Thai Journal of **Math**ematics Volume 20 Number 3 (2022) Pages 1411–1418

http://thaijmath.in.cmu.ac.th

Some Results on Generalized Frames

Javad Baradaran¹*, Zahra Ghorbani²

¹ Department of Mathematics, Jahrom University, P. O. Box 74135111, Jahrom, Iran e-mail : baradaran@jahromu.ac.ir
² Department of Mathematics, Jahrom University, P. O. Box 74135111, Jahrom, Iran

e-mail :ghorbani@jahromu.ac.ir

Abstract The concept of a generalized frame or simply a g-frame in a Hilbert space H was introduced by Wenchang Sun in [4]. Given a g-frame $\{\Lambda_i\}_{i \in I}$ in a Hilbert space H and a bounded operator T on H, we show that the sequence $\{\Lambda_i T\}_{i \in I}$ is a g-frame for H if and only if T is invertiable on H. Moreover, we prove that add a g-frame to its canonical dual g-frame and the canonical Parseval g-frame are also g-frames. At the end, we provide sufficient conditions under which a subsequence of a g-frame in a Hilbert space H is itself a g-frame for H.

MSC: 41A58; 42C15 Keywords: frame; g-frame; g-frame operator; isometry

Submission date: 13.02.2019 / Acceptance date: 17.06.2020

1. INTRODUCTION

Frames were first introduced in 1952 by Duffin and Schaeffer [1, 2]. Today, frames play important roles in several applications in mathematics, science and engineering. Frames are an extension of bases in Hilbert spaces. In fact, a frame is a sequence $\{f_k\}_{k=1}^{\infty}$ in a Hilbert space H which allows every element $f \in H$ can be written as: $f = \sum_{k=1}^{\infty} c_k(f) f_k$, whereas the coefficients $c_k(f)$ are not unique [3]. The notion of a generalized frame or simply a g-frame for a Hilbert space H was first defined by Wenchang Sun in his work [4]. Afterwards, some generalizations of frames have been attracted much more attentions. In what follows: In section 1, it is reviewed preliminaries from operator theory and frame theory which needed in the sequel. In section 2, for a given g-frame $\{\Lambda_i\}_{i\in I}$ in a Hilbert space H and a bounded operator T on H, we show that the sequence $\{\Lambda_i T\}_{i \in I}$ is a g-frame for H if and only if T is invertiable on H. Also, we conclude that add a g-frame to its canonical dual g-frame and the canonical Parseval g-frame are g-frames. Moreover, some results on g-frames are derived. Throughout the paper, H and K denote two separable Hilbert spaces over $\mathbb{F}(\mathbb{R} \text{ or } \mathbb{C})$ and $\{H_i\}_{i \in I}$ denotes a sequence of closed subspaces of K, where I is a subset of positive integers. As usual, B(H,K) consists of all bounded operators from H to K and B(H) is abbreviated for H = K. The next definition can be seen in any context on operators (for example, see [5]).

^{*}Corresponding author.

Definition 1.1. An operator $T \in B(H)$ is said to be an isometry if for all $h \in H$; ||Th|| = ||h||. It is a partial isometry if it is an isometry on the orthogonal complement of its kernel.

Recall that an operator in B(H) is called a co-isometry whenever its adjoint is an isometry. A unitary operator defines as a linear transformation which is a surjective isometry.

Lemma 1.2 ([6]). Let $U \in B(K, H)$ be a bounded operator. Then the following holds:

- (i) $||U|| = ||U^*||$, and $||UU^*|| = ||U||^2$.
- (ii) R_U is closed in H if and only if R_{U^*} is closed in K.
- (iii) U is surjective if and only if there exists a constant C > 0 such that

$$||U^*h|| \ge C||h||, \ \forall h \in H, i.e., \ U^* \ is \ bounded \ below.$$

Definition 1.3. A frame for a Hilbert space H is a family of vectors $F = \{f_i\}_{i \in I}$ in H such that there exist constants A and B > 0 satisfying:

$$A||f||^2 \le \sum_{i \in I} |\langle f, f_i \rangle|^2 \le B||f||^2, \quad \forall f \in H.$$

The constants A and B are called lower and upper frame bounds, respectively. Those are not unique. If only the right-hand inequality is assumed, then it is called a B-Bessel sequence. If A = B, it is said to be an A-tight frame for H.

