β-Ideals of β-Subalgebras via Cubic Intuitionistic Set

Prakasam Muralikrishna ${ }^{1, *}$, Arsham Borumand Saeid ${ }^{2}$, R. Vinodkumar ${ }^{3}$ and Govindasamy Palani ${ }^{4}$
${ }^{1}$ Assistant Professor, ${ }^{3}$ Research Scholar(PT), PG and Research Department of Mathematics, Muthurangam Government Arts College (Autonomus) (Affiliated to Thiruvalluvar University), Vellore, 632 002, India e-mail : pmkrishna@rocketmail.com
${ }^{2}$ Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran
e-mail : arsham@uk.ac.in
${ }^{3}$ Assistant Professor, Department of Mathematics, Prathyusha Engineering College, Aranvoyalkuppam, Thiruvallur, 602 025, India
e-mail : vinodmaths85@gmail.com
${ }^{4}$ Assistant Professor, Department of Mathematics, Dr. Ambedkar Government Arts College, Chennai, 600 039, India
e-mail : gpalani32@yahoo.co.in

Abstract

Cubic intuitionistic fuzzy sets are an effective and versatile technique for encoding ambiguous data. In this paper, the notion of β-ideals have been merged with cubic intuitionistic set. The perception of cubic intuitionistic ideals of β-algebra is established with relavent results. Moreover, various properties on Cartesian product and the homomorphism of cubic intuitionistic ideals of β-algebra are studied. Further, multiplication of cubic intuitionistic β-ideals is introduced and few of its related results were investigated.

MSC: 06F35; 03G25; 08A72; 03E72
Keywords: β-algebra; β-ideals; cubic intuitionistic fuzzy; cubic β-ideals; cubic intuitionistic ideals

Submission date: 12.12.2021 / Acceptance date: 16.08.2022

1. Introduction

After Zadeh's[1] fuzzy set, Atanassov[2] proposed the notion of intuitionistic fuzzy sets with degrees of membership and non-membership. Aub Ayub Ansari and Chandramouleeswaran[22] established the concept of fuzzy β-subalgebras of β-algebra and discussed some of its analogous outcomes. Sujatha, Chandramouleeswaran and Muralikrishna[3] introduced the notion of intuitionistic Fuzzy β-sub algebras of β-algebras. The thought of β-algebra was explored by Neggers and Kim[4], where two operations were coupled. The notion of interval valued fuzzy β-ideals were presented by Hemavathi, Muralikrishna and Palanivel $[5,6]$ and also they have extended the idea of interval valued intuitionistic fuzzy β-subalgebras and dealt some fascinating results. Borumand Saeid, Muralikrishna and

[^0]Hemavathi[7] developed the notion of bi-normed intuitionistic fuzzy β-ideal. The idea of cubic intuitionistic structures of $B C I$-algebras has been initiated by Tapan Senapati, Young Bae Jun, Muhiddin and Shum [8].

The concept of cubic intuitionistic subalgebras and closed cubic intuitionistic ideals of B-algebras were discussed by Tapan Senapati, Young Bae Jun and Shum[9, 10]. Moreover, the authors initiated the conception of cubic intuitionistic structure of KU-algebras. In addition that, the Characterizations and relations of cubic intuitionistic KU-subalgebras and KU-ideals of KU-algebras are presented. Moshin Kalid [11] proposed the notion of multiplicative interpretation of neutrosophic cubic Set on B-Algebra. The conceptual interpretation of the cubic intuitionistic implicative ideals of $B C K$-algebras presented by Tapan Senapati [12]. Relationship between a cubic intuitionistic subalgebra, a cubic intuitionistic ideal and a cubic intuitionistic implicative ideal are also discussed. Senapati, Yager and Chen[13] were identified some impressive applications in multi-criteria decisionmaking based on cubic intuitionistic WASPAS technique. The idea of Cubic subalgebras and ideals have applied into the framework of $B C K / B C I$-algebras by Jun, Kim, Song and Kang[14]. Besides, they have presented a novel extension of cubic sets and its applications in $B C K / B C I$-algebras and provided various results based on their perception. Garg and Kaur[15] established the thought of Cubic Intuitionistic Fuzzy Sets and its Fundamental Properties.

Jun, Song and Kim[16] applied Cubic interval valued intuitionistic fuzzy sets into $B C K$ and $B C I$ - algebras. The authors discussed the relation between cubic interval valued intuitionistic fuzzy subalgebra and cubic intuitionistic fuzzy ideal in $B C K / B C I$-algebras. The novel idea of Cubic Intuitionistic q-ideals of BCI-algebras has been described by Senapati, Jana, Pal, Jun[17]. Relationship between a cubic intuitionistic subalgebra, a cubic intuitionistic ideal, and a cubic intuitionistic q-ideal is also discussed. Muralikrishna, Vinodkumar and Palani[18] have discussed some aspects on cubic fuzzy β-subalgebra of β-algebra. Recently, Muralikrishna, Davvaz, Vinodkumar and Palani[19] analysed the applications of cubic level set on β-subalgebras. Muralikrishna, Borumand Saeid, Vinodkumar and Palani[20] have provided an admirable overview of cubic intuitionistic β-subalgebras in which the conditions of β-algebra were enforced into the cubic intuitionistic fuzzy structure. Recently, Senapati, Jun, Iampan, Ronnason [21] have applied Cubic Intuitionistic Structure to Commutative Ideals of BCK-Algebras. The association between a cubic intuitionistic subalgebra, cubic intuitionistic ideal, and cubic intuitionistic commutative ideal is also considered. With all these inspiration, this paper provides the study of cubic intuitionistic β-ideals and some compelling results were presented.

2. Preliminaries

This section reveals the necessary definitions required for the work.
Definition 2.1. [4] A β - algebra is a non-empty set \mho with a constant 0 and two binary operations + and - satisfying the following axioms:
(i) $\mathfrak{p}-0=\mathfrak{p}$
(ii) $(0-\mathfrak{p})+\mathfrak{p}=0$
(iii) $(\mathfrak{p}-\mathfrak{q})-\mathfrak{r}=\mathfrak{p}-(\mathfrak{r}+\mathfrak{q}) \forall \mathfrak{p}, \mathfrak{q}, \mathfrak{r} \in \mathcal{J}$.

Example 2.2. The following Cayley table shows $(\mho=\{0,1,2,3\},+,-, 0)$ is a β-algebra.

+	0	1	2	3
0	0	1	2	3
1	1	3	0	2
2	2	0	3	1
3	3	2	1	0

-	0	1	2	3
0	0	2	1	3
1	1	0	3	2
2	2	3	0	1
3	3	1	2	0

Definition 2.3. [4] A non empty subset \mathfrak{A} of a β-algebra $(\mho,+,-, 0)$ is called a β subalgebra of \mathcal{J}, if
(i) $\mathfrak{p}+\mathfrak{q} \in \mathfrak{A}$ and
(ii) $\mathfrak{p}-\mathfrak{q} \in \mathfrak{A} \quad \forall \mathfrak{p}, \mathfrak{q} \in \mathfrak{A}$.

Definition 2.4. [22] A non-empty subset \mathfrak{I} of a β-algebra $(\mho,+,-, 0)$ is called a β-ideal of \mho, if
(i) $0 \in \mathfrak{I}$
(ii) $\mathfrak{p}+\mathfrak{q} \in \mathfrak{I}$
(iii) $\mathfrak{p}-\mathfrak{q} \& \mathfrak{q} \in \mathfrak{I}$ then $\mathfrak{p} \in \mathfrak{I} \quad \forall \mathfrak{p}, \mathfrak{q} \in \mathcal{J}$.

Definition 2.5. [14] Let \mho be a non empty set. By a cubic set in \mho we mean a structure $C=\left\{\left\langle x, \bar{\Im}_{C}(\mathfrak{p}), \aleph_{C}(\mathfrak{p})\right\rangle: x \in \mho\right\}$
in which $\bar{\Im}_{C}$ is an interval valued fuzzy set in \mho and \aleph_{C} is a fuzzy set in \mho.
Definition 2.6. [8, 15, 16] Let \mho be a non-empty set. By a Cubic intuitionistic set in \mho we indicate a structure $\left.\mathfrak{C}=\left\{\left\langle x, \Psi(\mathfrak{p}), \rho_{(} \mathfrak{p}\right)\right\rangle: \mathfrak{p} \in \mho\right\}$ in which Ψ is an interval valued intuitionistic fuzzy set in \mho and ρ is an intuitionistic fuzzy set in \mho. Since $\Psi=$ $\left\{\left\langle\mathfrak{p}, \bar{\Im}_{\Psi}(\mathfrak{p}), \bar{\aleph}_{\Psi}(\mathfrak{p})\right\rangle: \mathfrak{p} \in \mho \mathcal{J}\right\}$ and $\rho=\left\{\left\langle\mathfrak{p}, \mathfrak{G}_{\rho}(\mathfrak{p}), \mathfrak{H}_{\rho}(\mathfrak{p})\right\rangle: \mathfrak{p} \in \mho\right\}$
Definition 2.7. [18] Let $\mathfrak{C}=\left\{\left\langle\mathfrak{p}, \bar{\Im}_{\mathfrak{C}}(\mathfrak{p}), \aleph_{\mathfrak{C}}(\mathfrak{p})\right\rangle: \mathfrak{p} \in \mho\right\}$ be a cubic set in a non empty set \mho. Then the set \mathfrak{C} is a cubic β - subalgebra if it satisfies the following conditions.
(i) $\bar{\Im}_{\mathfrak{C}}(\mathfrak{p}+\mathfrak{q}) \geq \operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{C}}(\mathfrak{p}), \bar{\Im}_{\mathfrak{C}}(\mathfrak{q})\right\} \& \bar{\Im}_{\mathfrak{C}}(\mathfrak{p}-\mathfrak{q}) \geq \operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{C}}(\mathfrak{p}), \bar{\Im}_{\mathfrak{C}}(\mathfrak{q})\right\}$
(ii) $\aleph_{\mathfrak{c}}(\mathfrak{p}+\mathfrak{q}) \leq \max \left\{\aleph_{\mathfrak{c}}(\mathfrak{p}), \aleph_{\mathfrak{c}}(\mathfrak{q})\right\} \& \aleph_{\mathfrak{C}}(\mathfrak{p}-\mathfrak{q}) \leq \max \left\{\aleph_{\mathfrak{c}}(\mathfrak{p}), \aleph_{\mathfrak{c}}(\mathfrak{q})\right\} \forall \mathfrak{p}, \mathfrak{q} \in \mathcal{V}$

Definition 2.8. [18] Let $\mathfrak{C}=\{\langle\mathfrak{p}, \Psi(\mathfrak{p}), \rho(\mathfrak{p})\rangle: \mathfrak{p} \in \mho\}$ be a cubic intuitionistic set in \mho, where Ψ is an interval valued intuitionistic fuzzy set in \mho and ρ is an intuitionistic fuzzy set in \mho.Then the set \mathfrak{C} is called a cubic intuitionistic β-subalgebra if it satisfies the following conditions:
(i) $\bar{\Im}_{\Psi}(\mathfrak{p}+\mathfrak{q}) \geq \operatorname{rmin}\left\{\bar{\Im}_{\Psi}(\mathfrak{p}), \bar{\Im}_{\Psi}(\mathfrak{q})\right\} \& \bar{\Im}_{\Psi}(\mathfrak{p}-\mathfrak{q}) \geq \operatorname{rmin}\left\{\bar{\Im}_{\Psi}(\mathfrak{p}), \bar{\Im}_{\Psi}(\mathfrak{q})\right\}$
(ii) $\bar{\aleph}_{\Psi}(\mathfrak{p}+\mathfrak{q}) \leq \operatorname{rmax}\left\{\bar{\aleph}_{\Psi}(\mathfrak{p}), \bar{\aleph}_{\Psi}(\mathfrak{q})\right\} \& \bar{\aleph}_{\Psi}(\mathfrak{p}-\mathfrak{q}) \leq \operatorname{rmax}\left\{\bar{\aleph}_{\Psi}(\mathfrak{p}), \bar{\aleph}_{\Psi}(\mathfrak{q})\right\}$
(iii) $\mathfrak{G}_{\rho}(\mathfrak{p}+\mathfrak{q}) \leq \max \left\{\mathfrak{G}_{\rho}(\mathfrak{p}), \mathfrak{G}_{\rho}(\mathfrak{q})\right\} \& \mathfrak{G}_{\rho}(\mathfrak{p}-\mathfrak{q}) \leq \max \left\{\mathfrak{G}_{\rho}(\mathfrak{p}), \mathfrak{G}_{\rho}(\mathfrak{q})\right\}$
(iv) $\mathfrak{H}_{\rho}(\mathfrak{p}+\mathfrak{q}) \geq \min \left\{\mathfrak{H}_{\rho}(\mathfrak{p}), \mathfrak{H}_{\rho}(\mathfrak{q})\right\} \& \mathfrak{H}_{\rho}(\mathfrak{p}-\mathfrak{q}) \geq \min \left\{\mathfrak{H}_{\rho}(\mathfrak{p}), \mathfrak{H}_{\rho}(\mathfrak{q})\right\} \quad \forall \mathfrak{p}, \mathfrak{q} \in \mathcal{J}$

