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1. Introduction
Throughout the paper, N denotes the set of all positive integers and R the set of all real

numbers. The concept of convergence of a sequence of real numbers has been extended
to statistical convergence independently by Fast [1] and Schoenberg [2].

The concept of 2-normed spaces was initially introduced by Gähler [3, 4] in the 1960’s.
Since then, this concept has been studied by many authors. Gürdal and Pehli̇van [5] stud-
ied statistical convergence, statistical Cauchy sequence and investigated some properties
of statistical convergence in 2-normed spaces. Gürdal and Açık [6] investigated I-Cauchy
and I∗-Cauchy sequences in 2-normed spaces. Sarabadan and Talebi [7] studied statis-
tical convergence and ideal convergence of sequences of functions in 2-normed spaces.
Arslan and Dündar [8, 9] investigated the concepts of I-convergence, I∗-convergence, I-
Cauchy and I∗-Cauchy sequences of functions in 2-normed spaces. Futhermore, a lot of
development have been made in this area (see [10–18]).

The idea of rough convergence was first introduced by Phu [19] in finite-dimensional
normed spaces. In [19], he showed that the set LIMrxi is bounded, closed, and convex; and
he introduced the notion of rough Cauchy sequence. He also investigated the relations
between rough convergence and other convergence types and the dependence of LIMrxi on
the roughness degree r. In another paper [20] related to this subject, he defined the rough
continuity of linear operators and showed that every linear operator f : X → Y is r -
continuous at every point x ∈ X under the assumption dimY < ∞ and r > 0 where X and
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Y are normed spaces. In [21], he extended the results given in [19] to infinite-dimensional
normed spaces. Aytar [22] studied of rough statistical convergence and defined the set
of rough statistical limit points of a sequence and obtained two statistical convergence
criteria associated with this set and prove that this set is closed and convex. Also, Aytar
[23] studied that the r-limit set of the sequence is equal to the intersection of these sets
and that r-core of the sequence is equal to the union of these sets. Recently, Dündar and
Çakan [24–26] introduced the notion of rough I-convergence and the set of rough I-limit
points of a sequence and studied the notions of rough convergence, I2-convergence and
the sets of rough limit points and rough I2-limit points of a double sequence. Arslan
and Dündar [27, 28] introduced some concepts of rough convergence in 2-normed spaces.
Also, Arslan and Dündar [29] studied rough statistical convergence in 2-normed spaces.

In this paper, we study the concepts of rough statistical cluster point and rough sta-
tistical limit point of a sequence in 2-normed space and investigate some properties of
these concepts. Also, we obtain an ordinary statistical convergence criteria associated
with rough statistical cluster point of a sequence in 2-normed space. We note that our
results and proof techniques presented in this paper are analogues of those in Aytar’s [30]
paper. Namely, the actual origin of most of these results and proof techniques is them
papers. The following our theorems and results are the extension of theorems and results
in [30].

Now, we recall the concept of 2-normed space, ideal convergence and some fundamental
definitions and notations (See [5–9, 11, 13, 15–17, 19–23, 27–43]).

Let r be a nonnegative real number and Rn denotes the real n-dimensional space with
the norm ∥.∥. Consider a sequence x = (xn) ⊂ Rn.

The sequence x = (xn) is said to be r-convergent to L, denoted by xn
r−→ L provided

that

∀ε > 0, ∃nε ∈ N : n ≥ nε ⇒ ∥xn − L∥ < r + ε.

The set LIMrx := {L ∈ Rn : xn
r−→ L} is called the r-limit set of the sequence

x = (xn). A sequence x = (xn) is said to be r-convergent if LIMrx ̸= ∅. In this case, r is
called the convergence degree of the sequence x = (xn). For r = 0, we get the ordinary
convergence.

Let K be a subset of the set of positive integers N, and let us denote the set {k ∈ K :
k ≤ n} by Kn. Then the natural density of K is given by

δ(K) := lim
n→∞

|Kn|
n

,

where |Kn| denotes the number of elements in Kn. Clearly, a finite subset has natural
density zero and we have δ(Kc) = 1− δ(K), where Kc := N \K is the complement of K.
If K1 ⊆ K2, then δ(K1) ≤ δ(K2).

A sequence x = (xn) is said to be r-statistically convergent to L, denoted by xn
r−st−→ L,

provided that the set {n ∈ N : ∥xn − L∥ ≥ r + ε} has natural density zero for ε > 0; or
equivalently, if the condition st − lim sup ∥xn − L∥ ≤ r is satisfied. In addition, we can
write xn

r−st−→ L if and only if, the inequality ∥xn − L∥ < r + ε holds for every ε > 0 and
almost all n.

