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1. Introduction

Let (X, d) be a metric space and x, y ∈ X with l = d(x, y). A geodesic path from x to y
is an isometry γ : [0, d(x, y)]→ X such that γ(0) = x, γ(d(x, y)) = y, and d(γ(t1), γ(t2)) =
|t1− t2| for any t1, t2 ∈ [0, d(x, y)]. We will say that (X, d) is a (uniquely) geodesic metric
space if any two points are connected by a (unique) geodesic. In this case, we denote
such geodesic by [x, y]. Note that in general such geodesic is not uniquely determined by
its endpoints. For a point z ∈ [x, y], we will use the notation z = (1 − t)x ⊕ ty, where

t = d(x,z)
d(x,y) , 1−t = d(y,z)

d(x,y) assuming x 6= y. Let (X, d) be a geodesic metric space. A geodesic

triangle consists of three point p, q, r ∈ X and three geodesics [p, q], [q, r], [r, p]. Denote
∆([p, q], [q, r], [r, p]). For such a triangle, there is a comparison triangle ∆(p, q, r)→ E2 :
d(p, q) = d(p, q), d(q, r) = d(q, r), d(r, p) = d(r, p).

Definition 1.1. A geodesic space is said to be a CAT(0) space if all geodesic triangles
of appropriate size satisfy the following comparison axiom.
Cat(0): Let ∆ = (x1, x2, x3) be a geodesic triangle in b-metric space X and let ∆̄ ∈ E2
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be a comparison triangle for ∆. Then ∆ is said to satisfy the CAT(0) inequality if for all
x, y ∈ ∆ and all comparison points x, y ∈ ∆ := (x1, x2, x3) such that

d(x, y) ≤ d2E(x, y).

It is easy to see that a CAT(0) space is uniquely geodesic.
It is well known that any complete, simply connected Riemannian manifold having

nonpositive sectional curvature is a CAT(0) space. Other examples include inner product
spaces, R-trees (see, for example, [2]), Euclidean building (see, for example, [3]), and the
complex Hilbert ball with a hyperbolic metric (see, for example, [4]). For a thorough
discussion on other spaces and on the fundamental role they play in geometry, see, for
example, [2]-[12].

We collect some properties of CAT(0) spaces. For more details, we refer the readers to
[13]-[15].

Lemma 1.2 ([13]). Let (X, d) be a CAT(0) space. Then the following assertions hold.
(i) For x, y in X and t in [0, 1], there exists a unique point z ∈ [x, y] such that

d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y). (1.1)

We use the notation (1− t)x⊕ ty for the unique point z satisfying (1.1)
(ii) For x, y in X and t in [0, 1], we have

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z). (1.2)

Example 1.3. (I). Let X := lp(R) where lp(R) := {{xn} ⊂ R :
∑∞
i=1 |xi| <∞}. Define

d : X ×X → [0,∞) as:

d(x, y) = (
∞∑
i=1

|xi − yi|)

where x = {xn}, y = {yn}. Then d is a metric space, see([16] -[18]). And, defined a
continuous mapping γ : [0, d(x, y)]→ X by γ(z) = (1− t)x+ ty for all t ∈ [0, d(x, y)]. and
all z ∈ X. Then (X, d) is a CAT(0) space.

(II). Let X := Lp[0, 1] be the space of all real functions x(t), t ∈ [0, 1] such that∫ 1

0
|x(t)|dt <∞. Define d : X ×X → [0,∞) as:

||x|| = (

∫ 1

0

|x(t)|dt)

where x = x(t). Then d is a metric space, see([16] -[18]). And, defined a continuous
mapping γ : [0, d(x, y)]→ X by γ(z) = (1− t)x+ ty for all t ∈ [0, d(x, y)]. and all z ∈ X.
Then (X, d) is a CAT(0) space.

Let {xn} be a bounded sequence in a CAT(0) space X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).