3. Cubic Intuitionistic β-Ideals

This section presents the definitions of cubic intuitionistic β-ideals of β-algebras and give some results.
Definition 3.1. Let $\mathfrak{C}=\{\mathfrak{p}, \Psi(\mathfrak{p}), \rho(\mathfrak{p}): \mathfrak{p} \in \mathcal{J}\}$ be a cubic intuitionistic set in \mathcal{V} is referred as a cubic intuitionistic β-ideal of \mho if it satisfies the subsequent conditions for all $\mathfrak{p}, \mathfrak{q} \in \mho$
(i) $\bar{\varsigma}_{\Psi}(0) \geq \bar{\varsigma}_{\Psi}(\mathfrak{p}) \& \bar{\aleph}_{\Psi}(0) \leq \bar{\aleph}_{\Psi}(\mathfrak{p})$
(ii) $\mathfrak{G}_{\rho}(0) \leq \mathfrak{G}_{\rho}(\mathfrak{p}) \& \mathfrak{H}_{\rho}(0) \geq \mathfrak{H}_{\rho}(\mathfrak{p})$
(iii) $\bar{\Im}_{\Psi}(\mathfrak{p}+\mathfrak{q}) \geq \operatorname{rmin}\left\{\bar{\varsigma}_{\Psi}(\mathfrak{p}), \bar{\Im}_{\Psi}(\mathfrak{q})\right\} \& \bar{\aleph}_{\Psi}(\mathfrak{p}+\mathfrak{q}) \leq \operatorname{rmax}\left\{\bar{\aleph}_{\Psi}(\mathfrak{p}), \bar{\aleph}_{\Psi}(\mathfrak{q})\right\}$
(iv) $\mathfrak{G}_{\rho}(\mathfrak{p}+\mathfrak{q}) \leq \max \left\{\mathfrak{G}_{\rho}(\mathfrak{p}), \mathfrak{G}_{\rho}(\mathfrak{q})\right\} \& \mathfrak{H}_{\rho}(\mathfrak{p}+\mathfrak{q}) \geq \min \left\{\mathfrak{H}_{\rho}(\mathfrak{p}), \mathfrak{H}_{\rho}(\mathfrak{q})\right\}$
(v) $\bar{\Im}_{\Psi}(\mathfrak{p}) \geq \operatorname{rmin}\left\{\bar{\Im}_{\Psi}(\mathfrak{p}-\mathfrak{q}), \bar{\Im}_{\Psi}(\mathfrak{q})\right\} \& \bar{\aleph}_{\Psi}(\mathfrak{p}) \leq \operatorname{rmax}\left\{\bar{\aleph}_{\Psi}(\mathfrak{p}-\mathfrak{q}), \bar{\aleph}_{\Psi}(\mathfrak{q})\right\}$
$\left(\right.$ vi) $\mathfrak{G}_{\rho}(\mathfrak{p}) \leq \max \left\{\mathfrak{G}_{\rho}(\mathfrak{p}-\mathfrak{q}), \mathfrak{G}_{\rho}(\mathfrak{q})\right\} \& \mathfrak{H}_{\rho}(\mathfrak{p}) \geq \min \left\{\mathfrak{H}_{\rho}(\mathfrak{p}-\mathfrak{q}), \mathfrak{H}_{\rho}(\mathfrak{q})\right\}$
Example 3.2. Let $\mho=\{0,1,2,3\}$ be a β-algebra with constant 0 and binary operations + and - are defined on \mho as in the following cayley's table.

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

-	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	3
3	3	2	1	0

Define a Cubic intuitionistic set $\mathfrak{C}=\left\{\left\langle\mathfrak{p}, \Psi(\mathfrak{p}), \rho_{(\mathfrak{p})\rangle}: \mathfrak{p} \in \mathcal{\mathcal { V }}\right\}\right.$ in \mathcal{J} as follows:

\mathfrak{p}	$\Psi=\left\langle\bar{\Im}_{\Psi}, \bar{\aleph}_{\Psi}\right\rangle$	$\rho=\left(\mathfrak{G}_{\rho}, \mathfrak{H}_{\rho}\right)$
0	$\langle[0.4,0.6],[0.1,0.4]\rangle$	$(0.4,0.7)$
1	$\langle[0.2,0.4],[0.3,0.6]\rangle$	$(0.4,0.3)$
2	$\langle[0.3,0.5],[0.2,0.5]\rangle$	$(0.4,0.7)$
3	$\langle[0.2,0.4],[0.3,0.6]\rangle$	$(0.6,0.3)$

Then \mathfrak{C} is a Cubic intuitionistic β-ideal of \mho.
Theorem 3.3. Let $\mathfrak{C}=\{\mathfrak{p}, \Psi(\mathfrak{p}), \rho(\mathfrak{p}): \mathfrak{p} \in \mho\}$ be a Cubic intuitionistic β - ideal of a β-algebra \mho. If $\mathfrak{p} \leq \mathfrak{q}$ then $\bar{\Im}_{\Psi}(\mathfrak{p}) \geq \bar{\Im}_{\Psi}(\mathfrak{q}) \quad \mathcal{\aleph} \bar{\aleph}_{\Psi}(\mathfrak{p}) \leq \bar{\aleph}_{\Psi}(\mathfrak{q})$ and $\mathfrak{G}_{\rho}(\mathfrak{p}) \leq \mathfrak{G}_{\rho}(\mathfrak{q})$ छ $\mathfrak{H}_{\rho}(\mathfrak{p}) \geq \mathfrak{H}_{\rho}(\mathfrak{q})$.

Proof. For $\mathfrak{p}, \mathfrak{q} \in \mathcal{V}, \mathfrak{p} \leq \mathfrak{q} \Rightarrow \mathfrak{p}-\mathfrak{q}=0$ then

$$
\begin{aligned}
\bar{\Im}_{\Psi}(\mathfrak{p}) & \geq \operatorname{rmin}\left\{\bar{\Im}_{\Psi}(\mathfrak{p}-\mathfrak{q}), \bar{\Im}_{\Psi}(\mathfrak{q})\right\} \\
& =\operatorname{rmin}\left\{\bar{\varsigma}_{\Psi}(0), \bar{\Im}_{\Psi}(\mathfrak{q})\right\} \\
& =\bar{\Im}_{\Psi}(\mathfrak{q})
\end{aligned}
$$

Similarly, we can have $\bar{\aleph}_{\Psi}(\mathfrak{p}) \leq \bar{\aleph}_{\Psi}(\mathfrak{q})$

$$
\begin{aligned}
\mathfrak{G}_{\rho}(\mathfrak{p}) & \leq \max \left\{\mathfrak{G}_{\rho}(\mathfrak{p}-\mathfrak{q}), \mathfrak{G}_{\rho}(\mathfrak{q})\right\} \\
& =\max \left\{\mathfrak{G}_{\rho}(0), \mathfrak{G}_{\rho}(\mathfrak{q})\right\} \\
& =\mathfrak{G}_{\rho}(\mathfrak{q})
\end{aligned}
$$

Similarly, we can have $\mathfrak{H}_{\rho}(\mathfrak{p}) \geq \mathfrak{H}_{\rho}(\mathfrak{q})$

Theorem 3.4. Let \mathfrak{C} be a subset of \mho. Define a cubic intuitionistic set $\chi_{\mathfrak{C}}: \mho \rightarrow D[0,1]$ such that

$$
\bar{\Im}_{\chi_{\mathfrak{C}}}(\mathfrak{p})=\left\{\begin{array}{l}
{\left[t_{0}, t_{1}\right] \quad: \mathfrak{p} \in \mathfrak{C}} \\
{\left[t_{2}, t_{3}\right] \quad: \mathfrak{p} \notin \mathfrak{C}}
\end{array} \quad \bar{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p})=\left\{\begin{array}{l}
{\left[s_{0}, s_{1}\right]} \\
{\left[s_{2}, s_{3}\right]}
\end{array}: \mathfrak{p} \in \mathfrak{p} \notin \mathfrak{C}\right.\right.
$$

$$
\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p})=\left\{\begin{array}{ll}
k & : \mathfrak{p} \in \mathfrak{C} \\
l & : \mathfrak{p} \notin \mathfrak{C}
\end{array} \quad \mathfrak{H}_{\chi \mathfrak{C}}(\mathfrak{p})= \begin{cases}m & : \mathfrak{p} \in \mathfrak{C} \\
n & : \mathfrak{p} \notin \mathfrak{C}\end{cases}\right.
$$

where $\left[t_{0}, t_{1}\right],\left[t_{2}, t_{3}\right],\left[s_{0}, s_{1}\right],\left[s_{2}, s_{3}\right] \in D[0,1] \mathcal{G} k, l, m, n \in[0,1]$ with $\left[t_{0}, t_{1}\right]$
$>\left[t_{2}, t_{3}\right],\left[s_{0}, s_{1}\right]<\left[s_{2}, s_{3}\right] \& k<l, m>n$.
Then $\chi_{\mathfrak{C}}$ is a cubic intuitionistic β-ideal of \mho, if and only if \mathfrak{C} is a β-ideal of \mho.
Proof. Suppose $\chi_{\mathfrak{c}}$ is cubic set on \mho.
(i) $\bar{\Im}_{\chi_{\mathfrak{c}}}(0) \geq \bar{\Im}_{\chi_{\mathfrak{c}}}(\mathfrak{p}) \forall \mathfrak{p} \in \mho$. Then $\bar{\Im}_{\chi \mathfrak{c}}(0)=\left[t_{0}, t_{1}\right]$ or $\left[t_{2}, t_{3}\right]$ with $\left[t_{0}, t_{1}\right]$ $>\left[t_{2}, t_{3}\right]$. \qquad
If $\bar{\Im}_{\chi_{\mathfrak{C}}}(0)=\left[t_{0}, t_{1}\right]$, then $[0,0] \in \mathfrak{C}$ which gives $\bar{\Im}_{\chi \mathfrak{c}}(0)=\left[t_{2}, t_{3}\right] \ldots \ldots$
From (1) and (2), $\left[t_{2}, t_{3}\right] \geq \bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{p})=\left[t_{0}, t_{1}\right]$, Which is a contradiction. Hence $\bar{\Im}_{\chi \mathscr{e}}(0)=$ $\left[t_{0}, t_{1}\right]$, gives $[0,0] \in \mathfrak{C}$.
(ii) For $\mathfrak{p}, \mathfrak{q} \in \mathfrak{C}$ we have $\bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{p})=\left[t_{0}, t_{1}\right]=\bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{q})$. Also, $\bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{p}+\mathfrak{q}) \geq \operatorname{rmin}\left\{\bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{p}), \bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{q})\right\}=\operatorname{rmin}\left\{\left[t_{0}, t_{1}\right],\left[t_{0}, t_{1}\right]\right\}=\left[t_{0}, t_{1}\right]$.
Therefore $\bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{p}+\mathfrak{q})=\left[t_{0}, t_{1}\right]$ yields $\mathfrak{p}+\mathfrak{q} \in C$.
(iii) For any $\mathfrak{p}, \mathfrak{q} \in \mho$ if $\mathfrak{p}-\mathfrak{q} \& \mathfrak{q} \in \mathfrak{C}$ then $\bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{p}-\mathfrak{q})=\left[t_{0}, t_{1}\right]=\bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{q})$. Now, $\bar{\Im}_{\chi \mathfrak{C}}(\mathfrak{p}) \geq \operatorname{rmin}\left\{\bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{p}-\mathfrak{q}), \bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{q})\right\}=\operatorname{rmin}\left\{\left[t_{0}, t_{1}\right],\left[t_{0}, t_{1}\right]\right\}=\left[t_{0}, t_{1}\right]$ hence $\mathfrak{p} \in \mathfrak{C}$.
(i) $\bar{\aleph}_{\chi \mathfrak{e}}(0) \leq \bar{\aleph}_{\chi \mathfrak{C}}(\mathfrak{p}) \forall \mathfrak{p} \in \mho$. We have $\bar{\aleph}_{\chi_{\mathfrak{E}}}(0)=\left[s_{0}, s_{1}\right]$ or $\left[s_{2}, s_{3}\right]$ with $\left[s_{0}, s_{1}\right]$
$<\left[s_{2}, s_{3}\right]$.