Here r is called the statistical convergence degree. If we take r = 0, then we obtain
the ordinary statistical convergence.



Rough Statistical Cluster Points In 2-Normed Spaces 1421

In general, the rough statistical limit of a sequence x = (xn) may not be unique for
roughness degree r > 0. So we have to consider the so-called r-statistical limit set of the
sequence x, which is defined by st− LIMrx := {L ∈ X : xn

r−st−→ L}.
The sequence x is said to be r-statistically convergent provided that st− LIMrx ̸= ∅.
Let r ≥ 0. The vector λ ∈ X is called the r-statistical cluster point of the sequence

x = (xn) provided that δ({n ∈ N : ∥xn − λ∥ < r + ε}) ̸= 0, for every ε > 0. We denote
the set of all r-statistically cluster points the sequence x by Γr

x.
Let r ≥ 0. The vector ν ∈ X is called the r-statistical limit point of the sequence

x = (xn), provided that there is a nonthin subsequence (xnk
) of (xn) such that for every

ε > 0 there exists a number k0 = k0(ε) ∈ N with ∥xnk
− ν∥ < r + ε for all k ≥ k0. We

denote the set of all r-statistical limit points the sequence x by Λr
x.

Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm on X is a
function ∥·, ·∥ : X ×X → R which satisfies the following statements:

(i) ∥x, y∥ = 0 if and only if x and y are linearly dependent.
(ii) ∥x, y∥ = ∥y, x∥.
(iii) ∥αx, y∥ = |α|∥x, y∥, α ∈ R.
(iv) ∥x, y + z∥ ≤ ∥x, y∥+ ∥x, z∥.

As an example of a 2-normed space we may take X = R2 being equipped with the
2-norm ∥x, y∥ := the area of the parallelogram based on the vectors x and y which may
be given explicitly by the formula

∥x, y∥ = |x1y2 − x2y1|; x = (x1, x2), y = (y1, y2) ∈ R2.

In this study, we suppose X to be a 2-normed space having dimension d; where 2 ≤
d < ∞. The pair (X, ∥·, ·∥) is then called a 2-normed space.

A sequence x = (xn) in 2-normed space (X, ∥·, ·∥) is said to be convergent to L in X
if lim

n→∞
∥xn − L, z∥ = 0, for every z ∈ X. In such a case, we write lim

n→∞
xn = L and call

L the limit of (xn).
c ∈ X is called a statistical cluster point of a sequence x = (xn) provided that the

natural density of the set {n ∈ N : ∥xn − c, z∥ < ε} is different from zero for every ε > 0
and each nonzero z ∈ X. We deneto the set of all statistical cluster points of the sequence
x by Γ2

x.
Let (xn) be a sequence in (X, ∥., .∥) 2-normed linear space and r be a non-negative

real number. x = (xn) is said to be rough convergent (r-convergent) to L denoted by
xn

∥.,.∥−→r L if

∀ε > 0,∃nε ∈ N : n ≥ nε ⇒ ∥xn − L, z∥ < r + ε (1.1)

or equivalently, if lim sup ∥xn − L, z∥ ≤ r, for every z ∈ X.
If (1.1) holds L is an r-limit point of x = (xn), which is usually no more unique (for

r > 0). So, we have to consider the so-called r-limit set (or shortly r-limit) of (xn) defined
by LIMr

2x := {L ∈ X : xn
∥.,.∥−→r L}.

The sequence x = (xn) is said to be rough convergent if LIMr
2x ̸= ∅. In this case, r

is called a convergence degree of (xn). For r = 0 we have the classical convergence in
2-normed space again. But our proper interest is case r > 0. There are several reasons
for this interest. For instance, since an orginally convergent sequence (yn) (with yn → L)
in 2-normed space often cannot be determined (i.e., measured or calculated) exactly, one
has to do with an approximated sequence (xn) satisfying ∥xn − yn, z∥ ≤ r for all n and
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for every z ∈ X, where r > 0 is an upper bound of approximation error. Then, (xn) is
no more convergent in the classical sense, but for every z ∈ X,

∥xn − L, z∥ ≤ ∥xn − yn, z∥+ ∥yn − L, z∥ ≤ r + ∥yn − L, z∥
implies that is r-convergent in the sense of (1.1).

