On the r-Dynamic Chromatic Number of Corona Product of Star Graph

Arika Indah Kristiana ${ }^{1, *}$, Mohammad Imam Utoyo ${ }^{2}$, Dafik Dafik ${ }^{1}$, Ridho Alfarisi ${ }^{3}$ and Eko Waluyo ${ }^{4}$
${ }^{1}$ Department of Mathematics Education, University of Jember, Indonesia
e-mail : arika.fkip@unej.ac.id
${ }^{2}$ Department of Mathematics, Universitas Airlangga, Indonesia
e-mail : m.i.utoyo@fst.unair.ac.id
${ }^{3}$ Department of Primary School, University of Jember, Indonesia
e-mail : alfarisi.fkip@unej.ac.id
${ }^{4}$ Department of Mathematics Education, Islamic University of Zainul Hasan, Indonesia
e-mail : ekowaluyo.inzah.tdm@gmail.com

Abstract

A proper k coloring of graph G such that the neighbors of any vertex $v \in V(G)$ where at least $\min \{r, d(v)\}$ different colors is defined an r-dynamic coloring. The minimum k such that graph G has an r-dynamic k coloring is defined the r-dynamic chromatic number, denoted by $\chi_{r}(G)$. In this paper, we study the r-dynamic chromatic number of corona product of star graph.

MSC: 05C78
Keywords: r-dynamic chromatic number; star graph; corona product

Submission date: 19.01.2018 / Acceptance date: 10.01.2022

1. Introduction

Let $G=(V, E)$ be a simple graph. The degree of v is denoted by $d(v)$ and the neighbor of a vertex $v \in G$, denoted $N(v)$ is all vertices adjacent to v. The maximum degree and minimum degree of graph G are denoted by $\Delta(G)$ and $\delta(G)$. By an r-dynamic coloring of a graph G, we mean a proper k-coloring of graph G such that the neighbors of any vertex v receive at least $\min \{r, d(v)\}$ different colors. The r-dynamic chromatic number of graph G as $\chi_{r}(G)$ which is the minimum k such that graph G has an r-dynamic k-coloring. This concept was introduced by Montgomery [1, 2].

In recent year, Kang et al [3] also found the r-dynamic chromatic number of grid graph. Jahanbekam et al, [4] found χ_{r} on grids and toroidal grids. Taherkhani in [5], introduced two upper bounds for ${ }_{2}(G)(G)$. Kristiana et.al in [6] studied r-dynamic chromatic number of corona product by complete graph. Furthermore, Kristiana et.al [7, 8] studied r dynamic coloring of corona product of graphs.

[^0]Proposition $1.1([1])$. Let $\Delta(G)$ be the maximum degree of graph G. It holds $\chi_{r}(G) \geq$ $\min \{\Delta(G), r\}+1$.
Proposition 1.2 ([7]). Let $S_{n} \odot H$ be a corona product of star graph and $H \neq K_{m}, C_{m}, W_{m}$, for $n \geq 3, m \geq 4$:

$$
\chi_{r}\left(S_{n} \odot H\right) \geq\left\{\begin{array}{l}
\delta(H)+2,1 \leq r \leq \delta(H)+1 \\
r+1, \delta(H)+1 \leq r \leq n+|V(H)| \\
n+|V(H)|+1, r \geq n+|V(H)|+1
\end{array}\right.
$$

Proposition 1.3 ([7]). Let $H \odot S_{m}$ be a corona product of star graph and $H \neq K_{n}, C_{n}, W_{n}$, for $n \geq 4, m \geq 3$:

$$
\chi_{r}\left(H \odot S_{m}\right) \geq\left\{\begin{array}{l}
3, r=1,2 \\
r+1,3 \leq r \leq m+\Delta(H)+1 \\
\Delta(H)+m+2, r \geq m+\Delta(H)+2
\end{array}\right.
$$

The corona product of G and H is the graph $G \odot H$ obtained by taking one copy of G, called the center graph, $|V(G)|$ copies of H, called the outer graph, and making the $i^{t h}$ vertex of G adjacent to every vertex of the $i^{t h}$ copy of H, where $1 \leq i \leq \mid V(G)$ in [9]. The star graph with $n+1$ vertices is a tree graph, In a star graph one vertex has degree n and the remaining n vertices have vertex degree 1 , denoted by $K_{1, n}$. Double star graph is the graph obtained by joining the center of two stars $K_{1, n}$ and $K_{1, m}$ with an edge in [10].

