Thai Journal of **Math**ematics Volume 20 Number 3 (2022) Pages 1337–1352

http://thaijmath.in.cmu.ac.th

β -Ideals of β -Subalgebras via Cubic Intuitionistic Set

Prakasam Muralikrishna^{1,*}, Arsham Borumand Saeid², R. Vinodkumar³ and Govindasamy Palani⁴

- ¹ Assistant Professor, ³ Research Scholar(PT), PG and Research Department of Mathematics, Muthurangam Government Arts College (Autonomus) (Affiliated to Thiruvalluvar University), Vellore, 632 002, India e-mail: pmkrishna@rocketmail.com
- ² Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran e-mail: arsham@uk.ac.in
- ³ Assistant Professor, Department of Mathematics, Prathyusha Engineering College, Aranvoyalkuppam, Thiruvallur, 602 025, India

e-mail: vinodmaths85@gmail.com

⁴ Assistant Professor, Department of Mathematics, Dr. Ambedkar Government Arts College, Chennai, 600 039, India

e-mail: gpalani32@yahoo.co.in

Abstract Cubic intuitionistic fuzzy sets are an effective and versatile technique for encoding ambiguous data. In this paper, the notion of β -ideals have been merged with cubic intuitionistic set. The perception of cubic intuitionistic ideals of β -algebra is established with relavent results. Moreover, various properties on Cartesian product and the homomorphism of cubic intuitionistic ideals of β -algebra are studied. Further, multiplication of cubic intuitionistic β -ideals is introduced and few of its related results were investigated.

MSC: 06F35; 03G25; 08A72; 03E72

Keywords: β -algebra; β -ideals; cubic intuitionistic fuzzy; cubic β -ideals; cubic intuitionistic ideals

Submission date: 12.12.2021 / Acceptance date: 16.08.2022

1. Introduction

After Zadeh's[1] fuzzy set, Atanassov[2] proposed the notion of intuitionistic fuzzy sets with degrees of membership and non-membership. Aub Ayub Ansari and Chandramoulees-waran[22] established the concept of fuzzy β -subalgebras of β -algebra and discussed some of its analogous outcomes. Sujatha, Chandramouleeswaran and Muralikrishna[3] introduced the notion of intuitionistic Fuzzy β -sub algebras of β -algebras. The thought of β -algebra was explored by Neggers and Kim[4], where two operations were coupled. The notion of interval valued fuzzy β -ideals were presented by Hemavathi, Muralikrishna and Palanivel[5, 6] and also they have extended the idea of interval valued intuitionistic fuzzy β -subalgebras and dealt some fascinating results. Borumand Saeid, Muralikrishna and

^{*}Corresponding author.

Hemavathi[7] developed the notion of bi-normed intuitionistic fuzzy β -ideal. The idea of cubic intuitionistic structures of BCI-algebras has been initiated by Tapan Senapati, Young Bae Jun, Muhiddin and Shum [8].

The concept of cubic intuitionistic subalgebras and closed cubic intuitionistic ideals of B-algebras were discussed by Tapan Senapati, Young Bae Jun and Shum [9, 10]. Moreover, the authors initiated the conception of cubic intuitionistic structure of KU-algebras. In addition that, the Characterizations and relations of cubic intuitionistic KU-subalgebras and KU-ideals of KU-algebras are presented. Moshin Kalid [11] proposed the notion of multiplicative interpretation of neutrosophic cubic Set on B-Algebra. The conceptual interpretation of the cubic intuitionistic implicative ideals of BCK-algebras presented by Tapan Senapati [12]. Relationship between a cubic intuitionistic subalgebra, a cubic intuitionistic ideal and a cubic intuitionistic implicative ideal are also discussed. Senapati, Yager and Chen[13] were identified some impressive applications in multi-criteria decisionmaking based on cubic intuitionistic WASPAS technique. The idea of Cubic subalgebras and ideals have applied into the framework of BCK/BCI-algebras by Jun, Kim, Song and Kang[14]. Besides, they have presented a novel extension of cubic sets and its applications in BCK/BCI -algebras and provided various results based on their perception. Garg and Kaur [15] established the thought of Cubic Intuitionistic Fuzzy Sets and its Fundamental Properties.