For a Bessel sequence $F = \{f_i\}_{i \in I}$ in H the synthesis (pre-frame) operator is defined by

$$T: l^2(I) \longrightarrow H, \qquad T(\{c_i\}) = \sum_{i \in I} c_i f_i.$$

The analysis operator T^* for F is given by $T^*f = \{ \langle f, f_i \rangle \}_{i \in I}$, for all $f \in H$. The frame operator is $S = TT^*$ and it satisfies: $S_F f = \sum_{i \in I} \langle f, f_i \rangle f_i$, $\forall f \in H$.

It is a known fact that if $F = \{f_i\}_{i \in I}$ is an A-tight frame for H with the frame operator S, then S = AI and so we obtain

$$f = \frac{1}{A} \sum_{i \in I} \langle f, f_i \rangle f_i, \quad \forall f \in H.$$

Definition 1.4. A family $\{\Lambda_i\}_{i \in I} \subset B(H, H_i)$ is called a *g*-frame for *H* with respect to $\{H_i\}_{i \in I}$ if there exist positive constants *A* and *B* such that

$$A||f||^{2} \leq \sum_{i \in I} ||\Lambda_{i}f||^{2} \leq B||f||^{2}, \ \forall f \in H.$$
(1.1)

The constants A and B are called lower and upper g-frame bounds, respectively. If A = B, it is said to be an A-tight g-frame. A Parseval g-frame is a A-tight g-frame whenever A = 1. The family $\{\Lambda_i\}_{i \in I}$ is called a g-Bessel sequence with g-Bessel bound B if only the right-hand inequality (1.1) is satisfied. We define the following set for the family $\{\Lambda_i\}_{\in I} \subset B(H, H_i)$ as follows:

$$(\sum_{i\in I} \oplus H_i)_{l^2} = \{\{g_i\}_{i\in I} : g_i \in H_i, \ \sum_{i\in I} ||g_i||^2 < \infty\},\$$

with the inner product given by $\langle \{f_i\}, \{g_i\} \rangle = \sum_{i \in I} \langle f_i, g_i \rangle$. It is well-known that $(\sum_{i \in I} \oplus H_i)_{l^2}$ is a Hilbert space with respect to the pointwise operations. It is shown

in [7] that if $\{\Lambda_i\}_{i \in I} \subset B(H, H_i)$ is a g-Bessel sequence for H, then the linear operator $T : (\sum_{i \in I} \oplus H_i)_{l^2} \longrightarrow H$ defined by

$$T(\{g_i\}) = \sum_{i \in I} \Lambda_i^* g_i, \ \forall g_i \in H_i,$$

is well-defined and bounded. Also, its adjoint operator is $T^*(f) = \{\Lambda_i f\}_{i \in I}, \forall f \in H$. The operators T and T^* are called the synthesis and the analysis operators of $\{\Lambda_i\}_{i \in I}$, respectively.

Lemma 1.5 ([4]). The family $\{\Lambda_i \in B(H, H_i) : i \in I\}$ is a g-frame for H if and only if T is a well-defined bounded and surjective operator.

Also, the next proposition can be seen in [4].

Proposition 1.6. Let $\{\Lambda_i\}_{i \in I} \subset B(H, H_i)$ be a g-Bessel sequence for H. Then, the operator S defined by

$$S: H \longrightarrow H, \ Sf = \sum_{i \in I} \Lambda_i^* \Lambda_i f, \ \forall \ f \in H,$$

is a positive and bounded operator.