2. Results

In this paper, we determine the r-dynamic chromatic number of corona product of star graph namely $S_{n} \odot P_{m}, S_{n} \odot C_{m}, P_{n} \odot S_{m}$, and $D S_{n} \odot S_{m}$ for $m, n \geq 3$.
Theorem 2.1. Let $S_{n} \odot P_{m}$ be a corona product of star graph and path graph with $n, m \geq 3$, the r-dynamic chromatic number is

$$
\chi_{r}\left(S_{n} \odot P_{m}\right)=\left\{\begin{array}{l}
3, r=1,2 \\
r+1,3 \leq r \leq m+n \\
m+n+1, r \geq m+n+1
\end{array}\right.
$$

Proof. The vertex set $V\left(S_{n} \odot P_{m}\right)=\{x\} \cup\left\{x_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i j} ; 1 \leq i \leq n, 1 \leq j \leq\right.$ $m\} \cup\left\{y_{j} ; 1 \leq j \leq m\right\}$ and $\left|V\left(S_{n} \odot P_{m}\right)\right|=m n+m+n+1$. Thus, the maximum and minimum degrees of $S_{n} \odot P_{m}$, respectively are $\Delta\left(S_{n} \odot P_{m}\right)=m+n$ and $\delta\left(S_{n} \odot P_{m}\right)=2$. We divide into three cases for the proof as follows.
Case 1. For $r=1,2$
Based on Proposition 2, the lower bound $\chi_{r}\left(S_{n} \odot P_{m}\right) \geq \delta\left(P_{m}\right)+2=1+2=3$. We show that $\chi_{r}\left(S_{n} \odot P_{m}\right) \leq 3$, it can be explained that the central vertex of the star graph is colored 1 , according to the definition of proper vertex coloring then the other vertices on the star graph are colored 2. Based on the corona product, the path graph is colored $1,3,1,3, \ldots, 1,3$. Hence, there are 3 color for $r=1,2$.
Case 2. For $3 \leq r \leq m+n$
Based on Proposition 2, the lower bound $\chi_{r}\left(S_{n} \odot P_{m}\right) \geq r+1$. We show that $\chi_{r}\left(S_{n} \odot\right.$ $\left.P_{m}\right) \leq r+1$, it can be explained that Identical to case 1, the color of path graph is moving corresponds to r with $3 \leq r \leq m+n$.
Case 3. For $r \geq m+n+1$
Based on Proposition 2, the lower bound $\chi_{r}\left(S_{n} \odot P_{m}\right) \geq m+n+1$. We show that

Figure 1. The r-dynamic chromatic number, (a) $\chi_{3}\left(S_{6} \odot P_{4}\right)=4$ (b) $\chi_{4}\left(S_{6} \odot P_{4}\right)=5$
$\chi_{r}\left(S_{n} \odot P_{m}\right) \leq m+n+1$, define $c: V\left(S_{n} \odot P_{m}\right) \rightarrow\{1,2, \cdots, k\}$ where $n, m \geq 3$, as follows:

$$
\begin{aligned}
& c(x)=1 \\
& c\left(x_{i}\right)=1+n, 1 \leq i \leq n \\
& c\left(x_{i j}\right)=1+n+j, 1 \leq i \leq n, 1 \leq j \leq m \\
& c\left(y_{j}\right)=1+n+j, 1 \leq j \leq m
\end{aligned}
$$

It appears that c is a map $c: V\left(S_{n} \odot P_{m}\right) \rightarrow\{1,2, \ldots, 1+n+m\}$. Hence, the upper bound of the r-dynamic chromatic number of $S_{n} \odot P_{m}$ is $\chi_{r}\left(S_{n} \odot P_{m}\right) \leq m+n+1$. It gives $\chi_{r}\left(S_{n} \odot P_{m}\right)=m+n+1$. The Figure 1 is the illustration of r-dynamic chromatic number of $S_{6} \odot P_{4}$. The proof is completed.

