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Abstract Let G = (V (G), E(G)) be a simple, finite and undirected graph of order p and size q. For

k ≥ 1, a bijection f : V (G) ∪E(G)→ {k, k + 1, k + 2, . . . , k + p + q − 1} such that f(uv) = |f(u)− f(v)|
for every edge uv ∈ E(G) is said to be a k-super graceful labeling of G. We say G is k-super graceful if

it admits a k-super graceful labeling. In this paper, we study the k-super gracefulness of some standard

graphs. Some general properties are obtained. Particularly, we found many sufficient conditions on k-

super gracefulness for many families of (complete) bipartite and tripartite graphs. We show that some of

the conditions are also necessary.
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1. Introduction

Let G = (V (G), E(G)) (or G = (V,E) for short) be a simple, finite and undirected
graph of order |V | = p and size |E| = q. For integers a and b with a ≤ b, let [a, b] be the
set of integers between a and b inclusively. All notation not defined in this paper can be
found in [1]. An injective function f : V → [0, q] is called a graceful labeling of G if all the
edge labels of G given by f(uv) = |f(u) − f(v)| for every uv ∈ E are distinct. In 1967,
Rosa [2] published the conjecture of Kotzig that every nontrivial tree is graceful. Since
then, there have been more than 2000 research papers on graph labelings with hundreds
of graceful related results being published (see the dynamic survey by Gallian [3]).
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Definition 1.1. Given k ≥ 1, a bijection f : V ∪E → [k, k + p+ q − 1] is called a k-super
graceful labeling if f(uv) = |f(u) − f(v)| for every edge uv in G. We say G is k-super
graceful if it admits a k-super graceful labeling.

This is a generalization of super graceful labeling defined in [4, 5]. This was referred
to as a k-sequential labeling in [6] that we are only aware of after the completion of this
paper. For simplicity, 1-super graceful is also known as super graceful. In this paper, we
study the k-super gracefulness of some standard graphs.

2. General Properties

By definition, we have

Theorem 2.1. Let G be a (p, q)-graph with a k-super graceful labeling f . Suppose there
exists vertex ui with f(ui) = p+ q− 1 + 2i for 1 ≤ i ≤ t ≤ bk/2c. Join a new vertex vi to
ui, then G+{v1, . . . , vt} is (k− t)-super graceful if we extend f to f(vi) = k+p+q−1+ i
and f(uivi) = k − i. For t = bk/2c, we can join at most dk/2e − 1 new vertices to
G+ {v1, . . . , vbk/2c} to get new r-super graceful graph for r = dk/2e − 1, dk/2e − 2, . . . , 1
consecutively.

Example 2.2. Take a k-super graceful graph G with k = 10, p+q = 191, t = 5, and that
f(ui) = 190+2i, 1 ≤ i ≤ 5 with f(u5) = k+p+q−1 = 200 being the largest possible label.
We join new vertex vi to ui and extend f with f(vi) = 200 + i and f(uivi) = k − i. Now
G+ {v1, . . . , v5} is 5-super graceful. We can further join new vertices v6 to v2, v7 to v4,
v8 to v6 and v9 to v8 with f(v6) = 206, f(v7) = 207, f(v8) = 208 and f(v9) = 209. After
each addition, the new graph obtained is r-super graceful for r = 4, 3, 2, 1 consecutively.

Theorem 2.3. Let G be a (p, q)-graph with a k-super graceful labeling f . Suppose there
exist vertices ui with (i) f(ui) = k − 1 + i, or (ii) f(ui) = k + p + q − i for 1 ≤ i ≤ k.
Join the vertices u1 and uj by a new edge for j = k, k − 1, . . . , 2 consecutively gives a
(j − 1)-super graceful graph consecutively.

Theorem 2.4. Let k, d ≥ 1. Suppose G is a (p, q)-graph with a vertex v of degree d. If
G admits a k-super graceful labeling f such that f(v) = k + p + q − 1 and incident edge
label(s) set is [k, k + d− 1], then G− v is (k + d)-super graceful.

Given t ≥ 3 paths of length nj ≥ 1 with an end vertex vj,1 (1 ≤ j ≤ t). A spider
graph SP (n1, n2, n3, . . . , nt) is the one-point union of the t paths at vertex vj,1. For

simplicity, we shall use a[n] to denote a sequence of length n in which all items are
a, where a, n ≥ 1. Particularly, SP (1[n]) is also known as a star graph K1,n. Let
V (K1,n) = {vi : 1 ≤ i ≤ n} ∪ {u} and E(K1,n) = {uvi : 1 ≤ i ≤ n}. We shall keep this
notation throughout this paper.

We first consider G − v that contains an isolated vertex. For k = 1, the star K1,d is
such a graph for all possible d ≥ 1 by having edge label(s) set [1, d], end-vertex label(s)
set [d+ 1, 2d] and central vertex label 2d+ 1. The study of such graph with k ≥ 2 is an
interesting problem.