Let (X, ∥., .∥) be a 2-normed space. A sequence x = (xn) in X said to be rough
statistically convergent (r2st-convergent) to L, denoted by xn

∥.,.∥−→r2st L, provided that
the set {n ∈ N : ∥xn − L, z∥ ≥ r + ε} has natural density zero, for every ε > 0 and each
nonzero z ∈ X; or equivalently, if the condition st − lim sup ∥xn − L, z∥ ≤ r is satisfied.
In addition, we can write xn

∥.,.∥−→r2st L, if and only if, the inequality ∥xn − L, z∥ < r + ε
holds almost all n.

In this convergence, r is called the statistical convergence degree. For r = 0, rough
statistically convergent coincides with ordinary statistical convergence.

In general, the rough statistical limit of a sequence x = (xn) may not be unique for
the roughness degree r > 0. So, we have to consider the so-called r-statistically limit set
of the sequence x in X, which is defined by

st− LIMr
2x := {L ∈ X : xn

∥.,.∥−→r2st L}. (1.2)
The sequence x is said to be r-statistically convergent provided that st− LIMr

2x ̸= ∅.

Lemma 1.1 ([27], Theorem 2.2). Let (X, ∥., .∥) be a 2-normed space and consider a
sequence x = (xn) ∈ X. The sequence (xn) is bounded if and only if there exist an
r ≥ 0 such that LIMr

2x ̸= ∅. For all r > 0, a bounded sequence (xn) always contains a
subsequence xnk

with LIM(xnk
),r

2 xnk
̸= ∅.

Lemma 1.2 ([27], Theorem 2.3). Let (X, ∥., .∥) be a 2-normed space and consider a
sequence x = (xn) ∈ X. For all r ≥ 0, the r-limit set LIMr

2x of an arbitrary sequence (xn)
is closed.
Lemma 1.3 ([27], Theorem 2.4). Let (X, ∥., .∥) be a 2-normed space and consider a
sequence x = (xn) ∈ X. If y0 ∈ LIMr0

2 x and y1 ∈ LIMr1
2 x, then

yα := (1− α)y0 + αy1 ∈ LIM(1−α)r0+αr1
2 x, for α ∈ [0, 1].

2. Main Results
In this section, we introduce the concept of rough statistical cluster pointand rough-

statistical limit pointof a sequence in 2-normed spaces.
Definition 2.1. Let r ≥ 0. The vector λ ∈ X is called the rough statistical cluster point
of the sequence x = (xn) if for every ε > 0 and z ∈ X

δ({n ∈ N : ∥xn − λ, z∥ < r + ε}) ̸= 0.

We denote the set of all rough statistical cluster points the sequence x in 2-normed space
X by r-Γ2

x.

Here, if we take r = 0, then we obtain the notion of ordinary statistical cluster point.
It is clear that

r1 − Γ2
x ⊆ r2 − Γ2

x,

for r1 ≤ r2. In [30] Aytar proved that the set Γr
x is closed. We will show that the set r-Γ2

x

is closed, for each r > 0.
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Theorem 2.2. Let x = (xn) be a sequence in 2-normed space X. Then, for every r ≥ 0,
the set r-Γ2

x is closed.

Proof. Let r-Γ2
x ̸= ∅ and consider a sequence y = (yn) ⊆r-Γ2

x such that lim
n→∞

yn = L. Let
us show that

δ({n ∈ N : ∥xn − L, z∥ < r + ε}) ̸= 0

for every ε > 0 and z ∈ X. Fix ε > 0. Since lim
n→∞

yn = L, there exists an n0 = n0(ε) ∈ N
such that

∥yn − L, z∥ <
ε

2
,

for all n > n0 and every z ∈ X. Fix m0 such that m0 > n0. Then, we have

∥ym0
− L, z∥ <

ε

2
,

for every z ∈ X. Let m be any point of the set{
n ∈ N : ∥xn − ym0

, z∥ < r +
ε

2

}
.

Since ∥xm − ym0
, z∥ < r + ε

2 , we have
∥xm − L, z∥ ≤ ∥xm − ym0

, z∥+ ∥ym0
− L, z∥

< r +
ε

2
+

ε

2
= r + ε

and so,
m ∈ {n ∈ N : ∥xn − L, z∥ < r + ε},

for every z ∈ X. Hence, we have{
n ∈ N : ∥xn − ym0

, z∥ < r +
ε

2

}
⊆ {n ∈ N : ∥xn − L, z∥ < r + ε}. (2.1)

Since
δ
({

n ∈ N : ∥xn − ym0 , z∥ < r +
ε

2

})
̸= 0

by (2.1), we get
δ({n ∈ N : ∥xn − L, z∥ < r + ε}) ̸= 0,

for every z ∈ X. Therefore, we have L ∈ r-Γ2
x.