Theorem 2.2. Let $S_{n} \odot C_{m}$ be a corona product of star graph and cycle graph with $n, m \geq 3$, the r-dynamic chromatic number of $S_{n} \odot C_{m}$ is

$$
\begin{aligned}
& \chi_{r=1,2}\left(S_{n} \odot C_{m}\right)=\left\{\begin{array}{l}
3, m, \text { even } \\
4, m, \text { odd }
\end{array}\right. \\
& \chi_{r=3}\left(S_{n} \odot C_{m}\right)=\left\{\begin{array}{l}
4, m=3 k, k \geq 1 \\
6, m=5 \\
5, m \text { else }
\end{array}\right. \\
& \chi_{r \geq 4}\left(S_{n} \odot C_{m}\right)=\left\{\begin{array}{l}
6, r=4, m=4 \\
r+1,4 \leq r \leq m+n \\
m+n+1, r \geq m+n+1
\end{array}\right.
\end{aligned}
$$

Proof . The vertex set $V\left(S_{n} \odot C_{m}\right)=\{x\} \cup\left\{x_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i j} ; 1 \leq i \leq n, 1 \leq j \leq\right.$ $m\} \cup\left\{y_{j} ; 1 \leq j \leq m\right\}$ and the edge set $E\left(S_{n} \odot C_{m}\right)=\left\{x x_{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i} x_{i j} ; 1 \leq\right.$ $i \leq n, 1 \leq j \leq m\} \cup\left\{x y_{i} ; 1 \leq i \leq n\right\} \cup\left\{y_{j} y_{j+1} ; 1 \leq j \leq m-1\right\} \cup\left\{x_{i j} x_{i(j+1)} ; 1 \leq i \leq\right.$
$n, 1 \leq j \leq m-1\} \cup\left\{y_{1} y_{m}\right\} \cup\left\{x_{i 1} x_{i m}\right\}$. The cardinality of vertex set and edge set, respectively are $\left|V\left(S_{n} \odot C_{m}\right)\right|=m n+m+n+1$ and $\left|E\left(S_{n} \odot C_{m}\right)\right|=2 m n+2 m+1$. Thus, $\Delta\left(S_{n} \odot C_{m}\right)=m+n$. We divide into some cases for the proof as follows.
Case 1. For $r=1,2$ and m is even
Based on Proposition 1, the lower bound $\chi_{r}\left(S_{n} \odot C_{m}\right) \geq \min \{\Delta, r\}+1=2+1=3$. To obtain the upper bound $\chi_{r}\left(S_{n} \odot C_{m}\right)$, define $c_{1}: V\left(S_{n} \odot C_{m}\right) \rightarrow\{1,2, \cdots, k\}$ where $n, m \geq 3$, as follows.

$$
\begin{aligned}
& c_{1}(x)=1 \\
& c_{1}\left(x_{i}\right)=2,1 \leq i \leq n \\
& c_{1}\left(x_{i j}\right)= \begin{cases}1, & \text { for } j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m \\
3, & \text { for } j \text { even, } 1 \leq i \leq n, 1 \leq j \leq m\end{cases} \\
& c_{1}\left(y_{j}\right)= \begin{cases}2, & \text { for } j \text { is odd, } 1 \leq j \leq m \\
3, & \text { for } j \text { is even, } 1 \leq j \leq m .\end{cases}
\end{aligned}
$$

It appears that c_{1} is a map $c_{1}: V\left(S_{n} \odot C_{m}\right) \rightarrow\{1,2,3\}$. Hence, the upper bound of the r-dynamic chromatic number of $S_{n} \odot C_{m}$ is $\chi_{r}\left(S_{n} \odot C_{m}\right) \leq 3$. It gives $\chi_{r=1,2}\left(S_{n} \odot C_{m}\right)=3$. Case 2. For $r=1,2$, and m is odd or $r=3, m \neq 4$ and m is even
Based on Proposition 1, the lower bound $\chi_{r}\left(S_{n} \odot C_{m}\right) \geq \min \{\Delta, r\}+1=2+1=3$. It appears $\chi_{r}\left(S_{n} \odot C_{m}\right) \leq 4$. We obtain the upper bound $\chi_{r}\left(S_{n} \odot C_{m}\right)$, define c_{2} : $V\left(S_{n} \odot C_{m}\right) \rightarrow\{1,2, \cdots, k\}$ where $n, m \geq 3$, as follows.