We now consider G − v without an isolated vertex. Begin with a K1,k+d, k ≥ 1, by
labeling the vertex u with k+d, vi by 2k+2d+i and edge uvi by k+d+i for 1 ≤ i ≤ k+d.
Now, join a new vertex w to vi, 2 ≤ i ≤ d + 1. Label w by 3k + 3d + 1 and edge wvi by
k + d+ 1− i for 2 ≤ i ≤ d+ 1. The graph such obtained is k-super graceful and deleting
the vertex w gives us a (k + d)-super graceful graph that has no isolated vertex.
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Let G+H be the disjoint union of graphs G and H. Let nG be the disjoint union of
n ≥ 2 copy of G.
Lemma 2.5. Suppose H is super-graceful with edge label(s) set [1, q]. If G is (q+1)-super
graceful, then G+H is super graceful.

Proof. Suppose t is the largest label of a (q + 1)-super graceful labeling of G. Keep all
the labels of G and the edge labels of H. Add t − q to each original vertex labels of H.
We now have a super graceful labeling of G+H.

Theorem 2.6. For k ≥ 1, if a (p, q)-graph G admits a k-super graceful labeling, then the
k largest integers in [k, k + p+ q − 1] must be vertex labels of k mutually non-adjacent
vertices. Moreover, no two of the k + 1 smallest integers are vertex labels of adjacent
vertices.

Proof. The k largest integers are p+ q to k+ p+ q− 1. By definition, k+ p+ q− 1 must
be a vertex label. If one of the integers in [p+ q, k + p+ q − 2] is an edge label, then a
corresponding end-vertex must be labeled with an integer less than k, a contradiction.
Hence, all these k integers must be vertex labels. If there are two of these integers are
labels of two adjacent vertices, then the corresponding edge label is an integer less than
k, also a contradiction. Similarly, no two of the k + 1 smallest integers are vertex labels
of adjacent vertices.

Corollary 2.7. If G is k-super graceful, then 1 ≤ k ≤ α, where α is the independent
number of G. Moreover, the upper bound is sharp.

Proof. To prove the upper bound being sharp, we consider the star K1,k. Label the
central vertex by k and the remaining vertices by 2k + 1 to 3k correspondingly. Clearly,
it is a k-super graceful labeling.

In [7], we showed that the complete graph Kn is super graceful if and only if n ≤ 3.
The following result follows directly from Corollary 2.7.

Corollary 2.8. The complete graph Kn is not k-super graceful for all n, k ≥ 2.

3. Trees and Cycles

Let T be a caterpillar. Suppose the central path of T is P = a1b1a2b2 · · · arbr, r ≥ 1. If
deg(ai) = ni and deg(bj) = mj , then rename ai by ai,0 and bj by bj,0, where 1 ≤ i, j ≤ r.
Let

N(a1,0) = {b0,1, . . . , b0,n1−1} ∪ {b1,0};
N(br,0) = {ar,0} ∪ {ar,1, . . . , ar,mr−1};
N(ai,0) = {bi−1,1, . . . , bi−1,ni−2} ∪ {bi−1,0, bi,0} for 2 ≤ i ≤ r;
N(bj,0) = {aj,0, aj+1,0} ∪ {aj,1, . . . , aj,mj−2} for j ≥ 2 if r ≥ 2.

Now arrange ai,s as a sequence according to their subscripts under the lexicographic order.
Let A = {u1, u2, . . . , ua} be such ordered set. Similarly, we arrange bj,t by the same way
and let B = {v1, v2, . . . , vb} be the resulting ordered set. Hence (A,B) forms a bipartition
of T . We shall denote T by Ct(a, b). Note that different caterpillars may associate the
same notation Ct(a, b).
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Note that a = 1− r +
r∑

j=1

mj , b = 1− r +
r∑

i=1

ni. Moreover,

a1 = u1, a2 = um1 , a3 = um1+m2−1, . . . , ar = um1+m2+···+mr−1−r+2;

b1 = vn1
, b2 = vn1+n2−1, . . . , br = vn1+n2+···+nr−r+1,

ai is adjacent to vj for 2− i+

i−1∑
l=1

nl ≤ j ≤ 1− i+

i∑
l=1

nl, where 1 ≤ i ≤ r;

bj is adjacent to ui for 2− j +

j−1∑
l=1

ml ≤ i ≤ 1− j +

j∑
l=1

ml, where 1 ≤ j ≤ r.

Suppose the central path of T is P = a1b1a2b2 · · · arbrar+1, r ≥ 1. If deg(ai) = ni and
deg(bj) = mj , then rename ai by ai,0 and bj by bj,0, where 1 ≤ i ≤ r + 1, 1 ≤ j ≤ r. Let

N(a1,0) = {b0,1, . . . , b0,n1−1} ∪ {b1,0};
N(ar+1,0) = {br,0} ∪ {br,1, . . . , br,nr+1−1};
N(ai,0) = {bi−1,1, . . . , bi−1,ni−2} ∪ {bi−1,0, bi,0} for 2 ≤ i ≤ r;
N(bj,0) = {aj,0, aj+1,0} ∪ {aj,1, . . . , aj,mj−2} for j ≥ 1.

By a similar rearrangement as above, we have vertices u’s and v’s, and a bipartition
(A,B) of T .

Theorem 3.1. A caterpillar Ct(a, b) is k-super graceful for k = a, b.

Proof. Suppose k = a.
Case 1: The length of the central path is 2r. Define a labeling f : V (Ct(a, b)) →

[a, 3a+ 2b− 2] as follows:

(1) f(ui) = 3a+ 2b− 1− i, 1 ≤ i ≤ a,
(2) f(vj) = a+ j − 1, 1 ≤ j ≤ b.