Clearly, we obtain $\langle Sf, f \rangle = \sum_{i \in I} ||\Lambda_i f||^2$, $\forall f \in H$. From this, we can conclude that a g-Bessel sequence $\{\Lambda_i\}_{i \in I}$ is a g-frame for H if and only if S is invertible. This proposition implies that every $f \in H$ can be written as:

$$f = SS^{-1}f = \sum_{i \in I} \Lambda_i^* \Lambda_i S^{-1}f$$

and

$$f = S^{-1}Sf = \sum_{i \in I} S^{-1}\Lambda_i^*\Lambda_i f.$$

The operator S is called the g-frame operator of $\{\Lambda_i\}_{i \in I}$. It is easy to see that if $\{\Lambda_i\}_{i \in I}$ is a g-Bessel sequence, then S is a well-defined bounded operator. Furthermore $S = TT^*$.

Definition 1.7. Let $\Lambda = {\Lambda_i}_{i \in I}$ be a *g*-frame for *H* with respect to ${H_i}_{i \in I}$. A *g*-Bessel sequence $\Gamma = {\Gamma_i}_{i \in I}$ is called a dual *g*-frame of Λ if $f = \sum_{i \in I} \Lambda_i^* \Gamma_i f$, $\forall f \in H$.

A simple calculation shows that if $\Lambda = \{\Lambda_i\}_{i \in I} \subset B(H, H_i)$ is a g-frame for H with the g-frame operator S, then the sequence $\{\Lambda_i S^{-1}\}_{\in I} \subset B(H, H_i)$ is a dual g-frame of Λ with g-frame operator S^{-1} . The family $\{\Lambda_i S^{-1}\}_{i \in I}$ is called canonical dual g-frame of Λ .

Definition 1.8. A family $\{\Lambda_i\}_{i \in I} \subset B(H, H_i)$ is called a *g*-orthonormal basis for *H* with respect to $\{H_i\}_{i \in I}$ if the following properties hold:

(i) $\langle \Lambda_i^* g_i, \Lambda_j^* g_j \rangle = \delta_{ij} \langle g_i, g_j \rangle, \ \forall i, j \in I, \ \forall g_i \in H_i, g_j \in H_j;$

(ii)
$$\sum_{i \in I} ||\Lambda_i f||^2 = ||f||^2, \quad \forall f \in H.$$

It is clear that every g-orthonormal basis is a Parseval g-frame.

Lemma 1.9 ([8]). Let $\{\Theta_i\}_{i \in I} \subset B(H, H_i)$ be a g-orthonormal basis for H with respect to $\{H_i\}_{i \in I}$. Then, $\{\Lambda_i\}_{i \in I} \subset B(H, H_i)$ is a g-Bessel sequence for H with respect to $\{H_i\}_{i \in I}$ if and only if there exists a unique bounded operator $V : H \longrightarrow H$ such that $\Lambda_i = \Theta_i V^*$, for all $i \in I$.

Remark 1.10 ([8]). Given a g-orthonormal basis $\{\Theta_i\}_{i\in I} \subset B(H, H_i)$, the unique operator V in Lemma 1.9, associated to g-Bessel sequence $\{\Lambda_i\}_{i\in I}$ with the g-frame operator S satisfies: $S = VV^*$. As a result, the synthesis operator T of a g-Bessel sequence $\{\Lambda_i\}_{i\in I}$ and the operator V have similar effects although they are defined in different ways.

2. Main Results

For an operator $T \in B(H)$, in general, add a g-frame $\{\Lambda_i\}_{i \in I}$ to $\{\Lambda_i T\}_{i \in I}$ can go wrong. For example, $\{\Lambda_i T\}_{i \in I} = \{-\Lambda_i\}_{i \in I}$. In this section, for a given g-frame $\{\Lambda_i\}_{i \in I}$ in a Hilbert space H and a bounded operator T on H, we first show that the sequence $\{\Lambda_i T\}_{i \in I}$ is a g-frame for H if and only if T is invertiable on H. Then, it is concluded that add a g-frame to its canonical dual g-frame and also canonical Parseval g-frame are g-frames. At the end, we provide sufficient conditions under what a subsequence of a g-frame for a Hilbert space H is itself a g-frame for H.