$$
\begin{aligned}
& c_{2}(x)=1 \\
& c_{2}\left(x_{i}\right)=2,1 \leq i \leq n \\
& c_{2}\left(x_{i j}\right)= \begin{cases}1, & \text { for } j \text { odd, } 1 \leq i \leq n, 1 \leq j \leq m-1 \\
3, & \text { for } j \text { even, } 1 \leq i \leq n, 1 \leq j \leq m \\
4, & \text { for } j=m\end{cases} \\
& c_{2}\left(y_{j}\right)= \begin{cases}2, & \text { for } j \text { is odd, } 1 \leq j \leq m-1 \\
3, & \text { for } j \text { is even, } 1 \leq j \leq m \\
4, & \text { for } j=m\end{cases}
\end{aligned}
$$

It appears that c_{2} is a map $c_{2}: V\left(S_{n} \odot C_{m}\right) \rightarrow\{1,2,3,4\}$. Hence, the upper bound of the r-dynamic chromatic number of $S_{n} \odot C_{m}$ is $\chi_{r}\left(S_{n} \odot C_{m}\right) \leq 4$. It gives $\chi_{r=1,2}\left(S_{n} \odot C_{m}\right)=4$.
Case 3. For $r=3$ and $m=3 k, k \geq 1$
Based on Proposition 1, the lower bound $\chi_{r}\left(S_{n} \odot C_{m}\right) \geq \min \{\Delta, r\}+1=3+1=4$. It appears $\chi_{r}\left(S_{n} \odot C_{m}\right) \leq 4$. We obtain the upper bound $\chi_{r}\left(S_{n} \odot C_{m}\right)$, define c_{3} : $V\left(S_{n} \odot C_{m}\right) \rightarrow\{1,2, \cdots, k\}$ where $n, m \geq 3$, as follows.

$$
\begin{aligned}
& c_{3}(x)=1 \\
& c_{3}\left(x_{i}\right)=2,1 \leq i \leq n \\
& c_{3}\left(x_{i j}\right)=\left\{\begin{array}{lll}
1, & \text { for } j \equiv 1 \quad \bmod (3), 1 \leq j \leq m, & 1 \leq i \leq n \\
3, & \text { for } j \equiv 2 & \bmod (3), 1 \leq j \leq m, \\
4, & \text { for } j \equiv 0 & \bmod (3), 1 \leq j \leq m
\end{array}\right. \\
& c_{3}\left(y_{j}\right)=\left\{\begin{array}{lll}
2, & \text { for } j \equiv 1 & \bmod (3), 1 \leq j \leq m \\
3, & \text { for } j \equiv 2 & \bmod (3), 1 \leq j \leq m \\
4, & \text { for } j \equiv 0 & \bmod (3), 1 \leq j \leq m
\end{array}\right.
\end{aligned}
$$

It appears that c_{3} is a map $c_{3}: V\left(S_{n} \odot C_{m}\right) \rightarrow\{1,2,3,4\}$. Hence, the upper bound of the r-dynamic chromatic number of $S_{n} \odot C_{m}$ is $\chi_{r}\left(S_{n} \odot C_{m}\right) \leq 4$. It gives $\chi_{r}\left(S_{n} \odot C_{m}\right)=4$.