Now, the vertex labels set is [a, a+ b− 1] ∪ [2a+ 2b− 1, 3a+ 2b− 2]. For each edge
uivj , define f(uivj) = f(ui)− f(vj). Now
f(a1vj) = f(u1vj) = 2a+ 2b− 1− j for 1 ≤ j ≤ n1,

f(aivj) = f(um1+···+mi−1−i+2vj) = 2a + 2b − 2 + i − j −
i−1∑
l=1

ml for 2 − i +
i−1∑
l=1

nl ≤ j ≤

1− i+
i∑

l=1

nl, 2 ≤ i ≤ r and

f(uibj) = f(uivn1+···+nj−j+1) = 2a + 2b − 1 − i + j −
j∑

l=1

nl for 2 − j +
j−1∑
l=1

ml ≤ i ≤

1− j +
j∑

l=1

ml, 2 ≤ j ≤ r.
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Thus

{f(a1vj) : 1 ≤ j ≤ n1} = [2a+ 2b− 1− n1, 2a+ 2b− 2];

{f(aivj) : 2− i+

i−1∑
l=1

nl ≤ j ≤ 1− i+

i∑
l=1

nl}

=

[
2a+ 2b− 3 + 2i−

i−1∑
l=1

ml −
i∑

l=1

nl, 2a+ 2b− 4 + 2i−
i−1∑
l=1

ml −
i−1∑
l=1

nl

]
,

where 2 ≤ i ≤ r;

{f(uibj) : 2− j +

j−1∑
l=1

ml ≤ i ≤ 1− j +

j∑
l=1

ml}

=

[
2a+ 2b− 2 + 2j −

j∑
l=1

ml −
j∑

l=1

nl, 2a+ 2b− 3 + 2j −
j−1∑
l=1

ml −
j∑

l=1

nl

]
,

where 1 ≤ j ≤ r.
One may check that these edge labels cover the interval [a+ b, 2a+ 2b− 2]. Hence, f is
an a-super graceful labeling.

Case 2: The length of the central path is 2r+ 1. Using the same labeling method and
a similar argument, we can show that an a-super graceful labeling also exists.

Suppose k = b. Let f = (3a + 3b − 2) − f : V (Ct(a, b) → [b, 2a+ 3b− 2], where f is
defined in the case k = a. Define f(uivj) = |f(ui) − f(vj)| = f(ui) − f(vj) if uivj is an

edge. It is easy to check that f is a b-super graceful labeling of Ct(a, b).

Corollary 3.2. For each k ≥ 1, there are infinite families of k-super graceful trees.

Proof. We can construct infinitely many caterpillars Ct(a, k) in which the central path
P2k+1 = a1b1 · · · akbkak+1 and deg(bj) = 2 for 1 ≤ j ≤ k.

For n ≥ 2, denote by Ct(m1,m2, . . . ,mn) the caterpilar with central path u1u2 · · ·un
such that there are mi vertices attached to vertex ui, 1 ≤ i ≤ n. For n ≥ 3, the ringworm
graph RW (m1,m2, . . . ,mn) is then obtained from Ct(m1,m2, . . . ,mn) by joining vertex
u1 and un by an edge. From the approach used in Theorem 3.1, we can get the following
results on RW (m1,m2, . . . ,mn).

Theorem 3.3. (i) Suppose n = 2d + 1, d ≥ 1, and k = m1 + m3 + · · · + mn + d or
k = m2 +m4 + · · ·+mn−1 + d+ 1, then RW (m1,m2, . . . ,mn) is (k − 1)-super graceful.
(ii) Suppose n = 2d, d ≥ 2, and k = m1+m3+· · ·+mn−1+d or k = m2+m4+· · ·+mn+d,
then RW (m1,m2, . . . ,mn − 1, 0) is (k − 1)-super graceful.

By Theorem 2.3, we also obtain many t-super graceful tripartite graphs, 1 ≤ t ≤ k−2,
from each (k − 1)-super graceful ringworm graph in Theorem 3.3.

Theorem 3.4. There exists k-super graceful non-star graph for each k ≥ 1.

Proof. For k ≥ 1, we begin with a K1,k+1 by labeling the vertex u by k+1, vi by 2k+2+i
and edge uvi by k + 1 + i for 1 ≤ i ≤ k + 1. Join a new vertex w to vertex v2 and label
edge wv2 and vertex w by k and 3k+ 4 respectively. The graph such obtained is k-super
graceful spider SP (1[k], 2).
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In [5, Theorems 2.1 and 2.8], Perumal et al. proved that

Theorem 3.5. All paths and cycles are super graceful.

We now investigate the k-super gracefulness of paths and cycles. Let Pn = u1 · · ·un
and Cn = u1 · · ·unu1 be the path and the cycle of order n, respectively. By Corollary 2.7
we have

Proposition 3.6. If Pn and Cn are k-super graceful, then k ≤ dn2 e and k ≤ bn2 c,
respectively.