Approximating Common Fixed Points of α-Nonexpansive ... 1355

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X},
and the asymptotic center A ({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}
A sequence {xn} in X is said to ∆-converge to x ∈ X if x is the unique asymptotic

center of {un} for every subsequence {un} of {xn}. In this case we write ∆− limn xn = x
and call x the ∆-limit of {xn}, see [19].

Lemma 1.4 ([20]). Every bounded sequence in a complete CAT(0) space X has a ∆-
convergent subsequence.

Lemma 1.5 ([21]). Let C be a closed and convex subset of a complete CAT(0) space X.
If {xn} is a bounded sequence in C, then the asymptotic center of {xn} is in C.

Lemma 1.6 ([22]). Let X be a complete CAT(0) space and let x ∈ X. Suppose that
0 < b ≤ tn ≤ c < 0 and xn, yn ∈ X for n = 1, 2, .... If for some r ≥ 0 we have

lim sup
n→∞

d(xn, x) ≤ r, lim sup
n→∞

d(yn, x) ≤ r,

and limn→∞ d(tnxn ⊕ (1− tn)yn, x) = r, then limn→∞ d(xn, yn) = 0.

Lemma 1.7 ([23]). Let C be a nonempty closed and convex subset of a complete CAT(0)
space X and let T : C → C be an α-nonexpansive mapping for some α < 1. If {xn} is a
sequence in C such that d(Txn, xn) → 0 and ∆ − limn→∞ xn = z for some z ∈ X, then
z ∈ C and Tz = z.

Now, we recall definitions of α-nonexpansive mappings in CAT(0).

Definition 1.8. (Aoyama and Kohsaka [24]) Let (X, d) be a metric space and C be
nonempty subset. Then T : C → C said to be a square α-nonexpansive mapping (or
α-noexpansive mapping), if α < 1 such that

d2(Tx, Ty) ≤ αd2(Tx, y) + αd2(x, Ty) + (1− 2α)d2(x, y),

for all x, y ∈ C.

Definition 1.9 ([1]). Let (X, d) be a metric space and C be nonempty subset. Then
T : C → C said to be a quasi-nonexpansive if F (T ) 6= ∅; and d(Tx, p) ≤ d(x, p) for all
p ∈ F (T ); = {x ∈ X|x = Tx}, and x ∈ C.

Lemma 1.10 ([1]). Let C be a nonempty subset of a hyperbolic space X. Let T : C → C
be a square α-nonexpansive mapping and F (T ) 6= ∅, then T is quasi-nonexpansive.

On the other hand, we recall that iterations in CAT(0) spaces. We begin the Ishikawa
iteration in CAT(0) spaces is described as follows: For any initial point x ∈ C, we define
the iterates {xn} by {

xn+1 = γnyn ⊕ (1− γn)xn

yn = βnTxn ⊕ (1− βn)xn n ∈ N,
(1.3)

where {βn} and {γn} are in (0, 1), see [25].
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In 2018, Muangchoo-in, Kumam and Je Cho [26] introduced and approximated com-
mon fixed points of two alpha-nonexpansive mappings through weak and strong conver-
gence of an iterative sequence in a uniformly convex Babach space.{

xn+1 = γnSyn ⊕ (1− γn)xn

yn = βnTxn ⊕ (1− βn)xn n ∈ N,
(1.4)

where {βn} and {γn} are in (0, 1).
In this paper, we prove and approximate common fixed points of two α-nonexpansive

mappings through strong and ∆-convergence of an iterative sequence in a CAT(0) space.
Moreover, we expand and improve the result of Muangchoo-in et al. [1].

2. Main Results

In this section, we state some useful lemmas as follows.

Lemma 2.1. Let C be a nonempty closed convex subset of a complete CAT(0) space
(X, d). Let S, T : C → C be square α-nonexpansive mappings and F (S) ∩ F (T ) be a the
set of all common fixed points of two nonexpansive mappings T and S of C. Assume there
exists p ∈ F (S) ∩ F (T ). Suppose that {xn} is defined by Ishikawa’s iteration (1.3). Then

lim
n→∞

d(Sxn, xn) = 0 = lim
n→∞

d(Txn, xn).

