence, we have

x6n−5 = fn−1
i=0

(
1− 2ifc

1− (2i + 1) fc

)
.

Also, we see from Eq.(1) that

x6n−3 =
x6n−9

1− x6n−6x6n−9
=

dn−2
i=0

(
1− 2ida

1− (2i + 1) da

)

1− an−2
i=0

(
1− (2i + 1)da

1− (2i + 2) da

)
dn−2

i=0

(
1− 2ida

1− (2i + 1) da

)

=
dn−2

i=0

(
1− 2ida

1− (2i + 1) da

)

1−
(

da

1− (2n− 2) da

)
(

1− (2n− 2) da

1− (2n− 2) da

)
= dn−2

i=0

(
1− 2ida

1− (2i + 1) da

)(
1− 2(n− 1)da

1− (2n− 1) da

)
.

Hence, we have

x6n−2 = dn−1
i=0

(
1− 2ida

1− (2i + 1) da

)
.

Similarly, one can easily obtain the other relations. Thus, the proof is completed.

Theorem 2.2. Eq.(1) has a unique equilibrium point which is the number zero.

Proof: For the equilibrium points of Eq.(1), we can write

x =
x

1− x2 .

Then we have
x− x3 = x,

or,
−x3 = 0.

Thus the equilibrium point of Eq.(1) is x = 0.
Numerical examples

For confirming the results of this section, we consider numerical examples which represent
different types of solutions to Eq. (1).
Example 1. We consider x−5 = 8, x−4 = 3, x−3 = 5, x−2 = 11, x−1 = 1, x0 = 2 See
Fig. 1.
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Example 2. See Fig. 2, since x−5 = −2, x−4 = 3, x−3 = 5, x−2 = −3, x−1 = 11, x0 = −9.
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2.2 Equation (2)

Here we obtain a form of the solutions of Eq.(2)

Theorem 2.3. Let {xn}∞n=−5 be a solution of Eq.(2). Then every solution of Eq.(2) is
unbounded and for n = 0, 1, ...

x6n−5 =
(−1)n

f

(1 + cf)n , x6n−4 =
e (−1)n

(1 + be)n ,

x6n−3 =
(−1)n

d

(1 + ad)n , x6n−2 = c (−1)n (1 + cf)n
, (2.2)

x6n−1 = (−1)n
b (1 + be)n

, x6n = a (−1)n (1 + ad)n
,
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where x−5 = f, x−4 = e, x−3 = d, x−2 = c, x−1 = b, x−0 = a, x−5x−2 6= −1, x−4x−1 6=
−1, x−3x0 6= −1.

Proof: For n = 0 the result holds. Now suppose that n > 0 and that our assumption holds
for n− 1. That is;

x6n−11 =
(−1)n−1

f

(1 + cf)n−1 , x6n−10 =
e (−1)n−1

(1 + be)n−1 ,

x6n−9 =
(−1)n−1

d

(1 + ad)n−1 , x6n−8 = c (−1)n−1 (1 + cf)n−1
,

x6n−7 = (−1)n−1
b (1 + be)n−1

, x6n−6 = a (−1)n−1 (1 + ad)n−1
.

Now, it follows from Eq.(2) that

x6n−5 =
x6n−11

−1− x6n−8x6n−11
=

(−1)n−1
f

(1 + cf)n−1

−1− c (−1)n−1 (1 + cf)n−1 (−1)n−1
f

(1 + cf)n−1

=

(−1)n−1
f

(1 + cf)n−1

−1− cf
.

Hence, we have

x6n−5 =
(−1)n

f

(1 + cf)n .

Similarly

x6n−3 =
x6n−9

−1− x6n−6x6n−9
=

(−1)n−1
d

(1 + ad)n−1

−1 + a (−1)n−1 (1 + ad)n−1 (−1)n−1
d

(1 + ad)n−1

=

(−1)n−1
d

(1 + ad)n−1

−1− ad
.

Hence, we have

x6n−2 =
(−1)n

d

(1 + ad)n .

Similarly, one can easily obtain the other relations. Thus, the proof is completed.

Theorem 2.4. Eq.(2) has a unique equilibrium point which is the number zero.

Proof: For the equilibrium points of Eq.(1), we can write

x =
x

−1− x2 .

Then we have
−x− x3 = x,
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or,
x(x2 + 2) = 0.

Thus the equilibrium point of Eq.(2) is x = 0.

Theorem 2.5. Eq.(2) has a periodic solutions of period six iff cf = be = ad = −2 and will
be take the form {f, e, d, c, b, a, f, e, d, c, b, a, ...}.
Proof: First suppose that there exists a prime period six solution

f, e, d, c, b, a, f, e, d, c, b, a, ...

of Eq.(2), we see from Eq.(4) that

f =
(−1)n

f

(1 + cf)n , e =
e (−1)n

(1 + be)n ,

d =
(−1)n

d

(1 + ad)n , c = c (−1)n (1 + cf)n
,

b = (−1)n
b (1 + be)n

, a = a (−1)n (1 + ad)n
,

or,
(1 + cf)n = (−1)n

, (1 + be)n = (−1)n
, (1 + ad)n = (−1)n

.

Then
cf = −2, be = −2, ad = −2.

Second suppose cf = −2, be = −2, ad = −2. Then we see from Eq.(4) that

x6n−5 = f, x6n−4 = e,

x6n−3 = d, x6n−2 = c,

x6n−1 = b, x6n = a.

Thus we have a period six solution and the proof is complete.
Numerical examples
Example 3. Consider x−5 = 8, x−4 = 7, x−3 = 12, x−2 = 4, x−1 = 3, x0 = 5 See Fig.
3.
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Example 4. See Fig. 4, since x−5 = 0.2, x−4 = 0.7, x−3 = 1.2, x−2 = 0.4, x−1 =
0.3, x0 = 0.2.
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Example 5. In Fig. 5, we assume x−5 = 11, x−4 = 1/9, x−3 = −2/15, x−2 =
−2/11, x−1 = −18, x0 = 15.
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