Consider odd n ≥ 3. Define f(u2i−1) = (3n + 1)/2 − i for 1 ≤ i ≤ (n + 1)/2,
f(u2i) = (3n − 1)/2 + i for 1 ≤ i ≤ (n − 1)/2 and f(uiui+1) = i for 1 ≤ i ≤ n − 1.
We have f is a super graceful labeling of Pn such that the edge label(s) set is [1, n− 1].
In a similar approach, we see that for even n ≥ 2, Pn also admits such a super graceful
labeling. By Lemma 2.5, we have

Corollary 3.7. If G is n-super graceful, then G+ Pn is super graceful.

Applying Theorem 3.1, we have

Corollary 3.8. The path Pn is k-super graceful for odd n ≥ 3 with k = (n ± 1)/2, and
for even n ≥ 4 with k = n/2.

We now give some results showing that the necessary conditions in Proposition 3.6
may be sufficient.

Corollary 3.9. The path P2 and cycle C3 are k-super graceful if and only if k = 1.

Proof. It follows from Corollary 2.7 and Theorem 3.5.

Proposition 3.10. For n = 3, 4, 5, the path Pn is k-super graceful if and only if k ≤ dn2 e.

Proof. It follows from Corollary 2.7, Theorem 3.5 and Corollary 3.8.

The next result shows that a path Pn is k-super graceful for infinitely many k and n.

Proposition 3.11. The paths P6k−3, P6k−2, P6k and P6k+1 are k-super graceful for
k ≥ 1.

Proof. For P6k−3 = v1u1v2u2 . . . v3k−2u3k−2v3k−1, define a labeling f : V (P6k−3) →
[k, 13k − 8] as follows:

(1) f(vi) = 13k − 7− i for 1 ≤ i ≤ k;
(2) f(vk+i) = 10k − 6− i for 1 ≤ i ≤ 2k − 1;
(3) f(ui) = k + i− 1 for 1 ≤ i ≤ 3k − 2;
(4) f(uivi) = 12k − 6− 2i for 1 ≤ i ≤ k;
(5) f(uivi+1) = 12k − 7− 2i for 1 ≤ i ≤ k − 1;
(6) f(uk+ivk+i) = 8k − 5− 2i for 1 ≤ i ≤ 2k − 2;
(7) f(uk−1+ivk+i) = 8k − 4− 2i for 1 ≤ i ≤ 2k − 1.

It is easy to verify that f is a k-super graceful labeling for P6k−3.

For P6k−2 = v1u1v2u2 . . . v3k−1u3k−1, define a labeling f : V (P6k−2) → [k, 13k − 6] as
follows:

(1) f(vi) = 13k − 5− i for 1 ≤ i ≤ k;
(2) f(vk+i) = 10k − 4− i for 1 ≤ i ≤ 2k − 1;
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(3) f(ui) = k + i− 1 for 1 ≤ i ≤ 3k − 1;
(4) f(uivi) = 12k − 4− 2i for 1 ≤ i ≤ k;
(5) f(uivi+1) = 12k − 5− 2i for 1 ≤ i ≤ k − 1;
(6) f(uk+ivk+i) = 8k − 3− 2i for 1 ≤ i ≤ 2k − 1;
(7) f(uk−1+ivk+i) = 8k − 2− 2i for 1 ≤ i ≤ 2k − 1.

It is easy to verify that f is a k-super graceful labeling for P6k−2.

For P6k = u1v1u2v2 . . . u3kv3k, define a labeling f : V (P6k)→ [k, 13k − 2] as follows:

(1) f(ui) = k + i− 1 for 1 ≤ i ≤ 3k;
(2) f(vi) = 13k − 1− i for 1 ≤ i ≤ k;
(3) f(vk+i) = 10k − 1− i for 1 ≤ i ≤ 2k;
(4) f(uivi) = 12k − 2i for 1 ≤ i ≤ k;
(5) f(uivi+1) = 12k − 1− 2i for 1 ≤ i ≤ k;
(6) f(uk+ivk+i) = 8k − 2i for 1 ≤ i ≤ 2k;
(7) f(uk+1+ivk+i) = 8k − 1− 2i for 1 ≤ i ≤ 2k − 1.

It is easy to verify that f is a k-super graceful labeling for P6k.

For P6k+1 = u1v1u2v2 . . . u3kv3ku3k+1, define a labeling f : V (P6k+1) → [k, 13k] as
follows:

(1) f(ui) = k + i− 1 for 1 ≤ i ≤ 3k + 1;
(2) f(vi) = 13k + 1− i for 1 ≤ i ≤ k;
(3) f(vk+i) = 10k + 1− i for 1 ≤ i ≤ 2k;
(4) f(uivi) = 12k + 2− 2i for 1 ≤ i ≤ k;
(5) f(ui+1vi) = 12k + 1− 2i for 1 ≤ i ≤ k;
(6) f(uk+ivk+i = 8k + 2− 2i for 1 ≤ i ≤ 2k;
(7) f(uk+1+ivk+i) = 8k + 1− 2k for 1 ≤ i ≤ 2k.

It is easy to verify that f is a k-super graceful labeling for P6k+1.

We believe that Pn is 2-super graceful for all n ≥ 3. Examples for 6 ≤ n ≤ 11 with
consecutive vertex and edge labels are given below.