If $\bar{\aleph}_{\chi \mathfrak{e}}(0)=\left[s_{0}, s_{1}\right]$, then $[1,1] \in C$ gives $\bar{\aleph}_{\chi \mathfrak{e}}(0)=\left[s_{2}, s_{3}\right]$.
(3) and $(4) \Rightarrow\left[s_{2}, s_{3}\right] \leq \bar{\aleph}_{\chi \mathfrak{e}}(\mathfrak{p})=\left[s_{0}, s_{1}\right]$, Which is a contradiction. Hence $\bar{\aleph}_{\chi \mathfrak{C}}(0)=$ $\left[s_{0}, s_{1}\right]$, gives $[1,1] \in \mathfrak{C}$.
(ii) For $\mathfrak{p}, \mathfrak{q} \in \mathfrak{C}$ we have $\bar{\aleph}_{\chi \mathfrak{c}}(\mathfrak{p})=\left[s_{0}, s_{1}\right]=\bar{\aleph}_{\chi \mathfrak{C}}(\mathfrak{q})$. Now ,
$\bar{\aleph}_{\chi \mathfrak{C}}(\mathfrak{p}+\mathfrak{q}) \leq \operatorname{rmax}\left\{\bar{\aleph}_{\chi \mathfrak{C}}(\mathfrak{p}), \bar{\aleph}_{\chi \mathfrak{C}}(\mathfrak{q})\right\}=\operatorname{rmax}\left\{\left[s_{0}, s_{1}\right],\left[s_{0}, s_{1}\right]\right\}=\left[s_{0}, s_{1}\right]$.
Therefore $\bar{\aleph}_{\chi \mathfrak{c}}(\mathfrak{p}+\mathfrak{q})=\left[s_{0}, s_{1}\right]$ gives $\mathfrak{p}+\mathfrak{q} \in \mathfrak{C}$.
(iii) For any $\mathfrak{p}, \mathfrak{q} \in \mho$ if $\mathfrak{p}-\mathfrak{q} \& \mathfrak{q} \in \mathfrak{C}$ then $\bar{\aleph}_{\chi_{\mathfrak{c}}}(\mathfrak{p}-\mathfrak{q})=\left[s_{0}, s_{1}\right]=\bar{\aleph}_{\chi_{\mathfrak{c}}}(\mathfrak{q})$. Also $\bar{\aleph}_{\chi \mathfrak{e}}(\mathfrak{p}) \leq \operatorname{rmax}\left\{\bar{\aleph}_{\chi \mathfrak{c}}(\mathfrak{p}-\mathfrak{q}), \bar{\aleph}_{\chi \mathfrak{e}}(\mathfrak{q})\right\}=\operatorname{rmax}\left\{\left[s_{0}, s_{1}\right],\left[s_{0}, s_{1}\right]\right\}=\left[s_{0}, s_{1}\right]$ then $\mathfrak{p} \in \mathfrak{C}$.
$(i) \mathfrak{G}_{\chi \mathfrak{e}}(0) \leq \mathfrak{G}_{\chi \mathfrak{c}}(\mathfrak{p}) \forall \mathfrak{p} \in \mathcal{V}$.Then $\mathfrak{G}_{\chi_{\mathfrak{C}}}(0)=k$ or l with $k<l . \ldots$
If $\mathfrak{G}_{\chi_{\mathfrak{C}}}(0)=k$, then $1 \in \mathfrak{C}$. Therefore $\mathfrak{G}_{\chi \mathfrak{c}}(0)=l$
(5) and (6) yields $l \leq \mathfrak{G}_{\chi \mathfrak{e}}(\mathfrak{p})=k$, Which is a contradiction. Hence $\mathfrak{G}_{\chi \mathfrak{c}}(0)=k$, gives $1 \in \mathfrak{C}$.
(ii) For $\mathfrak{p}, \mathfrak{q} \in \mathfrak{C} \Rightarrow \mathfrak{G}_{\chi \mathfrak{c}}(\mathfrak{p})=k=\mathfrak{G}_{\chi \mathfrak{c}}(\mathfrak{q})$. Now, $\mathfrak{G}_{\chi \mathfrak{c}}(\mathfrak{p}+\mathfrak{q}) \leq \max \left\{\mathfrak{G}_{\chi \mathfrak{c}}(\mathfrak{p}), \mathfrak{G}_{\chi \mathfrak{c}}(\mathfrak{q})\right\}$ $=\max \{k, k\}=k$. Therefore, $\mathfrak{G}_{\chi \mathfrak{c}}(\mathfrak{p}+) \mathfrak{q}=k$ then $\mathfrak{p}+\mathfrak{q} \in \mathfrak{C}$.
(iii) For any $\mathfrak{p}, \mathfrak{q} \in \mathcal{J}$ if $\mathfrak{p}-\mathfrak{q} \& \mathfrak{q} \in \mathfrak{C} \Rightarrow \mathfrak{G}_{\chi \mathfrak{c}}(\mathfrak{p}-\mathfrak{q})=k=\mathfrak{G}_{\chi \mathfrak{e}}(\mathfrak{q})$.

Now $\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) \leq \max \left\{\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p}-\mathfrak{q}), \mathfrak{G}_{\chi_{C}}(\mathfrak{q})\right\}=\max \{k, k\}=k$ then $\mathfrak{p} \in \mathfrak{C}$.
(i) $\mathfrak{H}_{\chi_{\mathfrak{c}}}(0) \geq \mathfrak{H}_{\chi_{\mathfrak{e}}}(\mathfrak{p})$ then $\mathfrak{H}_{\chi_{\mathfrak{e}}}(0)=m$ or n with $m>n \ldots$ (7). If $\mathfrak{H}_{\chi_{C}}(0)=m$, then $0 \in \mathfrak{C}$. Therefore $\mathfrak{H}_{\chi \mathfrak{c}}(0)=n \ldots \ldots \ldots$. (8). From (7) and (8), $n \geq \mathfrak{H}_{\chi \mathfrak{c}}(\mathfrak{p})=m$, Which is a contradiction. Hence $\mathfrak{H}_{\chi \mathfrak{c}}(0)=m$, gives $0 \in \mathfrak{C}$.
(ii) For $\mathfrak{p}, \mathfrak{q} \in \mathfrak{C}$ then $\mathfrak{H}_{\chi \mathfrak{c}}(\mathfrak{p})=m=\mathfrak{H}_{\chi \mathfrak{c}}(\mathfrak{q})$. Now, $\mathfrak{H}_{\chi \mathfrak{e}}(x+\mathfrak{q}) \geq \min \left\{\mathfrak{H}_{\chi \mathfrak{c}}(\mathfrak{p})\right.$, $\left.\mathfrak{H}_{\chi \mathfrak{c}}(\mathfrak{q})\right\}=\min \{m, m\}=m$. Therefore, $\mathfrak{H}_{\chi \mathfrak{c}}(\mathfrak{p}+\mathfrak{q})=m$ then $\mathfrak{p}+\mathfrak{q} \in \mathfrak{C}$.
(iii) For any $\mathfrak{p}, \mathfrak{q} \in \mathcal{J}$ if $\mathfrak{p}-\mathfrak{q} \& \mathfrak{q} \in \mathfrak{C} \Rightarrow \mathfrak{H}_{\chi \mathfrak{c}}(\mathfrak{p}-\mathfrak{q})=m=\mathfrak{H}_{\chi \mathfrak{c}}(\mathfrak{q})$.

Now $\mathfrak{H}_{\chi_{\mathfrak{e}}}(\mathfrak{p}) \geq \min \left\{\mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p}-\mathfrak{q}), \mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\right\}=\min \{m, m\}=m \Rightarrow \mathfrak{p} \in \mathfrak{C}$. Hence \mathfrak{C} is a cubic intuitionistic β-ideal of \mho.

Conversely, assume \mathfrak{C} is cubic intuitionistic β-ideal of \mho, then $[0,0] \in \mathfrak{C}$ gives $\bar{\Im}_{\chi_{\mathfrak{c}}}(0)=$ $\left[t_{0}, t_{1}\right]$. Also $\operatorname{Im}\left(\bar{\Im}_{\chi \mathfrak{c}}\right)=\left\{\left[t_{0}, t_{1}\right],\left[t_{2}, t_{3}\right]\right\} \&\left[t_{0}, t_{1}\right]>\left[t_{2}, t_{3}\right]$ thus $\bar{\Im}_{\chi \mathscr{C}}(0) \geq \bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{p})$ for allp $\in \mho$. For $\mathfrak{p , q} \in \mathfrak{C}$ we have $\mathfrak{p}+\mathfrak{q} \in \mathfrak{C}$ then $\bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{p})=\bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{q})=\bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{p}+\mathfrak{q})=\left[t_{0}, t_{1}\right] \geq$ $\operatorname{rmin}\left\{\bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{p}), \bar{\Im}_{\chi_{\mathfrak{c}}}(\mathfrak{q})\right\}$. Hence $\bar{\Im}_{\chi_{\mathfrak{c}}}(\mathfrak{p}+\mathfrak{q}) \geq \operatorname{rmin}\left\{\bar{\Im}_{\chi_{\mathfrak{c}}}(\mathfrak{p}), \bar{\Im}_{\chi_{\mathfrak{e}}}(\mathfrak{q})\right\}$. For $\mathfrak{p}, \mathfrak{q} \in \mho$ if $\mathfrak{p}-\mathfrak{q}$ and $\mathfrak{q} \in \mathfrak{C}$ then $\mathfrak{p} \in \mathfrak{C}$.Moreover, $\bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{p})=\left[t_{0}, t_{1}\right]=\operatorname{rmin}\left\{\left[t_{0}, t_{1}\right],\left[t_{0}, t_{1}\right]\right\}=$ $\operatorname{rmin}\left\{\bar{\Im}_{\chi_{\mathfrak{c}}}(\mathfrak{p}-\mathfrak{q}), \bar{\Im}_{\chi_{\mathfrak{e}}}(\mathfrak{q})\right\}$. For some $\mathfrak{p} \in \mho$ if $\mathfrak{p}-\mathfrak{q} \in \mathfrak{C}$ and $\mathfrak{q} \notin \mathfrak{C} \Rightarrow \mathfrak{p} \in \mathfrak{C}$. Then we have $\bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{p})=\left[t_{2}, t_{3}\right]=\operatorname{rmin}\left\{\left[t_{0}, t_{1}\right],\left[t_{2}, t_{3}\right]\right\} \geq \operatorname{rmin}\left\{\bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{p}-\mathfrak{q}), \bar{\Im}_{\chi \mathfrak{c}}(\mathfrak{q})\right\}$. Hence $\bar{\Im}_{\chi \mathfrak{e}}(\mathfrak{p}) \geq \operatorname{rmin}\left\{\bar{\Im}_{\chi_{\mathfrak{e}}}(\mathfrak{p}-\mathfrak{q}), \bar{\Im}_{\chi \mathfrak{e}}(\mathfrak{q})\right\}$
$[1,1] \in \mathfrak{C}$ then $\bar{\aleph}_{\chi_{\mathfrak{E}}}(0)=\left[s_{0}, s_{1}\right]$. Also $\operatorname{Im}\left(\bar{\aleph}_{\chi_{\mathfrak{C}}}\right)=\left\{\left[s_{0}, s_{1}\right],\left[s_{2}, s_{3}\right]\right\} \&\left[s_{0}, s_{1}\right]<$ $\left[s_{2}, s_{3}\right] \Rightarrow \bar{\aleph}_{\chi \mathfrak{c}}(0) \leq \bar{\aleph}_{\chi \mathfrak{c}}(\mathfrak{p}) \forall \mathfrak{p} \in \mho$. For $\mathfrak{p}, \mathfrak{q} \in \mathfrak{C}$ gives $\mathfrak{p}+\mathfrak{q} \in \mathfrak{C}$. Then $\bar{\aleph}_{\chi \mathfrak{c}}(\mathfrak{p})=$ $\bar{\aleph}_{\chi \mathfrak{c}}(\mathfrak{q})=\bar{\aleph}_{\chi \mathfrak{e}}(\mathfrak{p}+\mathfrak{q})=\left[s_{0}, s_{1}\right] \leq \operatorname{rmax}\left\{\bar{\aleph}_{\chi \mathfrak{c}}(\mathfrak{p}), \bar{\aleph}_{\chi \mathfrak{c}}(\mathfrak{q})\right\}$.
Hence $\bar{\aleph}_{\chi \mathfrak{e}}(\mathfrak{p}+\mathfrak{q}) \leq \operatorname{rmax}\left\{\bar{\aleph}_{\chi_{\mathfrak{c}}}(\mathfrak{p}), \bar{\aleph}_{\chi \mathfrak{e}}(\mathfrak{q})\right\}$. For $\mathfrak{p}, \mathfrak{q} \in \mho$ if $\mathfrak{p}-\mathfrak{q}$ and $\mathfrak{q} \in \mathfrak{C}$ then $\mathfrak{p} \in \mathfrak{C}$. Also, $\bar{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p})=\left[s_{0}, s_{1}\right]=\operatorname{rmax}\left\{\left[s_{0}, s_{1}\right],\left[s_{0}, s_{1}\right]\right\}=\operatorname{rmax}\left\{\bar{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p}-\mathfrak{q}), \bar{\aleph}_{\chi \mathfrak{c}}(\mathfrak{q})\right\}$. For some $\mathfrak{p} \in \mho$ if $\mathfrak{p}-\mathfrak{q} \in \mathfrak{C}$ and $\mathfrak{q} \notin \mathfrak{C}$ gives $\mathfrak{p} \in \mathfrak{C}$. Then $\bar{\aleph}_{\chi \mathfrak{e}}(\mathfrak{p})=\left[s_{2}, s_{3}\right]=\operatorname{rmax}\left\{\left[s_{0}, s_{1}\right],\left[s_{2}, s_{3}\right]\right\} \leq$ $\operatorname{rmax}\left\{\bar{\aleph}_{\chi \mathfrak{c}}(\mathfrak{p}-\mathfrak{q}), \bar{\aleph}_{\chi \mathfrak{c}}(\mathfrak{q})\right\}$. Hence $\bar{\aleph}_{\chi \mathfrak{c}}(\mathfrak{p}) \leq \operatorname{rmax}\left\{\bar{\aleph}_{\chi \mathfrak{c}}(\mathfrak{p}-\mathfrak{q}), \bar{\aleph}_{\chi \mathfrak{c}}(\mathfrak{q})\right\}$

