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1 Introduction

Recently there has been a lot of interest in studying the global attractivity, boundedness
character and the periodic nature of nonlinear difference equations. For some results in this
area, see for example [1-10]. Cinar [2-4] investigated the solutions of the following difference
equations
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Alogeili [1] has obtained the solutions of the difference equation
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Elabbasy et al. [5] investigated the global stability, periodicity character and gave the
solution of special case of the following recursive sequence
bz,

Tpy1 = ATy — ——————.
cry — dx,_q
Elabbasy et al. [7] investigated the global stability, periodicity character and gave the
solution of some special cases of the difference equation
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Elsayed [8] has obtained the solutions of the difference equations
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Karatas et al.[9] gave that the solution of the difference equation
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In this paper a solution of the following two difference equations
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where the initial conditions x_5, x_4, x_3, T_2, T_1, Tg are arbitrary non zero real numbers
are investigated.

Definition 1. (Periodicity)
A sequence {z,}5° _, is said to be periodic with period p if x4+, = @, for all n > —k.

2 MAIN RESULTS

2.1 Equation (1)

In this section we give a specific form of the solutions of Eq.(1)

Theorem 2.1. Let {x,}> _5 be a solution of Eq.(1). Then forn=0,1, ...

N _ (L2 oot (L= 2ieb
on=o =0 AT @i+ 1) fe ) o=t = H=0 \1T = (2i+ 1) eb
1—2id 1—(2i+1
Ten—3 — d?:_()l (1_(za> 3 Ten—2 = C?:ol < ( ' )fC) (2-1)

2i+1)da 1—(2i42) fe
- _ gt 1—(2i+1)edb o gn—1 1—(2i+ 1)da
n=t ™ =0 \ 12 (2 +2) eb on = %i=0 \1-(2i + 2) da

wherex_5=f, t_4y=e, x_3=d, x_o=c¢, T_1=0b, x_g=a.

Proof: For n = 0 the result holds. Now suppose that n > 0 and that our assumption holds
for n — 1. That is;
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Now, it follows from Eq.(1) that
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Also, we see from Eq.(1) that

Hence, we have
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Hence, we have
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Similarly, one can easily obtain the other relations. Thus, the proof is completed.
Theorem 2.2. Fq.(1) has a unique equilibrium point which is the number zero.

Proof: For the equilibrium points of Eq.(1), we can write

_ T
x prnd
1—7z2
Then we have
T-T° =7,
or,
—T =0

Thus the equilibrium point of Eq.(1) is T =
Numerical examples

For confirming the results of this section, we consider numerical examples which represent
different types of solutions to Eq. (1).
Example 1. We consider x_5 =8, x4 =3, x_3 =5, o =11, x_1 =1, 9 = 2 See
Fig. 1.
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plot of x(n+1)= (X(n-5)/(1-x(n-2)*(n-5))
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Example 2. See Fig. 2,sincex_5=-2, x4 =3, x_3=5, x_o=-3, x_1 =11, zg = —9.

plot of x(n+1)= (x(n-5)/(1-x(n-2)*x(n-5))
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2.2 Equation (2)
Here we obtain a form of the solutions of Eq.(2)

Theorem 2.3. Let {x,}>2 5 be a solution of Eq.(2). Then every solution of Eq.(2) is
unbounded and forn=0,1, ...

_ =D _e(=1)"
Ten—5 = (1 T Cf)na Ten—4 = (1 T be)na
- nd n n
Ten—3 = (i—i—li],d)n’ Ten—2 = C(—].) (1 + Cf) s (22)
Ten1 = (D)"b(1+0be)", xep=0a(-1)"(1+ad)",



ot

On the Difference Equations...
wherex_5=f, x_4=e€, x_3=d, x_o=c¢, x_1=b, T_g=a, x_58_9#F —1, x_4x_1 #
—1, Tr_3T0 7& —1.

Proof: For n = 0 the result holds. Now suppose that n > 0 and that our assumption holds
for n — 1. That is;
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Now, it follows from Eq.(2) that
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Similarly, one can easily obtain the other relations. Thus, the proof is completed.
Theorem 2.4. FEq.(2) has a unique equilibrium point which is the number zero.

Proof: For the equilibrium points of Eq.(1), we can write

Then we have
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or,

Theorem 2.5. Eq.(2) has a periodic solutions of period siz iff c¢f = be = ad = —2 and will
be take the form {f,e,d,c,b,a, f,e,d,c,b,a,...}.

Proof: First suppose that there exists a prime period six solution
f7e7d7c7b)a7f7e7d7c’b’a7"'

of Eq.(2), we see from Eq.(4) that
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b = (-1D)"b(1+be)", a=a(=1)"(1+ad)",
’ (L+ef)" = (=1)", (1+be)" = (=1)", (1 +ad)" = (=1)".
Then

cf =-2, be=-2, ad= —2.
Second suppose cf = —2, be = —2, ad = —2. Then we see from Eq.(4) that

Ten—5 — fa Ten—4 = €,
Ten-3 = d, Ten—2 = C,
Ten-1 = b,  Ten=a.

Thus we have a period six solution and the proof is complete.

Numerical examples

Example 3. Consider z_5 =8, x_4 =7, x_3=12, .o =4, x_1 =3, x9g =5 See Fig.
3.
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Example 4. See Fig. 4, since z_5 = 0.2, z_4y = 0.7, z_3 = 1.2, z_5 = 04, z_4
0.3, Ty = 0.2.

5 plot of x(n+1)= (x(n-5)/(-1-x(n-2)*x(n-5))
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Example 5. In Fig. 5, we assume z_5 = 11, z_4 = 1/9, z_3 = —2/15, x_»

—2/11, r—1 = —18, o = 15.
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plot of x(n+1)= (x(n-5)/(-1-x(n-2)*x(n-5))
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