(1) n = 6 : 2, 10, 12, 8, 4, 7, 11, 5, 6, 3, 9.
(2) n = 7 : 10, 8, 2, 12, 14, 3, 11, 5, 6, 7, 13, 9, 4.
(3) n = 8 : 5, 8, 13, 7, 6, 10, 16, 14, 2, 9, 11, 4, 15, 3, 12.
(4) n = 9 : 18, 16, 2, 15, 17, 14, , 3, 10, 13, 9, 4, 8, 12, 7, 5, 6, 11 or

14, 4, 18, 8, 10, 6, 16, 7, 9, 3, 12, 5, 17, 15, 2, 11, 13.
(5) n = 10 : 20, 18, 2, 17, 19, 16, 3, 12, 15, 11, 4, 10, 14, 9, 5, 8, 13, 7, 6.
(6) n = 11 : 12, 8, 4, 17, 21, 18, 3, 19, 22, 20, 2, 14, 16, 11, 5, 10, 15, 9, 6, 7, 13.

Moreover, we also obtained the following k-super graceful labeling for Pn with consec-
utive labels given below.

(1) n = 8, k = 3: 11, 4, 7, 8, 15, 9, 6, 10, 16, 13, 3, 14, 17, 12, 5.
(2) n = 9, k = 3: 18, 11, 7, 12, 19, 4, 15, 5, 10, 6, 16, 13, 3, 14, 17, 9, 8.
(3) n = 10, k = 3: 20, 17, 3, 18, 21, 7, 14, 8, 6, 13, 19, 9, 10, 5, 15, 11, 4, 12, 16.
(4) n = 11, k = 3: 20, 13, 7, 16, 23, 19, 4, 11, 15, 6, 9, 12, 21, 3, 18, 10, 8, 14, 22,

17, 5.
(5) n = 10, k = 4: 11, 8, 19, 9, 10, 12, 22, 18, 4, 17, 21, 16, 5, 15, 20, 14, 6, 7, 13.
(6) n = 11, k = 4: 20, 12, 8, 16, 24, 5, 19, 15, 4, 18, 22, 13, 9, 14, 23, 6, 17, 7, 10,

11, 21.
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Note that P6k−4 and P6k−1 are k-super graceful for k = 1, 2. Thus, together with Corol-
lary 3.8, we have shown that for n ≤ 11, Pn is k-super graceful if and only if 1 ≤ k ≤ dn/2e.

Conjecture 1. The path Pn is k-super graceful if and only if 1 ≤ k ≤ dn/2e.

Proposition 3.12. If Cn is k-super graceful such that k is an edge label of Cn, then Pn

is (k + 1)-super graceful.

Proof. Given Cn and its k-super graceful labeling having k as an edge label, deleting the
edge labeled with k gives a (k + 1)-super graceful Pn.

By Theorem 3.1, we see that the given (k+ 1)-super graceful labeling of P2k+1 gives a
k-super graceful C2k+1 having k as an edge label.

Corollary 3.13. For all k ≥ 1, C2k+1 is k-super graceful.

Problem 1. Determine all values of k such that Cn is k-super graceful having k as an
edge label.

Proposition 3.14. The cycles C4 and C5 are k-super graceful if and only if k = 1, 2.

Proof. Theorem 2.8 in [5] shows that all cycles are 1-super graceful. We assume k = 2.
We can label the vertices of C4 and C5 sequentially as follows: 2, 8, 5, 9 and 3, 10, 4, 9, 11.
So, sufficiency holds. By Proposition 3.6, necessity holds.

We now show that the k ≤ bn/2c is not a sufficient condition on k-super gracefulness
of cycles. Suppose f is a 3-super graceful labeling of C6. By Corollary 2.7, without loss
of generality, we may assume that f(u1) = 12, f(u3) = 13 and f(u5) = 14. Since 1 is not
available, 11 must be used to label an edge incident with the vertex u5.

(1) Suppose f(u5u6) = 11. Then f(u6) = 3 and f(u6u1) = 9. Since 9 is used,
4 is not a vertex label. Since 1 is not available and 9 is used, f(u1u2) = 4 or
f(u4u5) = 4.

If f(u1u2) = 4, then f(u2) = 8, f(u2u3) = 5. In this case, we can see that 6
cannot be used.

If f(u4u5) = 4, then f(u4) = 10 and hence f(u3u4) = 3 which is impossible.
(2) Suppose f(u4u5) = 11. Then f(u4) = 3, f(u3u4) = 10. Since 3 is used, 9 must

be used to label an edge incident with the vertex u3 or u5.
If f(u2u3) = 9, then f(u2) = 4, f(u1u2) = 8. Now 7 cannot be used to label

u6 or u5u6. So f(u6u1) = 7. This yields f(u6) = 5 and f(u5u6) = 9 which is
impossible.

If f(u5u6) = 9, then f(u6) = 5, f(u6u1) = 7. Since 5 is used, 8 cannot be used
to label u2 or u2u3. So f(u1u2) = 8, f(u2) = 4. This yields f(u2u3) = 9 which is
impossible.

Thus C6 is not 3-super graceful.

Using a similar approach, we can also show that C8 is not 4-super graceful. However,
C8 is 2-super graceful with consecutive vertex labels 17, 4, 14, 12, 15, 7, 16, 11. The cor-
responding edge labels are 13, 10, 2, 3, 8, 9, 5, 6. Deleting the edge with label 2, we have
another 3-super graceful labeling for P8.