Proposition 2.1. Let $\{\Lambda_i\}_{i \in I} \subset B(H, H_i)$ be a g-Bessel sequence for H with the synthesis operator T and $\{\Theta_i\}_{i \in I}$ be a g-orthonormal basis for H with respect to $\{H_i\}_{i \in I}$. Then, the sequence $\{\Lambda_i\}_{i \in I}$ is a Parseval g-frame for H if and only if T is a co-isometry.

Proof. Given g-orthonormal basis $\{\Theta_i\}_{i \in I}$ for H, by Lemma 1.9, $\Lambda_i = \Theta_i T^*, \forall i \in I$. Thus, we have

$$\sum_{i \in I} ||\Lambda_i f||^2 = \sum_{i \in I} ||\Theta_i T^* f||^2 = ||T^* f||^2, \quad \forall f \in H.$$
(2.1)

This equality shows $\{\Lambda_i\}_{i \in I}$ is a Parseval *g*-frame for *H* if and only if $||T^*f||^2 = ||f||^2, \forall f \in H$. That is, if and only if T^* is an isometry.

Proposition 2.2. If $\{\Lambda_i\}_{i \in I} \subset B(H, H_i)$ is a g-frame for H with the g-frame operator S, then the sequence $\{\Lambda_i S^{-\frac{1}{2}}\}_{i \in I}$ is a Parseval g-frame for H with respect to $\{H_i\}_{i \in I}$.

Proof. Because S is a positive and invertible bounded operator, S^{-1} has a unique positive square root $S^{-\frac{1}{2}}$ which is limit of a sequence of polynomials in S^{-1} . Thus it commutes with S^{-1} and S. By definition, for all $f \in H$, we have $Sf = \sum_{i \in I} \Lambda_i^* \Lambda_i f$. Therefore, each $f \in H$ can be written as:

$$\begin{split} f &= S^{-\frac{1}{2}}SS^{-\frac{1}{2}}f = S^{-\frac{1}{2}}(\sum_{i\in I}\Lambda_i^*\Lambda_iS^{-\frac{1}{2}}f) \\ &= \sum_{i\in I}S^{-\frac{1}{2}}\Lambda_i^*\Lambda_iS^{-\frac{1}{2}}f. \end{split}$$

Now, by taking the inner product this with f, we obtain

$$\begin{aligned} ||f||^2 &= \langle f, f \rangle = \langle \sum_{i \in I} S^{-\frac{1}{2}} \Lambda_i^* \Lambda_i S^{-\frac{1}{2}} f, f \rangle \\ &= \sum_{i \in I} \langle S^{-\frac{1}{2}} \Lambda_i f, S^{-\frac{1}{2}} \Lambda_i f \rangle = \sum_{i \in I} ||\Lambda_i S^{-\frac{1}{2}} f||^2. \end{aligned}$$

Parseval g-frame $\{\Lambda_i S^{-\frac{1}{2}}\}_{i \in I}$ is called the canonical Parseval g-frame of $\{\Lambda_i\}_{i \in I}$. The next result generalizes a known result on frames in [6] to the situation of g-frames. **Proposition 2.3.** If $\{\Lambda_i\}_{i \in I} \subset B(H, H_i)$ is a g-frame for a Hilbert space H with the frame operator S, then for any $f \in H$, we have

(i)
$$\|\sum_{i \in I} \Lambda_i^* \Lambda_i f\|^2 \le \|S\| \sum_{i \in I} \|\Lambda_i f\|^2.$$

(ii) $\sum_{i \in I} \|\Lambda_i f\|^2 \le \|S^{-1}\|\| \sum_{i \in I} \Lambda_i^* \Lambda_i f\|^2.$

In particular, both inequalities for Parseval g-frames are equal.