Case 4. For $r=3$ and $m=5$
Based on Proposition 1, the lower bound $\chi_{r}\left(S_{n} \odot C_{m}\right) \geq \min \{\Delta, r\}+1=3+1=4$. It appears $\chi_{r}\left(S_{n} \odot C_{m}\right) \leq 6$. We obtain the upper bound $\chi_{r}\left(S_{n} \odot C_{m}\right)$, define c_{4} : $V\left(S_{n} \odot C_{m}\right) \rightarrow\{1,2, \cdots, k\}$ where $n, m \geq 3$, as follows.

$$
\left.\begin{array}{l}
c_{4}(x)=1 \\
c_{4}\left(x_{i}\right)=2,1 \leq i \leq n \\
c_{4}\left(x_{i j}\right)=\left\{\begin{array}{ll}
1, & \text { for } j=1 \\
j+1, & \text { for } 2 \leq j \leq 5,
\end{array} 1 \leq i \leq n\right.
\end{array}\right\} \begin{array}{ll}
2, & \text { for } j=1 \\
j+1, & \text { for } 2 \leq j \leq 5
\end{array} c_{4}\left(y_{j}\right)=\left\{\begin{array}{l}
\text { a }
\end{array}\right.
$$

It appears that c_{4} is a map $c_{4}: V\left(S_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots, 6\}$. Hence, the upper bound of the r-dynamic chromatic number of $S_{n} \odot C_{m}$ is $\chi_{r}\left(S_{n} \odot C_{m}\right) \leq 6$. It gives $\chi_{r}\left(S_{n} \odot C_{m}\right)=6$.
Case 5. For $r \geq m+n+1$
Based on Proposition 1, the lower bound $\chi_{r}\left(S_{n} \odot C_{m}\right) \geq \min \{\Delta, r\}+1=m+n+1$. It appears $\chi_{r}\left(S_{n} \odot C_{m}\right) \leq m+n+1$. We obtain the upper bound $\chi_{r}\left(S_{n} \odot C_{m}\right)$, define $c_{5}: V\left(S_{n} \odot C_{m}\right) \rightarrow\{1,2, \cdots, k\}$ where $n, m \geq 3$, as follows.

$$
\begin{aligned}
& c_{5}(x)=1 \\
& c_{5}\left(x_{i}\right)=i+1,1 \leq i \leq n \\
& c_{5}\left(x_{i j}=1+n+j, 1 \leq j \leq m\right. \\
& c_{5}\left(y_{j}\right)=1+n+j, 1 \leq j \leq m
\end{aligned}
$$

It appears that c_{5} is a map $c_{5}: V\left(S_{n} \odot C_{m}\right) \rightarrow\{1,2, \ldots, 1+n+m\}$. Hence, the upper bound of the r-dynamic chromatic number of $S_{n} \odot C_{m}$ is $\chi_{r}\left(S_{n} \odot C_{m}\right) \leq m+n+1$. It gives $\chi_{r}\left(S_{n} \odot C_{m}\right)=m+n+1$. It concludes the proof.
Theorem 2.3. Let $P_{n} \odot S_{m}$ be a corona product of path graph and star graph with $n, m \geq 3$, the r-dynamic chromatic number of $P_{n} \odot S_{m}$ is

$$
\chi_{r}\left(P_{n} \odot S_{m}\right)=\left\{\begin{array}{l}
3, r=1,2 \\
r+1,3 \leq r \leq m+3 \\
m+4, r \geq m+4
\end{array}\right.
$$

Proof. The graph $P_{n} \odot S_{m}$ is a connected graph with vertex set, $V\left(P_{n} \odot S_{m}\right)=$ $\left\{x_{i}, y_{i}, y_{i j} ; 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and the order of graph is $\left|V\left(P_{n} \odot S_{m}\right)\right|=m n+2 n$ Thus, $\Delta\left(P_{n} \odot S_{m}\right)=m+3$ and $\delta\left(P_{n} \odot S_{m}\right)=2$. We divide into three cases for the proof as follows.
Case 1. For $r=1,2$ Based on Proposition 3, the lower bound $\chi_{r}\left(P_{n} \odot S_{m}\right) \geq 3$. We obtain the upper bound $\chi_{r}\left(P_{n} \odot S_{m}\right)$, define $c_{6}: V\left(P_{n} \odot S_{m}\right) \rightarrow\{1,2, \cdots, k\}$ where $n, m \geq 3$, as follows

$$
\begin{aligned}
& c_{6}\left(x_{i}\right)= \begin{cases}1, & \text { for } i \text { odd, } 1 \leq i \leq n \\
2, & \text { for } i \text { even, } 1 \leq i \leq n\end{cases} \\
& c_{6}\left(y_{i}\right)= \begin{cases}2, & \text { for } i \text { odd, } 1 \leq i \leq n \\
1, & \text { for } i \text { even, } 1 \leq i \leq n\end{cases} \\
& \quad c_{6}\left(y_{i j}\right)=3,1 \leq i \leq n, 1 \leq j \leq m
\end{aligned}
$$