If we let λ ∈ r-Γ2
x, then for every z ∈ X,

δ({n : ∥xn − λ, z∥ < r + ε}) ̸= 0.

By the statistical analogue of Bolzano-Weierstrass Theorem (see [43], Theorem 2), the
subsequence (xn)n∈A has a statistical cluster point, where

A = {n : ∥xn − λ, z∥ ≤ r},
for every z ∈ X. If we denote this statistical cluster point by γ, then we have ∥λ−γ, z∥ ≤
r. Therefore, we have that if λ ∈ r-Γ2

x, then there exists a vector γ ∈ Γ2
x such that

∥λ− γ, z∥ ≤ r.

Theorem 2.3. Let r > 0. For a sequence x = (xn) in 2-normed space X, we have L ∈ r-
Γ2
x if and only if there exists a sequence y = (yn) such that L ∈ Γ2

y and ∥xn − yn, z∥ ≤ r,
for every z ∈ X and almost all n.
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Proof. Necessity: Fix r and ε and suppose that L ∈ r-Γ2
x. Thus, we have δ(A) ̸= 0, where

A := {n ∈ N : ∥xn − L, z∥ < r + ε},
for every z ∈ X. Define

yn :=


L, ∥xn − L, z∥ ≤ r and n ∈ A
xn + r L−xn

∥xn−L,z∥ , ∥xn − L, z∥ > r and n ∈ A

tn, n ̸∈ A

(2.2)

where the sequence t = (tn) is arbitrary. It is clear that

∥yn − L, z∥ =

{
0, if∥xn − L, z∥ ≤ r
∥xn − L, z∥ − r, otherwise

(2.3)

and ∥xn − yn, z∥ ≤ r, for every n ∈ A and z ∈ X. Now let us show that the inclusion
A ⊆ {n ∈ N : ∥yn − L, z∥ < ε} (2.4)

holds, for every z ∈ X. If n0 ∈ A, then we have
∥xn0 − L, z∥ < r + ε,

for every z ∈ X. Hence the following two cases are possible:
(i) If ∥xn0

− L, z∥ ≤ r, then from (2.3), we have
∥yn0 − L, z∥ = 0,

that is,
n0 ∈ {n ∈ N : ∥yn − L, z∥ < ε},

for every z ∈ X.
(ii) If ∥xn0

− L, z∥ > r, then from (2.3), we have
∥yn0 − L, z∥ = ∥xn0 − L, z∥ − r < r + ε− r = ε,

that is,
n0 ∈ {n ∈ N : ∥yn − L, z∥ < ε},

for every z ∈ X.
Since δ(A) ̸= 0, by the inclusion (2.4), we have

δ{n ∈ N : ∥yn − L, z∥ < ε} ̸= 0,

for every z ∈ X.
Sufficiency: Assume that L ∈ Γ2

y and fix ε > 0. Then, we have
δ{n ∈ N : ∥yn − L, z∥ < ε} ̸= 0,

for every z ∈ X. Now, we let
m ∈ {n ∈ N : ∥yn − L, z∥ < ε}

and so, we can write
∥xm − L, z∥ ≤ ∥xm − ym, z∥+ ∥ym − L, z∥ < r + ε,

for every z ∈ X. Therefore, we have
m ∈ {n ∈ N : ∥xn − L, z∥ < r + ε}

and so, for every z ∈ X

{n ∈ N : ∥yn − L, z∥ < ε} ⊆ {n ∈ N : ∥xn − L, z∥ < r + ε}
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holds. From this inclusion, we have
δ({n ∈ N : ∥xn − L, z∥ < r + ε}) ̸= 0.

The following theorem presents a simple way to find the set r-Γ2
x

Theorem 2.4.
r − Γ2

x =
⋃

c∈Γ2
x

Br(c), (2.5)

where Br(c) := {y ∈ X : ∥y − c, z∥ ≤ r}, for every z ∈ X.

Proof. Let λ ∈
⋃

c∈Γ2
x

Br(c). Then, there exists a vector c ∈ Γ2
x such that λ ∈ Br(c), that

is, ∥c− λ, z∥ ≤ r, for every z ∈ X. Fix ε > 0. Since c ∈ Γ2
x, there exists a set

A(ε) := {n ∈ N : ∥xn − c, z∥ < ε}
with δ(A(ε)) ̸= 0. Hence, we have

∥xn − λ, z∥ ≤ ∥xn − c, z∥+ ∥c− λ, z∥ < ε+ r,

and so,
δ({n ∈ N : ∥xn − λ, z∥ < ε+ r}) ̸= 0,

for every n ∈ A(ε) and every z ∈ X. Therefore, λ ∈ r-Γ2
x and so,⋃

c∈Γ2
x

Br(c) ⊂ r − Γ2
x.