Now $1 \in \mathfrak{C}$ then $\mathfrak{G}_{\chi_{\mathfrak{C}}}(0)=k$. Also $\operatorname{Im}\left(\mathfrak{G}_{\chi_{\mathfrak{C}}}\right)=\{k, l\} \& k<l$ yields $\mathfrak{G}_{\chi_{\mathfrak{C}}}(0) \leq \mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p})$ $\forall \mathfrak{p} \in \mho$. For $\mathfrak{p}, \mathfrak{q} \in \mathfrak{C} \Rightarrow \mathfrak{p}+\mathfrak{q} \in \mathfrak{C}$. Then $\mathfrak{G}_{\chi_{\mathfrak{e}}}(\mathfrak{p})=\mathfrak{G}_{\chi_{\mathfrak{c}}}(\mathfrak{q})=\mathfrak{G}_{\chi_{\mathfrak{c}}}(\mathfrak{p}+\mathfrak{q})=k \leq$ $\max \left\{\mathfrak{G}_{\chi_{\mathfrak{c}}}(\mathfrak{p}), \mathfrak{G}_{\chi_{\mathfrak{c}}}(\mathfrak{q})\right\}$. Hence $\mathfrak{G}_{\chi_{\mathfrak{c}}}(\mathfrak{p}+\mathfrak{q}) \leq \max \left\{\mathfrak{G}_{\chi_{\mathfrak{c}}}(\mathfrak{p}), \mathfrak{G}_{\chi_{\mathfrak{c}}}(\mathfrak{q}\}\right.$. For $\mathfrak{p}, \mathfrak{q} \in \mathcal{J}$ if $\mathfrak{p}-\mathfrak{q}$ and $\mathfrak{q} \in \mathfrak{C}$ implies $\mathfrak{p} \in \mathfrak{C}$. Then $\mathfrak{G}_{\chi_{\mathfrak{e}}}(\mathfrak{p})=k=\max \{k, k\}=\max \left\{\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p}-\mathfrak{q}), \mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\right\}$. For some $\mathfrak{p} \in \mho$ if $\mathfrak{p - q} \in \mathfrak{C}$ and $\mathfrak{q} \notin \mathfrak{C}$ then $\mathfrak{p} \in \mathfrak{C}$. Then we have $\mathfrak{G}_{\chi_{\mathfrak{c}}}(\mathfrak{p})=l=\max \{k, l\} \leq$ $\max \left\{\mathfrak{G}_{\chi_{\mathfrak{c}}}(\mathfrak{p}-\mathfrak{q}), \mathfrak{G}_{\chi_{\mathfrak{c}}}(\mathfrak{q})\right\}$. Hence $\mathfrak{G}_{\chi_{\mathfrak{c}}}(\mathfrak{p}) \leq \max \left\{\mathfrak{G}_{\chi_{\mathfrak{c}}}(\mathfrak{p}-\mathfrak{q}), \mathfrak{G}_{\chi_{\mathfrak{c}}}(\mathfrak{q})\right\}$

If $0 \in \mathfrak{C}$ then $\mathfrak{H}_{\chi_{\mathfrak{c}}}(0)=k$. Also $\operatorname{Im}\left(\mathfrak{H}_{\chi_{\mathfrak{e}}}\right)=\{m, n\} \& m>n$ gives $\mathfrak{H}_{\chi_{\mathfrak{e}}}(0) \geq \mathfrak{H}_{\chi_{\mathfrak{e}}}(\mathfrak{p})$ $\forall \mathfrak{p} \in \mathcal{U}$.. For $\mathfrak{p}, \mathfrak{q} \in \mathfrak{C}$ we have $\mathfrak{p}+\mathfrak{q} \in \mathfrak{C}$. Then $\mathfrak{H}_{\chi_{\mathfrak{c}}}(\mathfrak{p})=\mathfrak{H}_{\chi_{\mathfrak{c}}}(\mathfrak{q})=\mathfrak{H}_{\chi_{\mathfrak{c}}}(\mathfrak{p}+\mathfrak{q})=$ $m \geq \min \left\{\mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p}), \mathfrak{H}_{\chi_{\mathfrak{c}}}(\mathfrak{q})\right\}$. Hence $\mathfrak{H}_{\chi_{\mathfrak{c}}}(\mathfrak{p}+\mathfrak{q}) \geq \min \left\{\mathfrak{H}_{\chi_{\mathfrak{c}}}(\mathfrak{p}), \mathfrak{H}_{\chi_{\mathfrak{e}}}(\mathfrak{q})\right\}$. For $\mathfrak{p}, \mathfrak{q} \in \mathcal{U}$ if $\mathfrak{p}-\mathfrak{q}$ and $\mathfrak{q} \in \mathfrak{C} \Rightarrow \mathfrak{p} \in \mathfrak{C}$. Then $\mathfrak{H}_{\chi \mathfrak{c}}(\mathfrak{p})=m=\min \{m, m\}=\min \left\{\mathfrak{H}_{\chi \mathfrak{c}}(\mathfrak{p}-\mathfrak{q}), \mathfrak{H}_{\chi \mathfrak{c}}(\mathfrak{q})\right\}$. For some $\mathfrak{p} \in \mho$ if $\mathfrak{p}-\mathfrak{q} \in \mathfrak{C}$ and $\mathfrak{q} \notin \mathfrak{C} \Rightarrow \mathfrak{p} \in \mathfrak{C}$. Then $\mathfrak{H}_{\chi \mathfrak{c}}(\mathfrak{p})=n=\min \{m, n\} \geq$ $\min \left\{\mathfrak{H}_{\chi_{\mathfrak{c}}}(\mathfrak{p}-\mathfrak{q}), \mathfrak{H}_{\chi_{\mathfrak{e}}}(\mathfrak{q})\right\} . \quad \mathfrak{H}_{\chi_{\mathfrak{E}}}(\mathfrak{p}) \geq \min \left\{\mathfrak{H}_{\chi_{\mathfrak{E}}}(\mathfrak{p}-\mathfrak{q}), \mathfrak{H}_{\chi_{\mathfrak{c}}}(\mathfrak{q})\right\}$. Hence $\chi_{\mathfrak{c}}$ is a cubic intuitionistic β-ideal of \mho.

4. Product on Cubic Intuitionistic β-Ideals

This section discusses the product on cubic intuitionistic β-ideals on β-algebras and some related results.

Definition 4.1. Let $(\mho,+,-, 0)$ and $(\Theta,+,-, 0)$ be two sets.
Let $\mathfrak{A}=\left\{\left\langle\mathfrak{p}, \Psi_{\mathfrak{A}}(\mathfrak{p}), \rho_{\mathfrak{A}}(\mathfrak{p})\right\rangle: \mathfrak{p} \in \mho\right\}$ and $\mathfrak{B}=\left\{\left\langle\mathfrak{q}, \Psi_{\mathfrak{B}}(\mathfrak{q}), \rho_{\mathfrak{B}}(\mathfrak{q})\right\rangle: \mathfrak{q} \in \Theta\right\}$ be cubic intuitionistic sets in \mho and Θ respectively. The Cartesian product of \mathfrak{A} and \mathfrak{B} denoted by $\mathfrak{A} \times \mathfrak{B}$ is defined to be the set
$\mathfrak{A} \times \mathfrak{B}=\left\{\left\langle(\mathfrak{p}, \mathfrak{q}), \Psi_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{p}, \mathfrak{q}), \rho_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{p}, \mathfrak{q})\right\rangle:(\mathfrak{p}, \mathfrak{q}) \in \mathcal{V} \times \Theta\right\}$
where $\Psi_{\mathfrak{A} \times \mathfrak{B}}=\left[\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}, \bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}\right] \& \rho_{\mathfrak{A} \times \mathfrak{B}}=\left(\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}, \mathfrak{H}_{\mathfrak{A} \times \mathfrak{B}}\right)$ and
$\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}: \mho \times \Theta \rightarrow D[0,1]$ is given by $\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{p}, \mathfrak{q})=\operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{A}}(\mathfrak{p}), \bar{\Im}(\mathfrak{q})\right\}$,
$\bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}: \mho \times \Theta \rightarrow D[0,1]$ is given by $\bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{p}, \mathfrak{q})=\operatorname{rmax}\left\{\bar{\aleph}_{\mathfrak{A}}(\mathfrak{p}), \bar{\aleph}_{\mathfrak{B}}(\mathfrak{q})\right\}$,
$\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}: \mho \times \Theta \rightarrow[0,1]$ is given by $\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{p}, \mathfrak{q})=\max \left\{\mathfrak{G}_{\mathfrak{A}}(\mathfrak{p}), \mathfrak{G}_{\mathfrak{B}}(\mathfrak{q})\right\}$ and $\mathfrak{H}_{\mathfrak{A} \times \mathfrak{B}}:$ $\mho \times \Theta \rightarrow[0,1]$ is given by $\mathfrak{H}_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{p}, \mathfrak{q})=\min \left\{\mathfrak{H}_{\mathfrak{A}}(\mathfrak{p}), \mathfrak{H}_{\mathfrak{B}}(\mathfrak{q})\right\}$

Theorem 4.2. Let $\mathfrak{A}=\left\{\left\langle\mathfrak{p}, \Psi_{\mathfrak{A}}(\mathfrak{p}), \rho_{\mathfrak{A}}(\mathfrak{p})\right\rangle: \mathfrak{p} \in \mho\right\}$ and $\mathfrak{B}=\left\{\left\langle\mathfrak{q}, \Psi_{\mathfrak{B}}(\mathfrak{q}), \rho_{\mathfrak{B}}(\mathfrak{q})\right\rangle: \mathfrak{q} \in \Theta\right\}$ be two cubic intuitionistic β-ideals of \mho and Θ respectively. Then $\mathfrak{A} \times \mathfrak{B}$ is also a cubic intuitionistic $\beta-$ ideal of $\mho \times \Theta$.

Proof. Let $\mathfrak{A}=\left\{\left\langle\mathfrak{p}, \Psi_{\mathfrak{A}}(\mathfrak{p}), \rho_{\mathfrak{A}}(\mathfrak{p})\right\rangle: \mathfrak{p} \in \mho\right\}$ and $\mathfrak{B}=\left\{\left\langle\mathfrak{q}, \Psi_{\mathfrak{B}}(\mathfrak{q}), \rho_{\mathfrak{B}}(\mathfrak{q})\right\rangle: \mathfrak{q} \in \Theta\right\}$ be two cubic intuitionistic subsets in \mho and Θ respectively.
Take $(\mathfrak{p}, \mathfrak{q}) \in \mathcal{\mho} \times \Theta$

$$
\begin{aligned}
\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}(0,0) & \geq \operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}(0), \bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}(0)\right\} \\
& =\operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{p}), \bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{q})\right\} \\
& =\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{p}, \mathfrak{q})
\end{aligned}
$$

$$
\begin{aligned}
\bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}(0,0) & \leq \operatorname{rmax}\left\{\bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}(0), \bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}(0)\right\} \\
& =\operatorname{rmax}\left\{\bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{p}), \bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{q})\right\} \\
& =\bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{p}, \mathfrak{q})
\end{aligned}
$$

$$
\begin{aligned}
\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}(0,0) & \leq \max \left\{\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}(0), \mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}(0)\right\} \\
& =\max \left\{\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{p}), \mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{q})\right\} \\
& =\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}(\mathfrak{p}, \mathfrak{q})}
\end{aligned}
$$

$$
\begin{aligned}
\mathfrak{H}_{\mathfrak{A} \times \mathfrak{B}}(0,0) & \geq \min \left\{\mathfrak{H}_{\mathfrak{A} \times \mathfrak{B}}(0), \mathfrak{H}_{\mathfrak{A} \times \mathfrak{B}}(0)\right\} \\
& =\min \left\{\mathfrak{H}_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{p}), \mathfrak{H}_{A \times \mathfrak{B}}(\mathfrak{q})\right\} \\
& =\mathfrak{H}_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{p}, \mathfrak{q})
\end{aligned}
$$

Take $(a, b) \in \mho \times \Theta$, where $a=\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right) \& b=\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)$. Then we have $\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}(a+b) \geq$ $\operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}(a), \bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}(b)\right\} \& \bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}(a+b) \leq \operatorname{rmax}\left\{\bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}(a), \bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}(b)\right\}$ and $\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}(a+$ $b) \leq \max \left\{\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}(a), \mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}(b)\right\} \& \mathfrak{H}_{\mathfrak{A} \times \mathfrak{B}}(a+b) \geq \min \left\{\mathfrak{H}_{\mathfrak{A} \times \mathfrak{B}}(a), \mathfrak{H}_{A \times \mathfrak{B}}(b)\right\}$. Now,