A tadpole graph Tm,k is a simple graph obtained from an m-cycle by attaching a path
of length k, where m ≥ 3 and k ≥ 1.
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Proposition 3.15. For even k ≥ 2, T4,k is (k + 2)/2-super graceful.

Proof. Begin with the n/2-super graceful labeling of Pn as in Theorem 3.1, where n ≥ 6
is even. Exchange the labels of u2 and u1u2. Add the edge u1u4. We get the graph T4,n−4
which is (n− 2)/2-super graceful.

Proposition 3.16. For odd n ≥ 5, Tn,1 is (n− 1)/2-super graceful.

Proof. Begin with the m/2-super graceful labeling of Pm, where m ≥ 6 is even. Add the
edge u1um−1 to get Tm−1,1 which is clearly (m− 2)/2-super graceful. Let n = m− 1, the
result follows.

Using the labelings in Proposition 3.11, it is easy to get the following.

Proposition 3.17. The graphs T2k−1,4k−2, T2k−1,4k−1, T2k−1,4k+1 and T2k−1,4k+2 are
(k − 1)-super graceful for k ≥ 2.

4. Some Complete Bipartite and Tripartite Graphs

Lemma 4.1. Suppose f is a k-super graceful labeling of K1,n, where k ≥ 2. Let m be
the largest integer such that the m largest integers in [k, k + 2n] are labeled at m mutually
non-adjacent vertices, then f(u) = m. Moreover, k + 2n ≥ 3m.

Proof. Note that m ≥ k. After renumbering, we may assume that f(vi) = k+ 2n+ 1− i,
1 ≤ i ≤ m. Now f(u) = k + 2n−m or k + 2n−m is an edge-label.

For the first case, we have f(uvm) = 1, a contradiction. For the latter case, one of the
end vertices of this edge has label greater than k + 2n −m. So f(uvi) = k + 2n −m =
f(vi)−f(u), where 1 ≤ i ≤ m. Since k+2n−m ≥ f(v1)−f(u) ≥ f(vi)−f(u) = k+2n−m,
i = 1 and hence f(u) = m. Since {f(vi), f(uvi) : 1 ≤ i ≤ m} = [k + 2n− 2m+ 1, k + 2n],
m < k + 2n− 2m+ 1, i.e., k + 2n ≥ 3m.

Theorem 4.2. For n, k ≥ 1, the star K1,n is k-super graceful if and only if n ≡ 0
(mod k). Moreover, for k ≥ 2, the central vertex must have label k.

Proof. We first prove the sufficiency. Suppose n = kt, t ≥ 1. We rewrite all vertices vl
as v(j−1)k+i, where 1 ≤ j ≤ t, 1 ≤ i ≤ k. Define a labeling f : V (K1,n) ∪ E(K1,n) →
[k, k + 2kt] as follows:

(1) f(u) = k;
(2) f(v(j−1)k+i) = (2j)k + i;
(3) f(uv(j−1)k+i) = (2j − 1)k + i.

It is easy to verify that f is a k-super graceful labeling.

The necessity obviously holds for k = 1. We now assume that k ≥ 2. Let f be a k-
super graceful labeling of K1,n. Suppose m is the largest integer such that the m largest
integers in [k, k + 2n] are labeled at m mutually non-adjacent vertices. By Lemma 4.1
we have f(u) = m and k + 2n ≥ 3m. Also we may assume {f(vi), f(uvi) : 1 ≤ i ≤ m} =
[k + 2n− 2m+ 1, k + 2n].

If m = n, then 3m ≥ k + 2m = k + 2n ≥ 3m. Hence k = m and we have the result.

Suppose n > m. Consider K1,n−m ∼= K1,n − {vi : 1 ≤ i ≤ m}. The restriction of f
on K1,n−m is still a k-super graceful labeling. So Lemma 4.1 can be applied on K1,n−m.
Repeating in this manner gives n = mt for some t and m = k.
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Example 4.3. Take k = 5, n = 15, we can label u by 5, the edges uv1 to uv5 by 6 to 10,
the vertices v1 to v5 by 11 to 15, the edges uv6 to uv10 by 16 to 20, the vertices v6 to v10
by 21 to 25, the edges uv11 to uv15 by 26 to 30, and the vertices v11 to v15 by 31 to 35.

Corollary 4.4. For any finite set A of positive integers there is a graph that is k-super
graceful for all k ∈ A.

Proof. Let L be the least common multiple of all elements in A. The required graph is
K1,L by Theorem 4.2.

Theorem 4.5. For n ≥ m ≥ 1, the complete bipartite graph Km,n is n- and m-super
graceful.

Proof. Let V (Km,n) = {ui, vj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} and E(Km,n) = {uivj | 1 ≤ i ≤
m, 1 ≤ j ≤ n}. Define a labeling f : V (Km,n) ∪ E(Km,n) → [n, 2n+m+mn− 1] as
follows:

(1) f(ui) = ni+ i− 1 for 1 ≤ i ≤ m;
(2) f(vj) = 2n+m(n+ 1)− j for 1 ≤ j ≤ n;
(3) f(uivj) = (n+ 1)(m− i) + 2n− j + 1 for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

It is easy to verify that f is an n-super graceful labeling. By swapping the roles of m
and n, we have an m-super graceful labeling for Kn,m

∼= Km,n.