Proof. On the one hand, $||S|| = ||TT^*|| = ||T||^2$, and for every $f \in H$, we have

$$||T^*f||^2 = \sum_{i \in I} ||\Lambda_i f||^2 \quad and \quad ||Sf||^2 = ||\sum_{i \in I} \Lambda_i^* \Lambda_i f||^2.$$
(2.2)

We now substitute (2.2) in the following inequality:

$$|Sf||^{2} = ||TT^{*}f||^{2} \le ||T||^{2}||T^{*}f||^{2} = ||S||||T^{*}f||^{2}$$

This concludes (i). To do (ii), for any $f \in H$, we can write

$$||T^*f||^2 = < T^*f, \ T^*f > = < Sf, \ f > \le ||Sf||||f||.$$

On the other hand, we obtain

$$\begin{split} ||Sf||||f|| &= ||Sf||||S^{-1}Sf|| \\ &\leq ||Sf||||S^{-1}|||Sf|| = ||S^{-1}||||Sf||^2. \end{split}$$

Therefore, it yields that

$$||T^*f||^2 \le ||S^{-1}||||Sf||^2, \ \forall f \in H.$$

Again, similar to (i) if we substitute the relations (2.2) in this inequality, it gets the conclusion.

Let us prove a simple lemma on operators. It uses in the sequel. (for example, see [9]).

Lemma 2.4. If $T \in B(H)$ is a positive, self-adjoint operator, then I + T is an invertible bounded operator on H.

Proof. Because T is self-adjoint, for every $h \in H$, we obtain

$$||(I+T)h||^{2} = ||h||^{2} + 2 < Th, h > + ||Th||^{2}.$$

But all the terms in the middle of this relation are nonnegative, hence for all $h \in H$, we get $||(I+T)h|| \ge ||h||$. That is, I+T is bounded below, so (I+T) is injective and $(I+T)^* = I+T$ is surjective. Furthermore, $||(I+T)h|| \ge ||h||$ implies that for all $h \in H$,

$$||(I+T)^{-1}h|| \le ||(I+T)(I+T)^{-1}h|| = ||h||$$

Therefore, I + T is invertible in B(H).

It is well-known that if $\{f_i\}_{i \in I}$ is a frame for a Hilbert space H and $T \in B(H)$, then the sequence $\{Tf_i\}_{i \in I}$ is a frame for H if and only if T is invertible on H (see [10]). The next theorem generalizes this fact to the situation of g-frames.

Theorem 2.5. Let $\{\Lambda_i\}_{i\in I} \subset B(H, H_i)$ be a g-frame for H with bounds A, B and $T \in B(H)$. Then, $\{\Lambda_i T\}_{i\in I}$ is a g-frame for H if and only if T is invertible on H. In this case, the g-frame operator is T^*ST , where S is the g-frame operator of $\{\Lambda_i\}_{i\in I}$.

-

Proof. We first prove necessary condition. Suppose T is invertible on H. On the one hand, since $\{\Lambda_i\}_{i \in I}$ is a g-frame for H, hence we have

$$\sum_{i \in I} ||\Lambda_i Th||^2 \le B||Th||^2 \le B||T||^2||h||^2, \ \forall h \in H.$$

On the other hand, since T^* is bounded below, by Lemma 1.2, we get

$$\sum_{i \in I} ||\Lambda_i T h||^2 \ge A ||T^* h||^2 \ge A ||T^{-1}||^2 ||h||^2, \forall h \in H.$$

Therefore, these relations imply that $\{\Lambda_i T\}_{i \in I}$ is a g-frame for H with respect to $\{H_i\}_{i \in I}$. In contrast, if $\{\Lambda_i T\}_{i \in I}$ is a g-frame for H, then by Proposition 1.6, its g-frame operator, saying U is invertible and we obtain

$$Uh = \sum_{i \in I} (\Lambda_i T)^* (\Lambda_i T)h = \sum_{i \in I} T^* \Lambda_i^* \Lambda_i Th$$
$$= T^* (\sum_{i \in I} \Lambda_i^* \Lambda_i Th) = T^* STh, \ \forall h \in H.$$

That is, $U = T^*ST$. Since U and S are invertible, it yields that T is invertible on H.

Corollary 2.6. Let $\{\Lambda_i\}_{i\in I} \subset B(H, H_i)$ be a g-frame for H and $T \in B(H)$. Then, the sequence $\{\Lambda_i + \Lambda_i T\}_{i\in I}$ is a g-frame for H if and only if I + T is invertible on H.