Proof. Let p ∈ F (S) ∩ F (T ). By Lemma 1.10 we get

d(xn+1, p) = d((1− γn)xn ⊕ γnSyn, p)
≤ (1− γn)d(xn, p) + γnd(Syn, p)

≤ (1− γn)d(xn, p) + γnd(yn, p)

= (1− γn)d(xn, p) + γnd((1− βn)xn ⊕ βnTxn, p)
≤ (1− γn)d(xn, p) + γn(1− βn)d(xn, p) + γnβnd(Txn, p)

≤ (1− γn)d(xn, p) + γn(1− βn)d(xn, p) + γnβnd(xn, p)

≤ (1− γn)d(xn, p) + γn(1− βn)d(xn, p) + γnβnd(Txn, p)

= d(Txn, p)

Hence limn→∞ d(xn, p) exists. Let limn→∞ d(xn, p) = r where r = 0 is a real number. By
T is quasi-nonexpansive mapping then we have d(Txn, p) ≤ d(xn, p) for all n = 1, 2, 3, ....
So lim supn→∞ d(Txn, p) = lim supn→∞ d(xn, p) = r. Also,

d(yn, p) = d((1− βn)xn ⊕ βnTxn, p)
≤ (1− βn)d(xn, p) + βnd(Txn, p)

≤ (1− βn)d(xn, p) + βnd(xn, p)

= d(xn, p), (2.1)

and by S is quasi-nonexpansive mapping then we obtain that

lim sup
n→∞

d(Syn, p) ≤ lim sup
n→∞

d(yn, p) ≤ r. (2.2)



Approximating Common Fixed Points of α-Nonexpansive ... 1357

Moreover, limn→∞ d(xn+1, p) = r means that

lim
n→∞

d(γnSyn ⊕ (1− γn)xn, p) = r. (2.3)

By Lemma 1.6 , we get that

lim
n→∞

d(Syn, xn) = 0. (2.4)

Since d(xn, p) ≤ d(xn, Syn) + d(Syn, p) ≤ d(xn, Syn) + d(yn, p), then we obtain that

r ≤ lim inf
n→∞

d(yn, p) (2.5)

By (2.2) and (2.5), we obtain that

lim
n→∞

d(βnTxn ⊕ (1− βn)xn, p) = lim
n→∞

d(yn, p) = 0 (2.6)

By Lemma 1.6 , we get that

lim
n→∞

d(Txn, xn) = 0. (2.7)

Noe, we consider

d(Txn, yn) = d(Txn, βnTxn ⊕ (1− βn)xn)

≤ (1− βn)d(Txn, Txn) + βnd(Txn, xn)

= βnd(Txn, xn), (2.8)

then by (2.7), we have

lim
n→∞

d(Txn, yn) = 0. (2.9)

By Definition 1.8, we consider

d(Sxn, xn)2 ≤(d(Sxn, Syn) + d(Syn, xn))2

=d(Sxn, Syn)2 + 2d(Sxn, Syn)d(Syn, xn)) + d(Syn, xn))2

≤αd(Sxn, yn)2 + αd(xn, Syn)2 + (1− 2α)d(xn, yn)2

+ 2d(Sxn, Syn)d(Syn, xn)) + d(Syn, xn))2

≤α(d(Sxn, xn) + d(xn, yn))2 + (1− 2α)d(xn, yn)2

+ 2d(Sxn, Syn)d(Syn, xn)) + (1 + α)d(Syn, xn))2

≤αd(Sxn, xn)2 + α2d(Sxn, xn)d(xn, yn) + αd(xn, yn)2

+(1−2α)d(xn, yn)2+2d(Sxn, Syn)d(Syn, xn))+(1+α)d(Syn, xn))
2,

(2.10)

so

(1− α)d(Sxn, xn)2 ≤(1− α)d(xn, yn)2 + α2d(Sxn, xn)d(xn, yn)