Figure 2. The 2-dynamic chromatic number of $P_{4} \odot S_{6}$

It appears that c_{6} is a map $c_{6}: V\left(P_{n} \odot S_{m}\right) \rightarrow\{1,2,3\}$. Hence, the upper bound of the r-dynamic chromatic number of $P_{n} \odot S_{m}$ is $\chi_{r}\left(P_{n} \odot S_{m}\right) \leq 3$. It gives $\chi_{r}\left(P_{n} \odot S_{m}\right)=3$.
Case 2. For $3 \leq r \leq m+3$
Based on Proposition 3 we known $\Delta\left(P_{n}\right)=2$ so $\chi_{3 \leq r \leq m+3} \geq r+1$. We obtain the upper bound, we have construction of the pattern as follows.

$$
\begin{aligned}
& n=4, m=3, r=4, \chi_{\mathbf{4}}\left(P_{4} \odot S_{3}\right)=\mathbf{5} \\
& n=4, m=3, r=5, \chi_{\mathbf{5}}\left(P_{4} \odot S_{3}\right)=\mathbf{6} \\
& n=4, m=3, r=6, \chi_{\mathbf{6}}\left(P_{4} \odot S_{3}\right)=\mathbf{7} \\
& n=4, m=5, r=3, \chi_{\mathbf{3}}\left(P_{4} \odot S_{5}\right)=\mathbf{4} \\
& n=4, m=5, r=6, \chi_{\mathbf{6}}\left(P_{4} \odot S_{5}\right)=\mathbf{7} \\
& n=4, m=5, r=7, \chi_{\mathbf{7}}\left(P_{4} \odot S_{5}\right)=\mathbf{8}
\end{aligned}
$$

It concludes that $\chi_{3 \leq r \leq m+3} \leq r+1$.
Case 3. For $r \geq m+4$
Based on Proposition 3, the lower bound $\chi_{r}\left(P_{n} \odot S_{m}\right) \geq m+4$. We obtain the upper bound $\chi_{r}\left(P_{n} \odot S_{m}\right)$, define $c_{7}: V\left(P_{n} \odot S_{m}\right) \rightarrow\{1,2, \cdots, k\}$ where $n, m \geq 3$, as follows.

$$
\begin{aligned}
& c_{7}\left(x_{i}\right)= \begin{cases}1, & \text { for } i \equiv 1(\bmod 3), 1 \leq i \leq n \\
2, & \text { for } i \equiv 2(\bmod 3), 1 \leq i \leq n \\
3, & \text { for } i \equiv 0(\bmod 3), 1 \leq i \leq n\end{cases} \\
& c_{7}\left(y_{i}\right)=4,1 \leq i \leq n \\
& c_{7}\left(y_{i j}\right)=4+j, 1 \leq i \leq n, 1 \leq j \leq m
\end{aligned}
$$

It appears that c_{7} is a map $c_{7}: V\left(P_{n} \odot S_{m}\right) \rightarrow\{1,2, \ldots, m+4\}$. Hence, the upper bound of the r-dynamic chromatic number of $P_{n} \odot S_{m}$ is $\chi_{r}\left(P_{n} \odot S_{m}\right) \leq m+3$. It gives $\chi_{r}\left(P_{n} \odot S_{m}\right)=m+4$. The Figure 2 is the illustration of 2-dynamic chromatic number of $P_{4} \odot S_{6}$. The proof is completed.