In this case, the g-frame operator is $(I+T)S(I+T)^*$, where S is the g-frame operator of $\{\Lambda_i\}_{i\in I}$. In particular, if T is positive, then $\{\Lambda_i + \Lambda_i T\}_{i\in I}$ is a g-frame with the g-frame operator S + ST + TS + TST.

Corollary 2.7. If $\{\Lambda_i\}_{i\in I} \subset B(H, H_i)$ is a g-frame for H with the g-frame operator S, then for all $\alpha \in \mathbb{R}$, the sequence $\{\Lambda_i + \Lambda_i S^{\alpha}\}_{i\in I}$ is a g-frame for H with g-frame operator $(I + S^{\alpha})^2 S$. Specially, $\{\Lambda_i + \Lambda_i S\}_{i\in I}$, $\{\Lambda_i + \Lambda_i S^{-1}\}_{i\in I}$, and $\{\Lambda_i + \Lambda_i S^{-\frac{1}{2}}\}_{i\in I}$ (i.e., the sum of a g-frame with its canonical dual g-frame and canonical Parseval g-frame)are g-frames.

Corollary 2.8. If $\{\Lambda_i\}_{i \in I} \subset B(H, H_i)$ is a g-frame for H and $P \in B(H)$ is an idempotent, then $\{\Lambda_i + \Lambda_i P\}_{i \in I}$ is a g-frame for H with respect to $\{H_i\}_{i \in I}$.

Corollary 2.9. Suppose that $\{\Lambda_i\}_{i \in I} \subset B(H, H_i)$ is a g-frame and $T \in B(H)$ is an isometry. Then, $\{\Lambda_i T\}_{i \in I}$ is a g-frame for H with respect to $\{H_i\}_{i \in I}$.

Example 2.10. Let $\{e_i\}_{i \in I}$ be an orthonormal basis for a separable Hilbert space H. For any $f \in H$, we define operators $\Lambda_i : H \longrightarrow H$ as follows:

$$\Lambda_i(f) = \begin{cases} 0, & i = 2k \\ \langle f, e_i \rangle e_i, & i = 2k + \end{cases}$$

We have $\sum_{i \in I} ||\Lambda_i f||^2 = ||f||^2$, $\forall f \in H$. Hence, the sequence $\{\Lambda_i\}_{i \in I}$ is a g-frame for H, but the subsequence $\{\Lambda_{2k}\}_{k \in I}$ is not a g-frame for H.

The next result provide sufficient conditions under which a subsequence of a g-frame is itself a g-frame.

Theorem 2.11. Assume that $\{\Lambda_i\}_{i \in I}$ is a g-frame for H with respect to $\{H_i\}_{i \in I}$ with g-frame bounds A, B. If $J \subset I$ and for some $0 < C_J < A$, we have

$$\sum_{i \in J^c} ||\Lambda_i f||^2 \le C_J ||f||^2, \quad \forall f \in H.$$

Then, the sequence $\{\Lambda_i\}_{i \in J}$ is a g-frame for H as well.

Proof. It is enough to satisfy the lower condition g-frame. In other words, for any $f \in H$, we get

$$\sum_{i \in J} ||\Lambda_i f||^2 = \sum_{i \in I} ||\Lambda_i f||^2 - \sum_{i \in J^c} ||\Lambda_i f||^2$$

$$\geq A||f||^2 - C_J||f||^2 = (A - C_J)||f||^2.$$

Therefore, $(A - C_J)$ is a lower g-frame bound and the proof is complete.

Corollary 2.12. Suppose that $\{\Lambda_i\}_{i \in I}$ is a Parseval g-frame for H and $J \subset I$. Then, $\{\Lambda_i\}_{i \in J}$ is a g-frame for H if and only if $C_J < 1$.

Proof. Since $\{\Lambda_i\}_{i \in I}$ is a Parseval g-frame, for any $f \in H$, we obtain

$$\begin{split} \sum_{i \in J} ||\Lambda_i f||^2 &= \sum_{i \in I} ||\Lambda_i f||^2 - \sum_{i \in J^c} ||\Lambda_i f||^2 \\ &\geq ||f||^2 - C_J ||f||^2 = (1 - C_J) ||f||^2. \end{split}$$

This shows that $\{\Lambda_i\}_{i \in J}$ is a g-frame for H if and only if $1 - C_J > 0$.