+ 2d(Sxn, Syn)d(Syn, xn)) + (1 + α)d(Syn, xn))2

≤(1− α)(d(xn, Txn) + d(Txn, yn))2

+ 2αd(Sxn, xn)(d(xn, Txn) + d(Txn, yn))

+ 2d(Sxn, Syn)d(Syn, xn)) + (1 + α)d(Syn, xn))2 (2.11)

By (2.4), (2.7) and (2.9), we conclude that

lim
n→∞

d(Sxn, xn) = 0 = lim
n→∞

d(Txn, xn).
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Theorem 2.2. Let C be a nonempty closed convex subset of a complete CAT(0) space
(X, d). Let S, T : C → C be square α-nonexpansive mappings. Assume C satisfies Opial’s
condition and the sequence defined be Ishikawa’s iteration. If F (S)∩ F (T ) 6= ∅ then then
{xn} ∆-converges to a unique common fixed point of S and T.

Proof. Let p be a common fixed point of S and T and limn→∞ d(xn, p) exists. Thus {xn}
is bounded. Therefore {xn} has a ∆-convergent subsequence and the asymptotic center
of {xn} is in C by Lemma 1.4, 1.5. We now prove that every ∆-convergent subsequence
of {xn} has a unique ∆-limit in F (S) ∩ F (T ). For, let u and v be two ∆-limits of the
subsequences {un} and {vn} of {xn}, respectively. By definition A({un}) = {u} and
A({vn}) = {v}. By Lemma 2.1, limn→∞ d(Sun, un) = 0 = limn→∞ d(Tun, un). Now
using the ∆-convergence of {un} to u and the α-nonexpansive mappings of T and S, we
obtain u ∈ F (S) ∩ F (T ) by a repeated application of Lemma 1.7 on T and S. Again in
the same fashion, we can prove that v ∈ F (S)∩F (T ). Next, we prove the uniqueness. To
this end, if u and v are distinct then by the uniqueness of asymptotic centers,

lim
n→∞

d(xn, u) = lim sup
n→∞

d(un, u)

< lim sup
n→∞

d(un, v)

= lim sup
n→∞

d(xn, v)

= lim sup
n→∞

d(vn, v)

< lim sup
n→∞

d(vn, u)

= lim sup
n→∞

d(xn, u)

= lim
n→∞

d(xn, u). (2.12)

This is a contradiction, then u = v.

Theorem 2.3. Let C be a nonempty closed convex subset of a complete CAT(0) space
(X, d). Let S, T : C → C be square α-nonexpansive mappings. Assume C satisfies Opial’s
condition and the sequence defined be Ishikawa’s iteration. If F (S) ∩ F (T ) 6= ∅ then
{xn}converges strongly to a common fixed point of S and T if and only if lim inf

n→∞
d(xn, F (S)∩

F (T )) = 0, where d(x, F (S) ∩ F (T )) := inf{d(x, p)|p ∈ F (S) ∩ F (T )}.

Proof. Necessity is obvious. Conversely, suppose that lim infn→∞ d(xn, F (S)∩F (T )) = 0.
As proved in Lemma 2.1, we have

d(xn+1, p) ≤ d(xn, p), for all p ∈ F (S) ∩ F (T ).

This implies that d(xn+1, F (S)∩F (T )) ≤ d(xn, F (S)∩F (T )), so that d(xn, F (S)∩F (T ))
exists. Thus by hypothesis limn→∞ d(xn, F (S) ∩ F (T )) = 0. Next, we show that {xn}
is a Cauchy sequence in C. Let ε > 0 be arbitrarily chosen. Since limn→∞ d(xn, F (S) ∩
F (T )) = 0, there exists a positive integer n0 such that d(xn, F (S) ∩ F (T )) < ε