$$
\begin{aligned}
\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}(a) & =\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right) \\
& =\operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(\mathfrak{p}_{1}\right), \bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(\mathfrak{q}_{1}\right)\right\} \\
& \geq \operatorname{rmin}\left\{\min \left\{\bar{\Im}_{\mathfrak{A}}\left(\mathfrak{p}_{1}-\mathfrak{p}_{2}\right), \bar{\Im}_{\mathfrak{A}}\left(\mathfrak{p}_{2}\right)\right\}, \operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{B}}\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right), \bar{\Im}_{\mathfrak{B}}\left(\mathfrak{q}_{2}\right)\right\}\right\} \\
& \geq \operatorname{rmin}\left\{\operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{A}}\left(\mathfrak{p}_{1}-\mathfrak{p}_{2}\right), \bar{\Im}_{\mathfrak{B}}\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right)\right\}, \operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{A}}\left(\mathfrak{p}_{2}\right), \bar{\Im}_{\mathfrak{B}}\left(\mathfrak{q}_{2}\right)\right\}\right\} \\
& =\operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right)-\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right), \bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}(a-b), \bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}(b)\right\} \\
\bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}(a) & =\bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right) \\
& =\operatorname{rmax}\left\{\bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}\left(\mathfrak{p}_{1}\right), \bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}\left(\mathfrak{q}_{1}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\leq & \operatorname{rmax}\left\{\operatorname{rmax}\left\{\bar{\aleph}_{\mathfrak{A}}\left(\mathfrak{p}_{1}-\mathfrak{p}_{2}\right), \bar{\aleph}_{\mathfrak{A}}\left(\mathfrak{p}_{2}\right)\right\}, \operatorname{rmax}\left\{\bar{\aleph}_{\mathfrak{B}}\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right), \bar{\aleph}_{\mathfrak{B}}\left(\mathfrak{q}_{2}\right)\right\}\right\} \\
& \leq \operatorname{rmax}\left\{\operatorname{rmax}\left\{\bar{\aleph}_{\mathfrak{A}}\left(\mathfrak{p}_{1}-\mathfrak{p}_{2}\right), \bar{\aleph}_{\mathfrak{B}}\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right)\right\}, \operatorname{rmax}\left\{\bar{\aleph}_{\mathfrak{A}}\left(\mathfrak{p}_{2}\right), \bar{\aleph}_{\mathfrak{B}}\left(\mathfrak{q} y_{2}\right)\right\}\right\} \\
& =\operatorname{rmax}\left\{\bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right)-\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right), \bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right\} \\
& =\operatorname{rmax}\left\{\bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}(a-b), \bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}(b)\right\} \\
\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}(a) & =\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right)} \\
= & \max \left\{\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(\mathfrak{p}_{1}\right), \mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(\mathfrak{q}_{1}\right)\right\} \\
& \leq \max \left\{\max \left\{\mathfrak{G}_{\mathfrak{A}}\left(\mathfrak{p}_{1}-\mathfrak{p}_{2}\right), \mathfrak{G}_{\mathfrak{A}}\left(\mathfrak{p}_{2}\right)\right\}, \max \left\{\mathfrak{G}_{\mathfrak{B}}\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right), \mathfrak{G}_{\mathfrak{B}}\left(\mathfrak{q}_{2}\right)\right\}\right\} \\
& \leq \max \left\{\max \left\{\mathfrak{G}_{\mathfrak{A}}\left(\mathfrak{p}_{1}-\mathfrak{p}_{2}\right), \mathfrak{G}_{\mathfrak{B}}\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right)\right\}, \max \left\{\mathfrak{G}_{\mathfrak{A}}\left(\mathfrak{p}_{2}\right), \mathfrak{G}_{\mathfrak{B}}\left(\mathfrak{q}_{2}\right)\right\}\right\} \\
& =\max \left\{\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right)-\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right), \mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right\} \\
& =\max \left\{\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}(a-b), \mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}(b)\right\} . \\
& \geq \min \left\{\min \left\{\mathfrak{H}_{\mathfrak{A}}\left(\mathfrak{p}_{1}-\mathfrak{p}_{2}\right), \mathfrak{H}_{\mathfrak{A}}\left(\mathfrak{p}_{2}\right)\right\}, \min \left\{\mathfrak{H}_{\mathfrak{B}}\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right), \mathfrak{H}_{\mathfrak{B}}\left(y_{2}\right)\right\}\right\} \\
& \geq \min \left\{\min \left\{\mathfrak{H}_{\mathfrak{A}}\left(\mathfrak{p}_{1}-\mathfrak{p}_{2}\right), \mathfrak{H}_{\mathfrak{B}}\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right)\right\}, \min \left\{\mathfrak{H}_{\mathfrak{A}}\left(\mathfrak{p}_{2}\right), \mathfrak{H}_{\mathfrak{B}}\left(\mathfrak{q}_{2}\right)\right\}\right\} \\
& =\min \left\{\mathfrak{H}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right)-\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right), \mathfrak{H}_{\mathfrak{A} \times \mathfrak{B}}\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right\} \\
& =\min \left\{\mathfrak{H}_{\mathfrak{A} \times \mathfrak{B}}(a-b), \mathfrak{H}_{\mathfrak{A} \times \mathfrak{B}}(b)\right\} .
\end{aligned}
$$

$\mathfrak{A} \times \mathfrak{B}$ is a cubic intuitionistic β-ideal of $\mho \times \Theta$.
Lemma 4.3. Let \mathfrak{A} and \mathfrak{B} be two cubic intuitionistic subsets of \mho and Θ respectively. Then $\mathfrak{A} \times \mathfrak{B}$ is a cubic intuitionistic β - ideal of $\mho \times \Theta$ then $\bar{\Im}_{\mathfrak{A}}(0) \geq \bar{\Im}_{\mathfrak{A}}(\mathfrak{p}), \bar{\Im}_{\mathfrak{B}}(0) \geq$ $\bar{\Im}_{\mathfrak{B}}(\mathfrak{q}) \& \bar{\aleph}_{\mathfrak{A}}(0) \leq \bar{\aleph}_{\mathfrak{A}}(\mathfrak{p}), \bar{\aleph}_{\mathfrak{B}}(0) \leq \bar{\aleph}_{\mathfrak{B}}(\mathfrak{q})$ and $\mathfrak{G}_{\mathfrak{A}}(0) \leq \mathfrak{G}_{\mathfrak{A}}(\mathfrak{p}), \mathfrak{G}_{\mathfrak{B}}(0) \leq \mathfrak{G}_{\mathfrak{B}}(\mathfrak{q}) \& \mathfrak{H}_{\mathfrak{A}}(0) \leq$ $\mathfrak{H}_{\mathfrak{A}}(\mathfrak{p}), \mathfrak{H}_{\mathfrak{B}}(0) \leq \mathfrak{H}_{\mathfrak{B}}(\mathfrak{q})$.

Proof. Let \mathfrak{A} and \mathfrak{B} be two cubic intuitionistic subsets of $\mathcal{\mho}$ and Θ
Suppose $\bar{\Im}_{\mathfrak{A}}(\mathfrak{p}) \geq \bar{\Im}_{\mathfrak{A}}(0)$ and $\bar{\Im}_{\mathfrak{B}}(\mathfrak{q}) \geq \bar{\Im}_{\mathfrak{B}}(0)$
$\bar{\aleph}_{\mathfrak{A}}(0) \geq \bar{\aleph}_{\mathfrak{A}}(\mathfrak{p})$ and $\bar{\aleph}_{\mathfrak{B}}(0) \geq \bar{\aleph}_{\mathfrak{B}}(\mathfrak{q})$ for some $\mathfrak{p} \in \mathcal{\mho}, \mathfrak{q} \in \Theta$. Then

$$
\begin{aligned}
\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{p}, \mathfrak{q}) & \geq \operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{A}}(\mathfrak{p}), \bar{\Im}_{\mathfrak{B}}(\mathfrak{q})\right\} \\
& =\operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{A}}(0), \bar{\Im}_{\mathfrak{B}}(0)\right\} \\
& =\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}(0,0)
\end{aligned}
$$

Similarly, we can get $\bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{p}, \mathfrak{q}) \leq \bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}(0,0)$.
Suppose $\mathfrak{G}_{\mathfrak{A}}(0) \geq \mathfrak{G}_{\mathfrak{A}}(\mathfrak{p})$ and $\mathfrak{G}_{\mathfrak{B}}(0) \geq \mathfrak{G}_{\mathfrak{B}}(\mathfrak{q})$
$\mathfrak{H}_{\mathfrak{A}}(\mathfrak{p}) \geq \mathfrak{H}_{\mathfrak{A}}(0)$ and $\mathfrak{H}_{\mathfrak{B}}(\mathfrak{q}) \geq \mathfrak{H}_{\mathfrak{B}}(0)$ for some $\mathfrak{p} \in \mho, \mathfrak{q} \in \Theta$. Then

$$
\begin{aligned}
\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{p}, \mathfrak{q}) & \leq \max \left\{\mathfrak{G}_{\mathfrak{A}}(\mathfrak{p}), \mathfrak{\aleph}_{\mathfrak{B}}(\mathfrak{q})\right\} \\
& =\max \left\{\mathfrak{G}_{\mathfrak{A}}(0), \mathfrak{G}_{\mathfrak{B}}(0)\right\} \\
& =\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}(0,0)
\end{aligned}
$$

Similarly, we can have $\mathfrak{H}_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{p}, \mathfrak{q}) \geq \mathfrak{H}_{\mathfrak{A} \times \mathfrak{B}}(0,0)$. Which is a contradiction, proving the result.

Theorem 4.4. Let \mathfrak{A} and \mathfrak{B} be two cubic intuitionistic subsets of \mho and Θ such that $\mathfrak{A} \times \mathfrak{B}$ is also a cubic intuitionistic β - ideal of $\mho \times \Theta$. Then either \mathfrak{A} is a cubic intuitionistic β-ideal of \mho or \mathfrak{B} is a cubic intuitionistic β-ideal of Θ.

Proof. Now by lemma 5.3, let us take
$\bar{\Im}_{\mathfrak{A}}(0) \geq \bar{\Im}_{\mathfrak{A}}(\mathfrak{p}), \bar{\Im}_{\mathfrak{B}}(0) \geq \bar{\Im}_{\mathfrak{B}}(\mathfrak{q}) \& \bar{\aleph}_{\mathfrak{A}}(0) \leq \bar{\aleph}_{\mathfrak{A}}(\mathfrak{p}), \bar{\aleph}_{\mathfrak{B}}(0) \leq \bar{\aleph}_{\mathfrak{B}}(\mathfrak{q})$ (1)
$\mathfrak{G}_{\mathfrak{A}}(0) \leq \mathfrak{G}_{\mathfrak{A}}(\mathfrak{p}), \mathfrak{G}_{\mathfrak{B}}(0) \leq \mathfrak{G}_{\mathfrak{B}}(\mathfrak{q}) \& \mathfrak{H}_{\mathfrak{A}}(0) \leq \mathfrak{H}_{\mathfrak{A}}(\mathfrak{p}), \mathfrak{H}_{\mathfrak{B}}(0) \leq \mathfrak{H}_{\mathfrak{B}}(\mathfrak{q})(2)$ then $\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}(0, \mathfrak{q})$ $=\operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{A}}(0), \bar{\Im}_{\mathfrak{B}}(\mathfrak{q})\right\} \& \bar{\aleph}_{\mathfrak{A} \times \mathfrak{B}}(0, \mathfrak{q})=\operatorname{rmax}\left\{\bar{\aleph}_{\mathfrak{A}}(0), \bar{\aleph}_{\mathfrak{B}}(\mathfrak{q})\right\}$
and $\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}(0, \mathfrak{q})=\max \left\{\mathfrak{G}_{\mathfrak{A}}(0), \mathfrak{G}_{B}(\mathfrak{q})\right\} \& \mathfrak{H}_{\mathfrak{A} \times \mathfrak{B}}(0, \mathfrak{q})=\min \left\{\mathfrak{H}_{\mathfrak{A}}(0), \mathfrak{H}_{\mathfrak{B}}(\mathfrak{q})\right\}$
Since $\mathfrak{A} \times \mathfrak{B}$ is a cubic intuitionistic β-ideals of $\mho \times \Theta$,

$$
\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right),\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right) \geq \operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right)-\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right), \bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right\}
$$

and since

$$
\begin{gathered}
\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right),\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right) \geq \operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right)-\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right), \bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right\}\right. \\
\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right),\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right) \geq \operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{1}-\mathfrak{p}_{2}\right),\left(\mathfrak{q}_{1}-y_{2}\right)\right), \bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(\mathfrak{p}_{2}, y_{2}\right)\right\} \\
\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{1}-\mathfrak{p}_{2}\right),\left(y_{1}-\mathfrak{q}_{2}\right)\right) \geq \operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right), \bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right\}\right.
\end{gathered}
$$

Putting $\mathfrak{p}_{1}=\mathfrak{p}_{2}=0$ in (3) Then
$\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(0, \mathfrak{q}_{1}\right) \geq \operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(0,\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right)\right), \bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(0, \mathfrak{q}_{2}\right)\right\}\right.$ and

$$
\begin{equation*}
\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(0,\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right)\right) \geq \operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(0, \mathfrak{q}_{1}\right), \bar{\Im}_{\mathfrak{A} \times \mathfrak{B}}\left(0, \mathfrak{q}_{2}\right)\right\} \tag{4}
\end{equation*}
$$

Using equations (1) in (4)

$$
\Rightarrow \bar{\Im}_{\mathfrak{B}}\left(\mathfrak{q}_{1}\right) \geq \operatorname{rmin}\left\{\left\{\bar{\Im}_{\mathfrak{B}}\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right), \bar{\Im}_{\mathfrak{B}}\left(\mathfrak{q}_{2}\right)\right\}\right.
$$

and $\bar{\Im}_{\mathfrak{B}}\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right) \geq \operatorname{rmin}\left\{\bar{\Im}_{\mathfrak{B}}\left(\mathfrak{q}_{1}\right), \bar{\Im}_{\mathfrak{B}}\left(\mathfrak{q}_{2}\right)\right\}$
Similarly,
$\bar{\aleph}_{\mathfrak{B}}\left(\mathfrak{q}_{1}\right) \leq \operatorname{rmax}\left\{\left\{\bar{\aleph}_{\mathfrak{B}}\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right), \bar{\aleph}_{\mathfrak{B}}\left(\mathfrak{q}_{2}\right)\right\}\right.$ and $\bar{\aleph}_{\mathfrak{B}}\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right) \leq \operatorname{rmax}\left\{\bar{\aleph}_{\mathfrak{B}}\left(\mathfrak{q}_{1}\right), \bar{\aleph}_{\mathfrak{B}}\left(\mathfrak{q}_{2}\right)\right\}$
Also, $\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right),\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right) \leq \max \left\{\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right)-\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right), \mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right\}$ and

$$
\begin{aligned}
\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right),\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right) & \leq \max \left\{\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right)-\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right), \mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right\}\right. \\
\left.\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right),\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right) & \leq \max \left\{\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{1}-\mathfrak{p}_{2}\right),\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right)\right), \mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right\} \\
\mathfrak{G}_{\mathfrak{A} \times} \times \mathfrak{B}\left(\left(\mathfrak{p}_{1}-\mathfrak{p}_{2}\right),\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right)\right) & \leq \max \left\{\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(\mathfrak{p}_{1}, \mathfrak{q}_{1}\right), \mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(\mathfrak{p}_{2}, \mathfrak{q}_{2}\right)\right\} \quad(5)\right.
\end{aligned}
$$