For the converse inclusion, take λ ∈ r-Γ2
x. Then, we have

δ({n ∈ N : ∥xn − λ, z∥ < ε+ r}) ̸= 0, (2.6)
for every ε > 0 and every z ∈ X. We must show that λ ∈

⋃
c∈Γ2

x

Br(c). Suppose that this

is not satisfied. Then, it is clear that λ ̸∈ Br(c), that is, ∥λ− c, z∥ > r, for every c ∈ Γ2
x

and every z ∈ X. Since the set Γ2
x is closed, there exists a vector c̃ ∈ Γ2

x such that
∥λ− c̃, z∥ = min{∥λ− c, z∥ : c ∈ Γ2

x}.
We can write k := ∥λ− c̃, z∥ > r, because ∥λ− c, z∥ > r, for all c ∈ Γ2

x and every z ∈ X.
Define ε̃ := k−r

3 . Then, we get
X\Bε̃(Γ

2
x) ⊇ {y ∈ X : ∥λ− y, z∥ < ε̃+ r}, (2.7)

for every z ∈ X, where
Bε̃(Γ

2
x) = {y ∈ X : min{∥y − c, z∥ : c ∈ Γ2

x} < ε̃}.
By definition of Γ2

x we can say that the set
{n : xn ̸∈ Bε̃(Γ

2
x)}

has density zero. Then, by the inclusion (2.7), we have
{n : xn ̸∈ Bε̃(Γ

2
x)} ⊇ {n : ∥xn − λ, z∥ < ε̃+ r, } (2.8)

for every z ∈ X. Thus, from the inclusion (2.8), for every z ∈ X we have that the set
{n : ∥xn − λ, z∥ < ε̃+ r}
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has natural density zero, which contradicts to (2.6) and so,

r − Γ2
x ⊂

⋃
c∈Γ2

x

Br(c).

Hence, we have
r − Γ2

x =
⋃

c∈Γ2
x

Br(c).

Now, we present an ordinary statistical convergence criterion associated with the set
r-Γ2

x.

Theorem 2.5. The sequence x = (xn) in X is statistically convergent if and only if

r − Γ2
x = st− LIMr

2x.

Proof. Necessity. Assume that the sequence x = (xn) statistically convergent to L. Then,
we have Γ2

x = {L}. By Theorem 2.4, we can write r-Γ2
x = Br(L). Therefore, from [[29],

Theorem 2.7], we get
r − Γ2

x = Br(L) = st− LIMr
2x.

Sufficiency. By Theorem 2.4 and [[29], Theorem 2.9(ii)], we have⋃
c∈Γ2

x

Br(c) =
⋂

c∈Γ2
x

Br(c). (2.9)

The equality (2.9) is valid if and only if, either the set Γ2
x is empty or it is a singleton.

Since
st− LIMr

2x =
⋂

c∈Γ2
x

Br(c) = Br(L)

(see [[29], Theorem 2.7]), we have st− lim
n→∞

xn = L.

We note that in Theorem 2.5, the sequence x = (xn) need not be statistically convergent
in order that the inclusion

r − Γ2
x ⊆ st− LIMr

2x

holds, but this sequence must be statistically convergent in order that the converse inclu-
sion holds.

Definition 2.6. Ler r ≥ 0. The vector γ in 2-normed space X is called the rough
statistical limit point of the sequence x = (xn) in X, provided that there is a nonthin
subsequence (xnk

) of (xn) such that for every ε > 0 there exists a number k0 = k0(ε) ∈ N
with

∥xnk
− γ, z∥ < r + ε,

for every z ∈ X and all k ≥ k0. We denote the set of all rough statistical limit points the
sequence x = (xn) by r-Λ2

x.

Now we present a result which characterizes the set r-Λ2
x. The proof is immediate by

definitions.
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Proposition 2.7. We have γ ∈ r-Λ2
x if and only if there exists a nonthin subsequence

(xnk
) of (xn) such that

lim sup
k→∞

∥xnk
− γ, z∥ ≤ r,

for every z ∈ X.

Theorem 2.8. Let x = (xn) be a sequence in 2-normed space X. Then we have

r − Λ2
x ⊆ r − Γ2

x.

Proof. The proof of the theorem above is similar to that of [[33], Proposition 1].
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