Theorem 2.4. Let $D S_{n} \odot S_{m}$ be a corona product of double star graph and star graph with $n, m \geq 3$, the r-dynamic chromatic number of $D S_{n} \odot S_{m}$ is

$$
\chi_{r}\left(D S_{n} \odot S_{m}\right)=\left\{\begin{array}{l}
3, r=1,2 \\
r+1,3 \leq r \leq m+n+2 \\
m+n+3, r \geq m+n+3
\end{array}\right.
$$

Figure 3. The 3-dynamic chromatic number of $D S_{3} \odot S_{4}$

Proof. The graph $D S_{n} \odot S_{m}$ is a connected graph with vertex set, $V\left(D S_{n} \odot S_{m}\right)=$ $\left\{x^{s}, x_{i}^{s}, p^{s}, p_{j}^{s}, y_{i}^{s}, y_{i j}^{s} ; s=1,2 ; 1 \leq i \leq n ; 1 \leq j \leq m\right\}$ and the order of graph is $\mid V\left(D S_{n} \odot\right.$ $\left.S_{m}\right) \mid=2 n m+4 n+2 m+4$. Thus, $\Delta\left(D S_{n} \odot S_{m}\right)=m+n+2$ and $\delta\left(D S_{n} \odot S_{m}\right)=2$. We divide into three cases for the proof as follows.
Case 1. For $r=1,2$
Based on Proposition 3, the lower bound $\chi_{r}\left(D S_{n} \odot S_{m}\right) \geq 3$. We obtain the upper bound $\chi_{r}\left(D S_{n} \odot S_{m}\right)$, define $c_{8}: V\left(D S_{n} \odot S_{m}\right) \rightarrow\{1,2, \cdots, k\}$ where $n, m \geq 3$, as follows.

$$
\begin{aligned}
& c_{8}\left(x_{i}^{s}\right)= \begin{cases}1, & \text { for } s=2, \\
2, & \text { for } s=1 \leq 1 \leq n \\
& 1 \leq i \leq n\end{cases} \\
& c_{8}\left(x^{s}\right)=s, s=1,2 \\
& c_{8}\left(p^{s}\right)=3-s, s=1,2 \\
& c_{8}\left(p_{j}^{s}\right)=3, s=1,2,1 \leq j \leq m \\
& c_{8}\left(y_{i}^{s}\right)=s, s=1,2,1 \leq i \leq n \\
& c_{8}\left(y_{i j}^{s}\right)=3, s=1,2,1 \leq i \leq n, 1 \leq j \leq m
\end{aligned}
$$

It appears that c_{8} is a map $c_{8}: V\left(D S_{n} \odot S_{m}\right) \rightarrow\{1,2,3\}$. Hence, the upper bound of the r-dynamic chromatic number of $D S_{n} \odot S_{m}$ is $\chi_{r}\left(D S_{n} \odot S_{m}\right) \leq 3$. It gives $\chi_{r}\left(D S_{n} \odot S_{m}\right)=$ 3.

Case 2. For $3 \leq r \leq m+n+2$
Based on Proposition 3 we known $\Delta\left(D S_{n}\right)=2$ so $\chi_{3 \leq r \leq m+n+2} \geq r+1$. We obtain the upper bound, we have construction of the pattern as follows.

$$
\begin{gathered}
n=4, m=3, r=4, \chi_{\mathbf{4}}\left(D S_{4} \odot S_{3}\right)=\mathbf{5} \\
n=4, m=3, r=5, \chi_{\mathbf{5}}\left(D S_{4} \odot S_{3}\right)=\mathbf{6} \\
n=4, m=3, r=8, \chi_{\mathbf{8}}\left(D S_{4} \odot S_{3}\right)=\mathbf{9} \\
n=4, m=5, r=3, \chi_{\mathbf{3}}\left(D S_{4} \odot S_{5}\right)=\mathbf{4} \\
n=4, m=5, r=9, \chi_{\mathbf{9}}\left(D S_{4} \odot S_{5}\right)=\mathbf{1 0} \\
n=4, m=5, r=10, \chi_{\mathbf{1 0}}\left(P_{4} \odot S_{5}\right)=\mathbf{1 1}
\end{gathered}
$$