Putting $\mathfrak{p}_{1}=\mathfrak{p}_{2}=0$ in (5) Then
$\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(\left(0, \mathfrak{q}_{1}\right) \leq \max \left\{\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(0,\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right)\right), \mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(0, \mathfrak{q}_{2}\right)\right\}\right.$ and

$$
\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(0,\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right)\right) \leq \max \left\{\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(0, \mathfrak{q}_{1}\right), \mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}\left(0, \mathfrak{q}_{2}\right)\right\}
$$

Using equations (1) in (6) which gives $\Rightarrow \mathfrak{G}_{\mathfrak{B}}\left(\mathfrak{q}_{1}\right) \leq \max \left\{\left\{\mathfrak{G}_{\mathfrak{B}}\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right), \mathfrak{G}_{\mathfrak{B}}\left(\mathfrak{q}_{2}\right)\right\}\right.$
and $\mathfrak{G}_{\mathfrak{B}}\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right) \leq \max \left\{\mathfrak{G}_{\mathfrak{B}}\left(\mathfrak{q}_{1}\right), \mathfrak{G}_{\mathfrak{B}}\left(\mathfrak{q}_{2}\right)\right\}$.
Similarly we have, $\mathfrak{H}_{\mathfrak{B}}\left(\mathfrak{q}_{1}\right) \geq \min \left\{\left\{\mathfrak{H}_{\mathfrak{B}}\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right), \mathfrak{H}_{\mathfrak{B}}\left(\mathfrak{q}_{2}\right)\right\}\right.$ and $\mathfrak{H}_{\mathfrak{B}}\left(\mathfrak{q}_{1}-\mathfrak{q}_{2}\right) \geq \min \left\{\mathfrak{H}_{\mathfrak{B}}\left(\mathfrak{q}_{1}\right)\right.$, $\left.\mathfrak{H}_{\mathfrak{B}}\left(\mathfrak{q}_{2}\right)\right\}$. Hence \mathfrak{B} is a cubic intuitionistic β-ideal of Θ.

5. Homomorphic Image(Inverse Image) of Cubic Intuitionistic β-IDEALS

This section deals the properties on homomorphic image(inverse image) of Cubic intuitionistic β-ideals.

Definition 5.1. Let $f: \mho \rightarrow \Theta$ be a function. Let \mathfrak{A} and \mathfrak{B} be two cubic intuitionistic β-ideals in \mho and Θ respectively. Then inverse image of \mathfrak{B} under f is defined by $f^{-1}(\mathfrak{B})=\left\{f^{-1}\left(\bar{\Im}_{\mathfrak{B}}(\mathfrak{p})\right), f^{-1}\left(\bar{\aleph}_{\mathfrak{B}}(\mathfrak{p})\right), f^{-1}\left(\mathfrak{G}_{\mathfrak{B}}(x)\right), f^{-1}\left(\mathfrak{H}_{\mathfrak{B}}(\mathfrak{p})\right): \mathfrak{p} \in \mho\right\}$ such that $f^{-1}\left(\bar{\Im}_{\mathfrak{B}}(\mathfrak{p})\right)=\left(\bar{\Im}_{\mathfrak{B}}(f(\mathfrak{p})), f^{-1}\left(\bar{\aleph}_{\mathfrak{B}}(\mathfrak{p})\right)=\left(\bar{\aleph}_{\mathfrak{B}}(f(\mathfrak{p})), f^{-1}\left(\mathfrak{G}_{\mathfrak{B}}(\mathfrak{p})\right)=\left(\mathfrak{G}_{\mathfrak{B}}(f(\mathfrak{p}))\right.\right.\right.$ and $f^{-1}\left(\mathfrak{H}_{\mathfrak{B}}(\mathfrak{p})\right)=\left(\mathfrak{H}_{\mathfrak{B}}(f(\mathfrak{p}))\right.$.

Theorem 5.2. Let $f: \mho \rightarrow \mho$ be an endomorphism on \mho and $\mathfrak{C}=\{\mathfrak{p}, \Psi(\mathfrak{p}), \rho(x): x \in \mho\}$ be a cubic intuitionistic β-ideal of \mho. Then $\mathfrak{C}_{f}=\left\{f(\mathfrak{p}),\left\{\bar{\Im}_{f}(\mathfrak{p}), \bar{\aleph}_{f}(\mathfrak{p})\right\},\left\{\mathfrak{G}_{f}(\mathfrak{p}), \mathfrak{H}_{f}(\mathfrak{p})\right\}\right.$: $\mathfrak{p} \in \mho\}$ where $\bar{\Im}_{f}: \mho \rightarrow D[0,1] \mathcal{G}_{\aleph_{f}}: \mho \rightarrow D[0,1]$ and $\mathfrak{G}_{f}: \mho \rightarrow[0,1]$ छ
$\mathfrak{H}_{f}: \mho \rightarrow[0,1]$ are defined by $\bar{\Im}_{f}(\mathfrak{p})=\bar{\Im}(f(\mathfrak{p})), \bar{\aleph}_{f}(\mathfrak{p})=\bar{\aleph}(f(\mathfrak{p}))$, $\mathfrak{G}_{f}(\mathfrak{p})=\mathfrak{G}(f(\mathfrak{p}))$ and $\mathfrak{H}_{f}(\mathfrak{p})=\mathfrak{H}(f(\mathfrak{p})), \forall \mathfrak{p} \in \mho$, is a cubic intuitionistic β-ideal of \mho.
Proof. Let \mathfrak{C} be a cubic intuitionistic β-ideal of \mho.
For $\mathfrak{p} \in \mho$,
$\bar{\varsigma}_{f}(0)=\bar{\Im}(f(0))=\bar{\Im}(0) \leq \bar{\Im}(\mathfrak{p})$,
$\bar{\aleph}_{f}(0)=\bar{\aleph}(f(0))=\bar{\aleph}(0) \geq \bar{\aleph}(\mathfrak{p}) \forall \mathfrak{p} \in \mho$.
Then

$$
\begin{aligned}
\bar{\Im}_{f}(\mathfrak{p}+\mathfrak{q}) & =\bar{\Im}(f(\mathfrak{p}+\mathfrak{q})) \\
& \geq \bar{\Im}(f(\mathfrak{p})+f(y)) \\
& =\operatorname{rmin}\left\{\bar{\Im}^{(}(f(\mathfrak{p})), \bar{\Im}(f(\mathfrak{q}))\right\} \\
& =\operatorname{rmin}\left\{\bar{\Im}_{f}(\mathfrak{p}), \bar{\Im}_{f}(\mathfrak{q})\right\} .
\end{aligned}
$$

Similarly, we will have $\bar{\aleph}_{f}(\mathfrak{p}+\mathfrak{q}) \leq \operatorname{rmax}\left\{\bar{\aleph}_{f}(\mathfrak{p}), \bar{\aleph}_{f}(\mathfrak{q})\right\}$ Also,

$$
\begin{aligned}
\bar{\Im}_{f}(\mathfrak{p}) & =\bar{\Im}(f(\mathfrak{p})) \\
& \geq \operatorname{rmin}\left\{\bar{\Im}^{(}(f(\mathfrak{p})-f(\mathfrak{q})), \bar{\Im}(f(\mathfrak{q}))\right\} \\
& =\operatorname{rmin}\left\{\bar{\Im}^{(}(f(\mathfrak{p}-\mathfrak{q})), \bar{\Im}(f(\mathfrak{q}))\right\} \\
& =\operatorname{rmin}\left\{\bar{\Im}_{f}(\mathfrak{p}-\mathfrak{q}), \bar{\Im}_{f}(\mathfrak{q})\right\} .
\end{aligned}
$$

Similarly, we can have $\bar{\aleph}_{f}(\mathfrak{p}) \leq \operatorname{rmax}\left\{\bar{\aleph}_{f}(\mathfrak{p}-\mathfrak{q}), \bar{\aleph}_{f}(\mathfrak{q})\right\}$.
For $\mathfrak{p} \in \mathcal{\mho}, \mathfrak{G}_{f}(0)=\mathfrak{G}(f(0))=\mathfrak{G}(0) \geq \mathfrak{G}(\mathfrak{p}) ; \mathfrak{H}_{f}(0)=\mathfrak{H}(f(0))=\mathfrak{H}(0) \leq \mathfrak{H}(\mathfrak{p}) \forall \mathfrak{p} \in \mho$. Then

$$
\begin{aligned}
\mathfrak{G}_{f}(\mathfrak{p}+\mathfrak{q}) & =\mathfrak{G}(f(\mathfrak{p}+\mathfrak{q})) \\
& \leq \mathfrak{G}(f(\mathfrak{p})+f(\mathfrak{q})) \\
& =\max \{\mathfrak{G}(f(\mathfrak{p})), \mathfrak{G}(f(\mathfrak{q}))\} \\
& =\max \left\{\mathfrak{G}_{f}(\mathfrak{p}), \mathfrak{G}_{f}(\mathfrak{q})\right\} \\
\mathfrak{H}_{f}(\mathfrak{p}+\mathfrak{q}) & =\mathfrak{H}(f(\mathfrak{p}+\mathfrak{q})) \\
& \geq \mathfrak{H}(f(\mathfrak{p})+f(\mathfrak{q})) \\
& =\min \{\mathfrak{H}(f(\mathfrak{p})), \mathfrak{H}(f(\mathfrak{q}))\} \\
& =\min \left\{\mathfrak{H}_{f}(\mathfrak{p}), \mathfrak{H}_{f}(\mathfrak{q})\right\} .
\end{aligned}
$$

Also,

$$
\mathfrak{G}_{f}(\mathfrak{p})=\mathfrak{G}(f(\mathfrak{p}))
$$

$$
\begin{aligned}
& \leq \max \{\mathfrak{G}(f(\mathfrak{p})-f(\mathfrak{q})), \mathfrak{G}(f(\mathfrak{q}))\} \\
& =\max \{\mathfrak{G}(f(\mathfrak{p}-\mathfrak{q})), \mathfrak{G}(f(\mathfrak{q}))\} \\
& =\max \left\{\mathfrak{G}_{f}(\mathfrak{p}-\mathfrak{q}), \mathfrak{G}_{f}(y)\right\} . \\
\mathfrak{H}_{f}(\mathfrak{p}) & =\mathfrak{H}(f(\mathfrak{p})) \\
& \geq \min \{\mathfrak{H}(f(\mathfrak{p})-f(\mathfrak{q})), \mathfrak{H}(f(\mathfrak{q}))\} \\
& =\min \{\mathfrak{H}(f(\mathfrak{p}-\mathfrak{q})), \mathfrak{H}(f(\mathfrak{q}))\} \\
& \left.=\min \mathfrak{H}_{f}(\mathfrak{p}-\mathfrak{q}), \mathfrak{H}_{f}(\mathfrak{q})\right\} .
\end{aligned}
$$

Hence \mathfrak{C}_{f} is a cubic intuitionistic β-ideal of \mho.
Theorem 5.3. Let $f: \mho \rightarrow \Theta$ be an onto homomorphism of β-algebras. If $\mathfrak{C}=$ $\{\mathfrak{p}, \Psi(\mathfrak{p}), \rho(\mathfrak{p}): \mathfrak{p} \in \mho\}$ is a cubic intuitionistic β-ideal of Θ, then the preimage $f^{-1}(\mathfrak{C})$ is a cubic intuitionistic β-ideal of \mho.