Now, keep the notation in the proof of Theorem 4.5. For n ≥ 2, 1 ≤ k ≤ n − 1 and
m ≥ 1, let G(1,m, n−k) be a tripartite graph obtained from the complete bipartite graph
Km,n by adding n − k edges v1vj , k + 1 ≤ j ≤ n. Note that G(1,m, n − 1) = K1,m,n−1,
the complete tripartite graph. We shall keep this notation for the following theorem.

Theorem 4.6. The tripartite graph G(1,m, n − k) is k-super graceful. In particular,
K1,m,r is super graceful for all r ≥ 1.

Proof. Note that G(1,m, n−k) has m+n vertices and mn+n−k edges. Observe that for
the n-super graceful labeling f of Km,n, n ≥ 2, in Theorem 4.5, we have f(v1)− f(vj) =
j−1, k+1 ≤ j ≤ n. Here f is extended to be a k-super graceful labeling for G(1,m, n−k).
Note that if k = 1, we obtain a super graceful complete tripartite graph K1,m,n−1 as
required.

Also observe that for 2 ≤ i ≤ m, f(ui) − f(ui−1) = n + 1 and f(ui) − f(u1) =
(n+ 1)(i− 1) = f(um−i+2vn). Hence,

(1) by adding edge u1u2 and deleting edge u1vn of G(1, 2, n− 1), we get for n ≥ 3,
K1,1,1,n−1−e is super graceful where K1,1,1,n−1 is a complete 4-partite graph and
e is an edge with an end vertex of degree 3.

(2) for 2 ≤ i ≤ m, if we add edge u1ui and delete edge uivn of G(1,m, n− k), we
get infinitely many k-super graceful 4-partite graphs.

The following theorem in [7, Theorem 2.2] now follows directly from Theorem 4.6.

Theorem 4.7. For r ≥ 1, the complete tripartite graph K1,1,r is super graceful.

Corollary 4.8. There are infinitely many 2-super graceful K1,1,r − e for r ≥ 1 and e is
an edge with an end vertex of degree 2.

Theorem 4.9. For 1 ≤ k ≤ r, K1,1,r is k-super graceful if and only if k = 1.
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Proof. The sufficiency follows from Theorem 4.7. We now prove the necessity. Let f be
a k-super graceful labeling of K1,1,r. Without loss of generality, we may assume that
{f(vi) : 1 ≤ i ≤ r} is a strictly decreasing sequence, and that f(u1) < f(u2). Let c ≤ r
be the greatest integer such that f(vi) = k + 3r + 3− i, for 1 ≤ i ≤ c. By Theorem 2.6,
k ≤ c. If c = 1, then k = 1 and we are done. So we assume that c ≥ 2.

Now, we consider the assignment of the label k + 3r + 2 − c, which is the greatest
undetermined label. If it is a vertex label, then according to the choice of c and f(u2) >
f(u1), f(u2) = k + 3r + 2− c. In this case, f(u2vc) = 1. Hence k = 1 and we are done.

From now on, we assume that k+ 3r+ 2− c is an edge label. That is, k+ 3r+ 2− c =
f(xy) = f(x)− f(y) for some edge xy. Now f(x) = k+ 3r+ 2− c+ f(y) ≥ k+ 3r+ 3− c.
So x = vi for some i (1 ≤ i ≤ c). Moreover, y = u1 or u2. Since k+ 3r+ 2− c ≥ f(v1y) ≥
f(viy), we have i = 1 and f(y) = c. Since f(v1u1) > f(v1u2) and k + 3r + 2 − c is the
greatest undetermined label, y = u1. Thus f(u1) = c, and so f(u1vi) = k+ 3r+ 3− c− i,
for 1 ≤ i ≤ c. Now the next greatest undetermined label is k+3r+2−2c ≥ c+k+1 ≥ c+2.

Let P(t) =“Either f(vtc+j) = k+3r+3−2tc−j for 1 ≤ j ≤ c and k+3r+3−2tc−2c ≥
c+ 2, or k = 1.” be a statement on t ≥ 0.

From the above discussion, we know that P(0) holds. Now we assume that P(s) holds
for 0 ≤ s ≤ t− 1 and consider P(t). Up to now integers in [k + 3r + 3− 2tc, k + 3r + 2]
are assigned. We consider the assignment of k + 3r + 2 − 2tc, which is the greatest
undetermined label at this moment.

Remark 4.10. At each stage, we always examine the greatest undetermined label. Ob-
serve that any greatest undetermined label must belong to an unlabeled vertex, or edge
with a larger incident vertex label.

For convenience of exposition, we divide the undetermined labels into five types:

(I) Edge label f(u2u1).
(II) Edge labels f(viu1), tc+ 1 ≤ i ≤ r.

(III) Edge labels f(viu2), 1 ≤ i ≤ r.
(IV) Vertex label f(u2).
(V) Vertex labels f(vi), tc+ 1 ≤ i ≤ r.

By Remark 4.10, Types (I) and (II) are not possible.