Recall that a maximal partial isometry, either itself or its adjoint is isometry.

Proposition 2.13. If $T \in B(H)$ is a normal maximal partial isometry and $\{\Theta_i\}_{i=1}^{\infty}$ is a g-orthonormal basis for H, then $\{\Theta_i T\}_{i=1}^{\infty}$ is a Parseval g-frame for H.

Proof. Because T is a normal operator, for all $h \in H$, we have $||Th|| = ||T^*h||$. If T^* is isometry, then we get

$$||h||^{2} = ||T^{*}h||^{2} = ||Th||^{2} = \sum_{i=1}^{\infty} ||\Theta_{i}Th||^{2}, \forall h \in H.$$

If T is an isometry, then for all $h \in H$, we have

$$||h||^{2} = ||Th||^{2} = ||T^{*}h||^{2} = \sum_{i=1}^{\infty} ||\Theta_{i}Th||^{2}.$$

Therefore, in each case, it concludes that $\sum_{i=1}^{\infty} ||\Theta_i Th||^2 = ||h||^2$, $\forall h \in H$. That is, $\{\Theta_i T\}_{i=1}^{\infty}$ is a Parseval g-frame for H.

Corollary 2.14. If $T \in B(H)$ is a unitary and $\{\Theta_i\}_{i=1}^{\infty}$ is a g-orthonormal basis for H, then $\{\Theta_i T\}_{i=1}^{\infty}$ is a Parseval g-frame for H.

Proposition 2.15. Let $T \in B(H)$ be an isometry and $\{\Lambda_i\}_{i \in I} \subset B(H, H_i)$ be a g-frame for H with lower and upper bounds A and B, respectively. Then $\{\Lambda_i T\}_{i \in I}$ is a g-frame for H with lower and upper bounds A and $B||T||^2$, respectively.

Proof. For all $h \in H$, we have

$$A||h||^{2} = A||Th||^{2} \le \sum_{i \in I} ||\Lambda_{i}Th||^{2},$$

and

$$\sum_{i \in I} ||\Lambda_i T h||^2 \le B ||T h||^2 \le B ||T||^2 ||h||^2.$$

These relations show that $\{\Lambda_i T\}_{i \in I}$ is a g-frame for H with respect to $\{H_i\}_{i \in I}$.

Acknowledgements

The authors would like to thank referee(s) for their comments on the paper.

References

- P.G. Casazza, The art of frame theory, Taiwanese Journal of Mathematics 4 (2000) 129–201.
- [2] R.J. Duffin, A.C. Schaeffer, A class of nonharmonic Fourier series, Transactions of the American Mathematical Society 72 (1952) 341–366.
- [3] J.R. Holub, On a property of bases in Hilbert spaces, Glasgow Math. J. 46 (2004) 177–180.
- [4] W. Sun, *G*-frames and *g*-Riesz bases, J. Math. Anal. Appl. 322 (2006) 437–452.
- [5] J.B. Conway, A Course in Functional Analysis, Graduate texts in mathematics, second edition, Springer Verlag, New York 1990.
- [6] O. Christensen, Frames and Bases an Introductory Course, Birkhäuser, Boston, 2007.
- [7] A. Najati, M.H. Faroughi, A. Rahimi, G-frames and stability of g-frames in Hilbert spaces, Methods Funct. Anal. Topology. 14 (2008) 271–286.
- [8] X. Guo, Operator characterizations and some properties of g-frames on Hilbert spaces, J. Funct. Spaces. 2013 (2013) 1–9.
- [9] P. Halmos, A Hilbert Space Problem Book, Van norstrand university series in higher mathematics, 1967.
- [10] S. Obeidat, S. Samarah, P.G. Casazza, J.C. Tremain, Sums of Hilbert space frames, J. Math. Anal. Appl. 351 (2009) 579–585.