Proof. Let \mathfrak{C} be a cubic intuitionistic β-ideal of Θ.
For $\mathfrak{p} \in \mathcal{J}$,

$$
f^{-1}\left(\bar{\Im}_{\Psi}(0)\right)=\bar{\Im}_{\Psi}(f(0))=\bar{\Im}_{\Psi}(0) \geq \bar{\Im}_{\Psi}(\mathfrak{p})
$$

For $\mathfrak{p}, \mathfrak{q} \in \mho$,

$$
\begin{aligned}
f^{-1}\left(\bar{\Im}_{\Psi}\right)(\mathfrak{p}+\mathfrak{q}) & =\bar{\Im}_{\Psi}(f(\mathfrak{p}+\mathfrak{q})) \\
& =\bar{\Im}_{\Psi}(f(\mathfrak{p})+f(\mathfrak{q q}) \\
& \geq \operatorname{rmin}\left\{\bar{\Im}_{\Psi}(f(\mathfrak{p})), \bar{\Im}_{\Psi}(f(\mathfrak{q}))\right\} \\
& =\operatorname{rmin}\left\{f^{-1}\left(\bar{\Im}_{\Psi}(\mathfrak{p})\right), f^{-1}\left(\bar{\Im}_{\Psi}(\mathfrak{q})\right)\right\} \\
f^{-1}\left(\bar{\Im}_{\Psi}\right)(\mathfrak{p})= & \bar{\Im}_{\Psi}(f(\mathfrak{p})) \\
& \geq \operatorname{rmin}\left\{\bar{\Im}_{\Psi}(f(\mathfrak{p})-f(\mathfrak{q})), \bar{\Im}_{\Psi}(f(\mathfrak{q}))\right\} \\
& =\operatorname{rmin}\left\{\bar{\Im}_{\Psi}(f(\mathfrak{p}-\mathfrak{q})), \bar{\Im}_{\Psi}(f(\mathfrak{q}))\right\} \\
& =\operatorname{rmin}\left\{f^{-1}\left(\left(\bar{\Im}_{\Psi}\right)(\mathfrak{p}-\mathfrak{q})\right), f^{-1}\left(\bar{\Im}_{\Psi}(\mathfrak{q})\right)\right\}
\end{aligned}
$$

Similarly for $\mathfrak{p}, \mathfrak{q} \in \mathcal{V}, f^{-1}\left(\bar{\aleph}_{\Psi}(0)\right)=\bar{\aleph}_{\Psi}(f(0))=\bar{\aleph}_{\Psi}(0) \leq \bar{\aleph}_{\Psi}(\mathfrak{p}) \&$ $f^{-1}\left(\bar{\aleph}_{\Psi}\right)(\mathfrak{p}+\mathfrak{q}) \leq \operatorname{rmax}\left\{f^{-1}\left(\bar{\aleph}_{\Psi}(\mathfrak{p})\right), f^{-1}\left(\bar{\aleph}_{\Psi}(\mathfrak{q})\right)\right\}$ and $f^{-1}\left(\bar{\aleph}_{\Psi}\right)(\mathfrak{p}) \leq \operatorname{rmax}\left\{f^{-1}\left(\left(\bar{\aleph}_{\Psi}\right)(\mathfrak{p}-\right.\right.$ $\left.\mathfrak{q})), f^{-1}\left(\bar{\aleph}_{\Psi}(\mathfrak{q})\right)\right\}$

For $\mathfrak{p} \in \mathcal{U}$,

$$
f^{-1}\left(\mathfrak{G}_{\rho}(0)\right)=\mathfrak{G}_{\rho}(f(0))=\mathfrak{G}_{\rho}(0) \leq \mathfrak{G}_{\rho}(\mathfrak{p})
$$

For $\mathfrak{p}, \mathfrak{q} \in \mathcal{V}$,

$$
\begin{aligned}
f^{-1}\left(\mathfrak{G}_{\rho}\right)(\mathfrak{p}+\mathfrak{q}) & =\mathfrak{G}_{\rho}(f(\mathfrak{p}+\mathfrak{q})) \\
& =\mathfrak{G}_{\rho}(f(\mathfrak{p})+f(\mathfrak{q})) \\
& \leq \max \left\{\mathfrak{G}_{\rho}(f(\mathfrak{p})), \mathfrak{G}_{\rho}(f(\mathfrak{q}))\right\} \\
& =\max \left\{f^{-1}\left(\mathfrak{G}_{\rho}(\mathfrak{p})\right), f^{-1}\left(\mathfrak{G}_{\rho}(\mathfrak{q})\right)\right\} \\
f^{-1}\left(\mathfrak{G}_{\rho}\right)(\mathfrak{p})= & \mathfrak{G}_{\rho}(f(\mathfrak{p})) \\
\leq & \max \left\{\mathfrak{G}_{\rho}(f(\mathfrak{p})-f(\mathfrak{q})), \mathfrak{G}_{\rho}(f(\mathfrak{q}))\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\max \left\{\mathfrak{G}_{\rho}(f(\mathfrak{p}-\mathfrak{q})), \mathfrak{G}_{\rho}(f(\mathfrak{q}))\right\} \\
& =\max \left\{f^{-1}\left(\left(\mathfrak{G}_{\rho}\right)(\mathfrak{p}-\mathfrak{q})\right), f^{-1}\left(\mathfrak{G}_{\rho}(\mathfrak{q})\right)\right\}
\end{aligned}
$$

Likewise for $\mathfrak{p}, \mathfrak{q} \in \mathcal{V}, f^{-1}\left(\mathfrak{H}_{\rho}(0)\right)=\mathfrak{H}_{\rho}(f(0))=\mathfrak{H}_{\rho}(0) \geq \mathfrak{H}_{\rho}(\mathfrak{p}) \& f^{-1}\left(\mathfrak{H}_{\rho}\right)(\mathfrak{p}+\mathfrak{q}) \geq$ $\min \left\{f^{-1}\left(\mathfrak{H}_{\rho}(\mathfrak{p})\right), f^{-1}\left(\mathfrak{H}_{\rho}(\mathfrak{q})\right)\right\}$ and $f^{-1}\left(\mathfrak{H}_{\rho}\right)(\mathfrak{p}) \geq \min \left\{f^{-1}\left(\left(\mathfrak{H}_{\rho}\right)(\mathfrak{p}-\mathfrak{q})\right), f^{-1}\left(\mathfrak{H}_{\rho}(\mathfrak{q})\right)\right\}$. Hence $f^{-1}(\mathfrak{C})$ is a cubic intuitionistic β-ideal of \mho.

6. Multiplications of Cubic Intuitionistic β-Ideals

This section gives the notion of multiplications of cubic intuitionistic β-ideal and some of its results are investigated.

Definition 6.1. Let $\mathfrak{C}=\{\mathfrak{p}, \Psi(\mathfrak{p}), \rho(\mathfrak{p}): \mathfrak{p} \in \mho\}$ be a cubic fuzzy set of \mho and $\mu \in(0,1]$. An object having the form $\mathfrak{C}_{\mu}^{M}=\left\{(\Psi(\mathfrak{p}))_{\mu}^{M},\left(\rho(\mathfrak{p})_{\mu}^{M}\right\}\right.$ is said to be cubic μ-multiplication of \mathfrak{C} if it satisfies $\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(x)=\mu . \bar{\Im}_{\Psi}(x) ;\left(\bar{\aleph}_{\Psi}\right)_{\mu}^{M}(x)=\mu . \bar{\aleph}_{\Psi}(x) ;\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(x)=\mu . \mathfrak{G}_{\rho}(x)$ and $\left(\mathfrak{H}_{\rho}\right)_{\mu}^{M}(x)=\mu \cdot \mathfrak{H}_{\rho}(x)$ for all $x \in \mho$.
Theorem 6.2. If $\mathfrak{C}=\{\mathfrak{p}, \Psi(\mathfrak{p}), \rho(\mathfrak{p}): \mathfrak{p} \in \mho\}$ is a cubic β-ideal of \mho and let $\mu \in[0,1]$. Then the cubic μ-multiplication \mathfrak{C}_{μ}^{M} of \mathfrak{C} is cubic β-ideal of X.

Proof. Suppose $\mathfrak{C}=\{\mathfrak{p}, \Psi(\mathfrak{p}), \rho(\mathfrak{p}): \mathfrak{p} \in \mho\}$ is a cubic β-ideal of \mho. Then

$$
\begin{aligned}
&\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(0)=\mu \cdot \bar{\Im}_{\Psi}(0) \\
& \geq \mu \cdot \bar{\Im}_{\Psi}(\mathfrak{p}) \\
&=\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p}) \\
&(i . e)\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(0) \geq\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p})
\end{aligned}
$$

In a simalar way, we can have $\left(\bar{\aleph}_{\Psi}\right)_{\mu}^{M}(0) \leq\left(\bar{\aleph}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p})$

$$
\begin{aligned}
\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(0) & =\mu . \mathfrak{G}_{\rho}(0) \\
& \leq \mu \cdot \mathfrak{G}_{\rho}(\mathfrak{p}) \\
& =\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}) \\
(i . e)\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M} & (0) \leq\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{p})
\end{aligned}
$$

In the same manner, we have $\left(\mathfrak{H}_{\rho}\right)_{\mu}^{M}(0) \geq\left(\mathfrak{H}_{\rho}\right)_{\mu}^{M}(\mathfrak{p})$

$$
\begin{aligned}
\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p}+\mathfrak{q}) & =\mu \cdot \bar{\Im}_{\Psi}(\mathfrak{p}+\mathfrak{q}) \\
& \geq \mu \cdot \operatorname{rmin}\left\{\bar{\Im}_{\Psi}(\mathfrak{p}), \bar{\Im}_{\Psi}(\mathfrak{q})\right\} \\
& =\operatorname{rmin}\left\{\mu \cdot \bar{\Im}_{\Psi}(\mathfrak{p}), \mu \cdot \bar{\Im}_{\Psi}(\mathfrak{q})\right\} \\
& =\operatorname{rmin}\left\{\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p}),\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{q})\right\} \\
(i . e)\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p} & +\mathfrak{q}) \geq \operatorname{rmin}\left\{\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p}),\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{q})\right\}
\end{aligned}
$$

Likewise, we obtain $\left(\bar{\aleph}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p}+\mathfrak{q}) \leq \operatorname{rmax}\left\{\left(\bar{\aleph}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p}),\left(\bar{\aleph}_{\Psi}\right)_{\mu}^{M}(\mathfrak{q})\right\}$

$$
\begin{aligned}
&\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}+\mathfrak{q})=\mu \cdot \mathfrak{G}_{\rho}(\mathfrak{p}+\mathfrak{q}) \\
& \leq \mu \cdot \max \left\{\mathfrak{G}_{\rho}(\mathfrak{p}), \mathfrak{G}_{\rho}(\mathfrak{q})\right\} \\
&=\max \left\{\mu \cdot \mathfrak{G}_{\rho}(\mathfrak{p}), \mu \cdot \mathfrak{G}_{\rho}(\mathfrak{q})\right\} \\
&=\max \left\{\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}),\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{q})\right\} \\
&(i . e)\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}+\mathfrak{q}) \leq \max \left\{\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}),\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{q})\right\}
\end{aligned}
$$

In the similar way, we get $($ i.e $)\left(\mathfrak{H}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}+\mathfrak{q}) \geq \min \left\{\left(\mathfrak{H}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}),\left(\mathfrak{H}_{\rho}\right)_{\mu}^{M}(\mathfrak{q})\right\}$

$$
\begin{aligned}
&\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p})=\mu \cdot \bar{\Im}_{\Psi}(\mathfrak{p}) \\
& \geq \mu \cdot \operatorname{rmin}\left\{\bar{\Im}_{\Psi}(\mathfrak{p}-\mathfrak{q}), \bar{\Im}_{\Psi}(y)\right\} \\
&=\operatorname{rmin}\left\{\mu \cdot \bar{\Im}_{\Psi}(\mathfrak{p}-\mathfrak{q}), \mu \cdot \bar{\Im}_{\Psi}(\mathfrak{q})\right\} \\
&=\operatorname{rmin}\left\{\mu \cdot \bar{\Im}_{\Psi}(\mathfrak{p}-\mathfrak{q}), \mu \cdot \bar{\Im}_{\Psi}(\mathfrak{q})\right\} \\
&=\operatorname{rmin}\left\{\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p}-\mathfrak{q}),\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{q})\right\} \\
&(i . e)\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p}) \geq \operatorname{rmin}\left\{\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p}-\mathfrak{q}),\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{q})\right\}
\end{aligned}
$$

By using the same process, we get $\left(\bar{\aleph}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p}) \leq \operatorname{rmax}\left\{\left(\bar{\aleph}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p}-\mathfrak{q}),\left(\bar{\aleph}_{\Psi}\right)_{\mu}^{M}(\mathfrak{q})\right\}$

$$
\begin{aligned}
&\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{p})=\mu \cdot \mathfrak{G}_{\rho}(\mathfrak{p}) \\
& \leq \mu \cdot \max \left\{\mathfrak{G}_{\rho}(\mathfrak{p}-\mathfrak{q}), \mathfrak{G}_{\rho}(\mathfrak{q})\right\} \\
&=\max \left\{\mu \cdot \mathfrak{G}_{\rho}(\mathfrak{p}-\mathfrak{q}), \mu \cdot \mathfrak{G}_{\rho}(\mathfrak{q})\right\} \\
&=\max \left\{\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}-\mathfrak{q}),\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{q})\right\} \\
&(i . e)\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}) \leq \max \left\{\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}-\mathfrak{q}),\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{q})\right\}
\end{aligned}
$$

Similarly, we can have $\left(\mathfrak{H}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}) \leq \max \left\{\left(\mathfrak{H}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}-\mathfrak{q}),\left(\mathfrak{H}_{\rho}\right)_{\mu}^{M}(\mathfrak{q})\right\}$
For all $\mathfrak{p}, \mathfrak{q} \in \mho$ and $\mu \in(0,1]$. Hence C_{μ}^{M} of C is cubic β-ideal of X.
Theorem 6.3. If \mathfrak{C} is a cubic set of X such that cubic μ-multiplication \mathfrak{C}_{μ}^{M} of \mathfrak{C} is cubic β-ideal of \mho and $\mu \in[0,1]$ then \mathfrak{C} is cubic β-ideal of \mho.