4 ,∀n ≥ n0.
In particular, inf{d(xn0

, p)|p ∈ F (S)∩F (T )} < ε
4 . Thus there must exist p∗ ∈ F (S)∩F (T )

such that d(xn0
, p∗) < ε

2 . Now, for all m,n ≥ n0, we have

d(xn+m, xn) ≤ d(xn+m, p
∗) + d(p∗, xn) ≤ 2d(xn0

, p∗) < ε.
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Hence {xn} is a Cauchy sequence in a closed subset C of a complete CAT (0) space, and
so it must converge to a point p in C. Now, limn→∞ d(xn, F (S) ∩ F (T )) = 0 gives that
d(p, F (S) ∩ F (T )) = 0. Since F is closed, so we have p ∈ F (S) ∩ F (T ).

3. Numerical Example

In this section, we provide some numerical examples and illustrate its performance by
using algorithm 1.4.

Example 3.1. Let X := R with metric d(x, y) = |x − y| and C = [0, 1]. Define γ :
[0, d(x, y)] → X by αx⊕ (1− α)y := αx + (1− α)y for each x, y ∈ X and α ∈ [0, 1]. We
can proof that (X, d) is a complete CAT(0) space and C is a nonempty closed convex
subset of X. For a given m ∈ (0, 1), let T : C → C defined by

Tx :=

{
x
5 if x 6= 1,
2+m
5+m if otherwise,

and

Sx = x
10 for all x ∈ C.

We can easily prove that T and S are a square α-nonexpansive mapping. We set m = 2,
βn = 1

12n+1 and γn = 1√
2n+1

, for all n ≥ 0, we have{
xn+1 = γnSyn + (1− γn)xn

yn = βnTxn + (1− βn)xn n ∈ N,
(3.1)

The stopping criterion is defined by En = |xn − 0| ≤ 10−6, where 0 is a fixed point of T.
The numerical experiments, using our algorithm 1.4 for each choice x0 are reported by
using MATLAB in the following Table 1.

Table 1. Algorithm 1.4 with different choices of x0

x0 No. of Iter. xn
x0 = 0.01 55 9.4649e-07

x0 = 0.2 94 9.4821e-07

x0 = 0.4 104 9.8232e-07

x0 = 0.6 111 9.4766e-07

x0 = 0.8 115 9.8815e-07

x0 = 0.99 119 9.6047e-07

We concluded from Table 1 and Figure 1 that Ishikawa’s iteration process is stable
with respect to the choice of small value in C and parameters of the Table 1 also we
observation that average number of iterations of the Ishikawa’s iteration process is below
respect to others processes.
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Figure 1. Error plotting En for Choice x0 in Example 3.1.

4. Conclusion

In this paper, we establish results as follows:

(1) Let C be a nonempty closed convex subset of a complete CAT(0) space (X, d).
Let S, T : C → C be square α-nonexpansive mappings and F (S) ∩ F (T ) be a
the set of all common fixed points of two nonexpansive mappings T and S of C.
Assume there exists p ∈ F (S)∩F (T ). Suppose that {xn} is defined by Ishikawa’s
iteration (1.3). Then

lim
n→∞

d(Sxn, xn) = 0 = lim
n→∞

d(Txn, xn).

(2) Let C be a nonempty closed convex subset of a complete CAT(0) space (X, d).
Let S, T : C → C be square α-nonexpansive mappings. Assume C satisfies Opial’s
condition and the sequence defined be Ishikawa’s iteration. If F (S) ∩ F (T ) 6= ∅
then then {xn} ∆-converges to a unique common fixed point of S and T.

(3) Let C be a nonempty closed convex subset of a complete CAT(0) space (X, d).
Let S, T : C → C be square α-nonexpansive mappings. Assume C satisfies Opial’s
condition and the sequence defined be Ishikawa’s iteration. If F (S) ∩ F (T ) 6= ∅
then {xn}converges strongly to a common fixed point of S and T if and only if
lim infn→∞ d(xn, F (S) ∩ F (T )) = 0, where d(x, F (S) ∩ F (T )) := inf{d(x, p)|p ∈
F (S) ∩ F (T )}.
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