It concludes that $\chi_{3 \leq r \leq m+3} \leq r+1$. The Figure 3 is the illustration of r-dynamic chromatic number of $D S_{3} \odot S_{4}$.
Case 3. For $r \geq m+n+3$
Based on Proposition 3, the lower bound $\chi_{r}\left(D S_{n} \odot S_{m}\right) \geq m+n+3$. We obtain the upper bound $\chi_{r}\left(D S_{n} \odot S_{m}\right)$, define $c_{9}: V\left(D S_{n} \odot S_{m}\right) \rightarrow\{1,2, \cdots, k\}$ where $n, m \geq 3$, as follows.

$$
\begin{aligned}
& c_{9}\left(x^{s}\right)=s, s=1,2 \\
& c_{9}\left(x_{i}^{s}\right)=2+i, s=1,2,1 \leq i \leq n \\
& c_{9}\left(p^{s}\right)=n+m+2, s=1,2 \\
& c_{9}\left(p_{j}^{s}\right)=2+n+j, s=1,2,1 \leq j \leq m \\
& c_{9}\left(y_{i}^{s}\right)=n+m+2, s=1,2,1 \leq i \leq n \\
& c_{9}\left(y_{i j}^{s}\right)=2+n+j, s=1,2,1 \leq i \leq n, 1 \leq j \leq m
\end{aligned}
$$

It appears that c_{9} is a map $c_{9}: V\left(D S_{n} \odot S_{m}\right) \rightarrow\{1,2, \ldots, m+n+3\}$. Hence, the upper bound of the r-dynamic chromatic number of $D S_{n} \odot S_{m}$ is $\chi_{r}\left(D S_{n} \odot S_{m}\right) \leq m+n+3$. It gives $\chi_{r}\left(D S_{n} \odot S_{m}\right)=m+n+3$. The proof is completed.
The Figure 3 is the illustration of 3-dynamic chromatic number of $D S_{3} \odot S_{4}$.

3. Conclusion

We have obtained the exact value of r-dynamic chromatic number of corona product by star graph. Based on result, we have characterized that $\chi_{r}\left(P n \odot S_{m}\right)=\chi_{r}\left(D S_{n} \odot S_{m}\right)=$ $\chi_{r}\left(S_{m}\right)$.

Acknowledgement

We gratefully acknowledge the support from University of Jember, Indonesia 2022.

References

[1] B. Montgomery, Dynamic coloring of graphs (Ph.D Dissertation), West Virginia University, 2001.
[2] S. Akbari, M. Ghanbari, S. Jahanbekam, On the dynamic chromatic number of graphs, Comb and Grapgs, in: Contemp Math - American Mathematical Society 531 (2010) 11-18.
[3] R. Kang, T. Muller, Douglas B. West, On r-dynamic coloring of grids, Discrete Appl. Math. 186 (2015) 286-290
[4] S. Jahanbekam, J. Kimb, Suil O, Douglas B. West, On r-dynamic Coloring of Graphs, Discrete Applied Mathematics 206 (2016) 65-72
[5] A. Taherkhani, On r-dynamic chromatic number of graphs, Discrete Appl. Math. 201 (2016) 222-227.
[6] A. I. Kristiana, M.I. Utoyo, Dafik, On the r-dynamic chromatic number of the corronation by complete graph, Journal of Physics: Conference Series, 1008 (2018) 012-033.
[7] A. I. Kristiana, M.I., Utoyo, R. Alfarisi, Dafik, On r-dynamic coloring of the corona product of graphs, Discrete Mathematics, Algorithms and Applications, 12 (02) (2020) 2050019
[8] A. I. Kristiana, M.I. Utoyo, Dafik, The lower bound of the r-dynamic chromatic number of corona product product by wheel graphs, AIP Conference Proceedings, 2014 (2017) 020054
[9] S. Mohan, J. Geetha, K. Somasundaram, Total coloring of the corona product of two graphs, Australasian Journal of Combinatorics, 68(1) (2017) 15-22.
[10] S. P. Jeyakokila and P. Sumathi, A note on soEnergy of Stars, Bistars and Double stars graphs. Bulletin of the international Mathematical Virtual Institute 6 (2016) 105-113.

[^0]: *Corresponding author.