Proof. Assume that $\mathfrak{C}_{\mu}^{M}(x)$ of \mathfrak{C} be a cubic β-ideal of $\mho, \mu \in(0,1]$
Then

$$
\begin{aligned}
\mu . \bar{\Im}_{\Psi}(0) & =\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(0) \\
& \geq\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p}) \\
& =\mu . \bar{\Im}_{\Psi}(\mathfrak{p}) \\
(i . e) \bar{\Im}_{\Psi}(0) & \geq \bar{\Im}_{\Psi}(\mathfrak{p})
\end{aligned}
$$

In a similar way, we have $\bar{\aleph}_{\Psi}(0) \leq \bar{\aleph}_{\Psi}(\mathfrak{p})$

$$
\begin{aligned}
\mu \cdot \mathfrak{G}_{\rho}(0) & =\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(0) \\
& \leq\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}) \\
& =\mu \cdot \mathfrak{G}_{\rho}(\mathfrak{p})
\end{aligned}
$$

(i.e) $\mathfrak{G}_{\rho}(0) \leq \mathfrak{G}_{\rho}(\mathfrak{p})$

Likewise, we get $\mathfrak{H}_{\rho}(0) \geq \mathfrak{H}_{\rho}(\mathfrak{p})$

$$
\begin{aligned}
& \mu . \bar{\Im}_{\Psi}(\mathfrak{p}+\mathfrak{q})=\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p}+\mathfrak{q}) \\
& \geq \operatorname{rmin}\left\{\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p}),\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{q})\right\} \\
&=\operatorname{rmin}\left\{\mu . \widetilde{\Im}_{\Psi}(\mathfrak{p}), \mu . \bar{\Im}_{\Psi}(\mathfrak{q})\right\} \\
&=\mu \cdot \operatorname{rmin}\left\{\bar{\Im}_{\Psi}(\mathfrak{p}), \bar{\Im}_{\Psi}(\mathfrak{q})\right\} \\
&(i . e) \bar{\Im}_{\Psi}(\mathfrak{p}+\mathfrak{q}) \geq \operatorname{rmin}\left\{\bar{\Im}_{\Psi}(\mathfrak{p}), \bar{\Im}_{\Psi}(\mathfrak{q})\right\}
\end{aligned}
$$

In the same manner, we can have $\bar{\aleph}_{\Psi}(\mathfrak{p}+\mathfrak{q}) \leq \operatorname{rmax}\left\{\bar{\aleph}_{\Psi}(\mathfrak{p}), \bar{\aleph}_{\Psi}(\mathfrak{q})\right\}$

$$
\begin{aligned}
\mu \cdot \mathfrak{G}_{\rho}(\mathfrak{p}+\mathfrak{q}) & =\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}+\mathfrak{q}) \\
& \leq \max \left\{\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}),\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{q})\right\} \\
& =\max \left\{\mathfrak{G}_{\rho}(\mathfrak{p}), \mu \cdot \mathfrak{G}_{\rho}(\mathfrak{q})\right\} \\
& =\mu \cdot \max \left\{\mathfrak{G}_{\rho}(\mathfrak{p}), \mathfrak{G}_{\rho}(\mathfrak{q})\right\}
\end{aligned}
$$

$$
\text { (i.e) } \mathfrak{G}_{\rho}(\mathfrak{p}+\mathfrak{q}) \leq \max \left\{\mathfrak{G}_{\rho}(\mathfrak{p}), \mathfrak{G}_{\rho}(\mathfrak{q})\right\}
$$

Similarly, we have $\mathfrak{H}_{\rho}(\mathfrak{p}+\mathfrak{q}) \geq \min \left\{\mathfrak{H}_{\rho}(\mathfrak{p}), \mathfrak{H}_{\rho}(\mathfrak{q})\right\}$

$$
\begin{aligned}
\mu \cdot \bar{\Im}_{\Psi}(\mathfrak{p}) & =\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p}) \\
& \geq \operatorname{rminin}\left\{\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p}-\mathfrak{q}),\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{q})\right\} \\
& =\operatorname{rmin}\left\{\mu \cdot \bar{\Im}_{\Psi}(\mathfrak{p}-\mathfrak{q}), \mu \cdot \bar{\Im}_{\Psi}(\mathfrak{q})\right\} \\
& =\mu \cdot \operatorname{rmin}\left\{\bar{\Im}_{\Psi}(\mathfrak{p}-\mathfrak{q}), \bar{\Im}_{\Psi}(\mathfrak{q})\right\}
\end{aligned}
$$

$$
(i . e) \bar{\Im}_{\Psi}(\mathfrak{p}) \geq \operatorname{rmin}\left\{\bar{\Im}_{\Psi}(\mathfrak{p}-\mathfrak{q}), \bar{\Im}_{\Psi}(\mathfrak{q})\right\}
$$

In the same way, we have $\bar{\aleph}_{\Psi}(\mathfrak{p}) \leq \operatorname{rmax}\left\{\bar{\aleph}_{\Psi}(\mathfrak{p}-\mathfrak{q}), \bar{\aleph}_{\Psi}(\mathfrak{q})\right\}$

$$
\begin{aligned}
& \mu . \mathfrak{G}_{\rho}(\mathfrak{p})=\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}) \\
& \leq \max \left\{\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}-\mathfrak{q}),\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{q})\right\} \\
&=\max \left\{\mu . \mathfrak{G}_{\rho}(\mathfrak{p}-\mathfrak{q}), \mu \cdot \mathfrak{G}_{\rho}(\mathfrak{q})\right\} \\
&=\mu \cdot \max \left\{\mathfrak{G}_{\rho}(\mathfrak{p}-\mathfrak{q}), \mathfrak{G}_{\rho}(\mathfrak{q})\right\} \\
&(i . e) \mathfrak{G}_{\rho}(\mathfrak{p}) \leq \max \left\{\mathfrak{G}_{\rho}(\mathfrak{p}-\mathfrak{q}), \mathfrak{G}_{\rho}(\mathfrak{q})\right\}
\end{aligned}
$$

Likewise, we obtain $\mathfrak{H}_{\rho}(\mathfrak{p}) \geq \min \left\{\mathfrak{H}_{\rho}(\mathfrak{p}-\mathfrak{q}), \mathfrak{H}_{\rho}(\mathfrak{q})\right\}$
For all $\mathfrak{p}, \mathfrak{q} \in \mathcal{Z}$ and $\mu \in(0,1]$. Hence \mathfrak{C} is cubic β-ideal of \mho.

Theorem 6.4. Intersection of any two cubic μ-multiplication \mathfrak{C}_{μ}^{M} of a cubic β-ideal \mathfrak{C} of \mho is a cubic β-ideal of \mho.

Proof. Suppose \mathfrak{C}_{μ}^{M} and $\mathfrak{C}_{\mu^{\prime}}^{M}$ are two cubic μ-multiplication of cubic β-ideal \mathfrak{C} of \mho, where $\mu, \mu^{\prime} \in(0,1]$. Assume $\mu=\mu^{\prime}$ Since \mathfrak{C}_{μ}^{M} and $\mathfrak{C}_{\mu^{\prime}}^{M}$ are cubic μ-multiplication of cubic β-ideal of \mho. So,

$$
\begin{aligned}
\left(\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M} \cap\left(\bar{\Im}_{\Psi}\right)_{\mu^{\prime}}^{M}\right)(\mathfrak{p}) & =\operatorname{rmin}\left\{\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p}),\left(\bar{\Im}_{\Psi}\right)_{\mu^{\prime}}^{M}(\mathfrak{p})\right\} \\
& =\operatorname{rmin}\left\{\mu \cdot \bar{\Im}_{\Psi}(\mathfrak{p}), \mu^{\prime} \cdot \bar{\Im}_{\Psi}(\mathfrak{p})\right\} \\
& =\mu . \bar{\Im}_{\Psi}(\mathfrak{p}) \\
& =\left(\bar{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p})
\end{aligned}
$$

In the same way, we can have $\left(\left(\bar{\aleph}_{\Psi}\right)_{\mu}^{M} \cap\left(\bar{\aleph}_{\Psi}\right)_{\mu^{\prime}}^{M}\right)(\mathfrak{p})=\operatorname{rmax}\left(\bar{\aleph}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p})$

$$
\begin{aligned}
\left(\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M} \cap\left(\mathfrak{G}_{\rho}\right)_{\mu^{\prime}}^{M}\right)(\mathfrak{p}) & =\max \left\{\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}),\left(\mathfrak{G}_{\rho}\right)_{\mu^{\prime}}^{M}(\mathfrak{p})\right\} \\
& =\max \left\{\mu \cdot \mathfrak{G}_{\rho}(\mathfrak{p}), \mu^{\prime} \cdot \mathfrak{G}_{\rho}(\mathfrak{p})\right\} \\
& =\mu \cdot \mathfrak{G}_{\rho}(\mathfrak{p}) \\
& =\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{p})
\end{aligned}
$$

In the same manner, we have

$$
\left(\left(\mathfrak{H}_{\rho}\right)_{\mu}^{M} \cap\left(\mathfrak{H}_{\rho}\right)_{\mu^{\prime}}^{M}\right)(\mathfrak{p})=\min \left(\mathfrak{H}_{\rho}\right)_{\mu}^{M}(\mathfrak{p})
$$

Hence, $\mathfrak{C}_{\mu}^{M} \cap \mathfrak{C}_{\mu^{\prime}}^{M}$ is cubic β-ideal of \mho.

7. Conclusion

In this work, the thought of cubic intuitionistic β-ideal is proposed and examined some of its engrossing associated outcomes. Moreover, the results on cartesian product and few properties on homomorphism of cubic β-ideal have been investigated. Furthermore, interesting results based on cubic μ - multiplication are also provided. In particular, we have proved that the intersection of cubic $\mu-$ multiplication is also a cubic β-ideal.In future work, this can be extended into other algebraic structures.

References

[1] L.A. Zadeh, Fuzzy sets, Information and Control 8 (3) (1965) 338-353.
[2] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems 20 (1) (1986) 87-96.
[3] K. Sujatha, M. Chandramouleeswaran, P. Muralikrishna, On intuitionistic fuzzy β-sub algebras of β-algebras, Global Journal of Pure and Applied Mathematics 9 (6) (2013) 559-566.
[4] J. Neggers, H.S. Kim, On β-algebras, Mathematica Slovaca 52 (5) (2002) 517-530.
[5] P. Hemavathi, P. Muralikrishna, K. Palanivel, On interval valued intuitionistic fuzzy β-subalgebras, Afrika Matematika 29 (1-2) (2018) 249-262.
[6] P. Hemavathi, P. Muralikrishna, K. Palanivel, i-v-f β-ideals of β - Algebras, Materials Science and Engineering Conference Series 263 (4) (2017) 1-10.
[7] A. Borumand Saeid, P. Muralikrishna, P. Hemavathi, Bi-normed intuitionistic fuzzy β-ideals of β-algebra, Journal of Uncertain Systems 13 (1) (2019) 42-55.
[8] T. Senapati, Y. B. Jun, G. Muhiuddin, K.P. Shum, Cubic intuitionistic structures applied to ideals of $B C I$-algebras, Analele stiintifice ale Universitatii Ovidius Constanta 25 (2) (2019) 213-232.
[9] T. Senapati, Y.B. Jun, K.P. Shum, Cubic intuitionistic subalgebras and closed cubic intuitionistic ideals of B-algebras, Journal of Intelligent \& Fuzzy Systems 36 (2019) 1563-1571.
[10] T. Senapati, Y.B. Jun, K.P. Shum, Cubic intuitionistic structure of KU-algebras, Afrika Matematika 31 (2) (2020) 237-248.
[11] M. Khalid, N.A. Khalid, H. Khalid, S. Broumi, Multiplicative Interpretation of neutrosophic cubic set on B-algebra, International Journal of Neutrosophic Science 1 (2) (2020) 64-73.
[12] T. Senapati, Y.B. Jun, K.P. Shum, Cubic intuitionistic implicative ideals of BCKalgebras, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 91 (2021) 273-282.
[13] T. Senapati, R.R. Yager, G. Chen, Cubic intuitionistic WASPAS technique and its application in multi-criteria decision-making, Journal of Ambient Intelligence and Humanized Computing 12 (9) (2021) 8823-8833.
[14] Y.B. Jun, C.S. Kim, M.S. Kang, Cubic subalgebras and ideals of BCK/BCI-algebras, Far East Journal of Mathematical Sciences 44 (2) (2010) 239-250.
[15] H. Garg, G. Kaur, Cubic intuitionistic fuzzy sets and its fundamental properties, Journal of Multiple-Valued Logic \& Soft Computing 33(6)(2019) 507-537.
[16] Y. B. Jun, S.Z. Song, S. Kim, Cubic interval-valued intuitionistic fuzzy sets and their application in $B C K / B C I$-Algebras, Axioms 7 (1) (2018) 1-17.
[17] T. Senapati, C. Jana, M. Pal, Y.B. Jun, Cubic intuitionistic q-ideals of BCI-algebras, Symmetry 10 (12) (2018) 1-14.
[18] P. Muralikrishna, R. Vinodkumar, G. Palani, Some aspects on cubic fuzzy β subalgebra of β-algebra, Journal of Physics: Conference Series IOP Publishing 1597 (1) (2020) 12-18.
[19] P. Muralikrishna, B. Davvaz, R. Vinodkumar, G. Palani, Applications of cubic level set on β-subalgebras, Advances in Mathematics:Scientific Journals 9 (3) (2020) 13591365.
[20] P. Muralikrishna, A.B. Saeid, R. Vinodkumar, G. Palani, An overview of cubic intuitionistic β-subalgebras, Proyecciones 41 (1) (2022) 23-44.
[21] T. Senapati, Y.B. Jun, A. Iampan, R. Chinram, Cubic intuitionistic structure applied to commutative Ideals of BCK-Algebras, Thai Journal of Mathematics 20 (2) (2022) 877-887.
[22] M.A.A. Anasri, M. Chandramouleeswaran, Fuzzy β-ideals of β-algebras, International Journal of Mathematical Science and Engineering Applications 5 (1) (2014) 1-10.

[^0]: *Corresponding author.