For Type (III): f(viu2) = 3r + k + 2− 2tc for some i. Since f(u2) < 3r + k + 2− 2tc,
f(vi) > 3r+k+2−2tc. This implies that 1 ≤ i ≤ tc. Since 3r+k+2−2tc is the greatest
undetermined label, i = 1. Here we have f(u2) = f(v1)−(3r+k+2−2tc) = 2tc. If t = 1,
then f(u2u1) = c = f(u1) which is impossible. So we only need to deal with t ≥ 2. Note
that 2tc /∈ [k + 3r + 3− 2tc, k + 3r + 2] and hence f(vsc+ju2) = 3r+ k+ 3− 2(s+ t)c− j
for 0 ≤ s ≤ t − 1 and 1 ≤ j ≤ c. Now 3r + k + 2 − 2tc − c is the greatest undetermined
label. By Remark 4.10, Types (II) to (IV) are not possible.

(A) Suppose Type (I) holds. Now we have 2tc − c = f(u2u1) = 3r + k + 2 −
2tc − c. Hence we have f(vtc) = 2tc + c + 1. Now we consider the next greatest
undetermined label 3r+ k+ 1− 2tc− c = (2t− 1)c− 1 ≥ 3c− 1. By remark 4.10,
we only need to check Types (III) and (V).
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(a) For Type (III), suppose f(viu2) = 2tc− c− 1. Since c ≥ 2, 2tc− c− 1 =
3r+k+1−2tc−c > 3r+k+2−2c−2tc = f(vc+1u2), i > tc and f(u2) > f(vi).
But we will get f(vi) = c+ 1 = f(vtcu2), a contradiction.

(b) For Type (V), if f(vi) = (2t− 1)c− 1 for some i, then f(u2vi) = c+ 1 =
f(vtcu2), a contradiction.

(B) Suppose Type (V) holds. By definition, f(vtc+1) = 3r + k + 2− 2tc− c. Now
f(vtc+1u1) = 3r + k + 2− 2tc− 2c = f(vc+1u2), a contradiction.

For Type (IV): f(u2) = 3r + k + 2 − 2tc. Now 3r + k + 1 − 2tc becomes the greatest
undetermined label. If it is a vertex label, then together with f(u2) we get that 1 is
an edge label and hence we are done. Now, we assume that 3r + k + 1 − 2tc is labeled
to an edge. From 3r + k + 1 − 2tc ≥ c or Remark 4.10, only Type (III) is possible. If
f(vi) < f(u2), then f(vi) = 1. We are done. If f(vi) > f(u2), then 1 ≤ i ≤ (t−1)c. Since
3r+k+1−2tc is the greatest undetermined label and i = 1 and hence 3r+k+1−2tc = 2tc.
Now f(u2) = 2tc+1. It implies that f(vcu2) = (2t−1)c+1 = f(u2u1) which is impossible.

Therefore, f(vtc+1) = k + 3r + 2− 2tc is the only possibility.

Let m be the greatest integer such that f(vtc+j) = k+ 3r+ 3− 2tc− j, for 1 ≤ j ≤ m.
Since k + 3r + 2 − 2tc > c = f(u1), the m consecutive integers are greater than c.
Therefore, k + 3r + 3 − 2tc −m > c. Now we consider the greatest undetermined label
k+3r+2−2tc−m. By the choice of m or Remark 4.10, Types (I) and (V) are impossible.
If k + 3r + 2 − 2tc −m is the label at u1 or u2, then 1 is an edge label. Hence we are
done. So we only need to consider Types (II) and (III).

For Type (III): f(viu2) = k + 3r + 2 − 2tc − m. In this case, since the integers
in [k + 3r + 2− 2tc−m, k + 3r + 2] are occupied, f(u2) ≤ k + 3r + 1 − 2tc − m and
f(vi) ≥ k + 3r + 3 − 2tc − m. Hence i ≤ tc + m. Since k + 3r + 2 − 2tc − m is
the greatest undetermined label, i = 1 and hence f(u2) = 2tc + m. Now f(vcu2) =
k + 3r + 3− c− 2tc−m = f(vtc+mu1), a contradiction.

So Type (II) is the only possibility. Since k+3r+2−2tc−m is the greatest undetermined
label, f(vtc+1u1) = k+3r+2−2tc−m. On the other hand, f(vtc+1u1) = k+3r+2−2tc−c.
Thus, we obtain m = c. Therefore, f(vtc+j) = k + 3r + 3 − 2tc − j and f(vtc+ju1) =
k + 3r + 3 − (2t + 1)c − j, for 1 ≤ j ≤ c. Since k + 3r + 2 − 2tc > c and f(vtc+j) and
f(vtc+ju1) (1 ≤ j ≤ c) are 2c consecutive integers, k+3r+3− (2t+1)c− c > c and hence
k + 3r + 3− (2t+ 2)c ≥ c+ 1. If k + 3r + 3− (2t+ 2)c = c+ 1, then f(u2) < c = f(u1),
a contradiction. Thus, we have k + 3r + 3− (2t+ 2)c ≥ c+ 2, i.e., P(t) holds.

By mathematical induction P(t) holds for all t ≥ 0. Since k, r and c are fixed,
k + 3r + 3− 2tc− 2c ≥ c+ 2 cannot hold for all t. Therefore, we conclude that k = 1.
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