Jun, Song and Kim[16] applied Cubic interval valued intuitionistic fuzzy sets into BCKand BCI- algebras. The authors discussed the relation between cubic interval valued intuitionistic fuzzy subalgebra and cubic intuitionistic fuzzy ideal in BCK/BCI-algebras. The novel idea of Cubic Intuitionistic q-ideals of BCI-algebras has been described by Senapati, Jana, Pal, Jun[17]. Relationship between a cubic intuitionistic subalgebra, a cubic intuitionistic ideal, and a cubic intuitionistic q-ideal is also discussed. Muralikrishna, Vinodkumar and Palani[18] have discussed some aspects on cubic fuzzy β -subalgebra of β -algebra. Recently, Muralikrishna, Davvaz, Vinodkumar and Palani[19] analysed the applications of cubic level set on β -subalgebras. Muralikrishna, Borumand Saeid, Vinodkumar and Palani[20] have provided an admirable overview of cubic intuitionistic β -subalgebras in which the conditions of β -algebra were enforced into the cubic intuitionistic fuzzy structure. Recently, Senapati, Jun, Iampan, Ronnason [21] have applied Cubic Intuitionistic Structure to Commutative Ideals of BCK-Algebras. The association between a cubic intuitionistic subalgebra, cubic intuitionistic ideal, and cubic intuitionistic commutative ideal is also considered. With all these inspiration, this paper provides the study of cubic intuitionistic β -ideals and some compelling results were presented.

2. Preliminaries

This section reveals the necessary definitions required for the work.

Definition 2.1. [4] A β – algebra is a non-empty set \mho with a constant 0 and two binary operations + and – satisfying the following axioms:

- (i) $\mathfrak{p} 0 = \mathfrak{p}$
- (ii) (0 p) + p = 0
- (iii) $(\mathfrak{p} \mathfrak{q}) \mathfrak{r} = \mathfrak{p} (\mathfrak{r} + \mathfrak{q}) \ \forall \ \mathfrak{p}, \mathfrak{q}, \mathfrak{r} \in \mho$.

Example 2.2. The following Cayley table shows $(\mathcal{O} = \{0, 1, 2, 3\}, +, -, 0)$ is a β -algebra.

+	0	1	2	3	_	0	1	2	3
0	0	1	2	3	0	0	2	1	3
1	1	3	0	2	1	1	0	3	2
2	2	0	3	1	2	2	3	0	1
3	3	2	1	0	3	3	1	2	0

Definition 2.3. [4] A non empty subset \mathfrak{A} of a β -algebra $(\mathfrak{I},+,-,0)$ is called a β -subalgebra of \mathfrak{I} , if

- (i) $\mathfrak{p} + \mathfrak{q} \in \mathfrak{A}$ and
- (ii) $\mathfrak{p} \mathfrak{q} \in \mathfrak{A} \quad \forall \mathfrak{p}, \mathfrak{q} \in \mathfrak{A}$.

Definition 2.4. [22] A non-empty subset \mathfrak{I} of a β -algebra $(\mathfrak{V}, +, -, 0)$ is called a β -ideal of \mathfrak{V} , if

- (i) $0 \in \mathfrak{I}$
- (ii) $\mathfrak{p} + \mathfrak{q} \in \mathfrak{I}$
- (iii) $\mathfrak{p} \mathfrak{q} \& \mathfrak{q} \in \mathfrak{I}$ then $\mathfrak{p} \in \mathfrak{I} \quad \forall \mathfrak{p}, \mathfrak{q} \in \mathfrak{V}$.

Definition 2.5. [14] Let \mho be a non empty set. By a cubic set in \mho we mean a structure $C = \{\langle x, \overline{\Im}_C(\mathfrak{p}), \aleph_C(\mathfrak{p}) \rangle : x \in \mho\}$

in which $\overline{\Im}_C$ is an interval valued fuzzy set in \mho and \aleph_C is a fuzzy set in \mho .

Definition 2.6. [8, 15, 16] Let \mho be a non-empty set. By a Cubic intuitionistic set in \mho we indicate a structure $\mathfrak{C} = \{\langle x, \Psi(\mathfrak{p}), \rho_{(\mathfrak{p})} \rangle : \mathfrak{p} \in \mho \}$ in which Ψ is an interval valued intuitionistic fuzzy set in \mho and ρ is an intuitionistic fuzzy set in \mho . Since $\Psi = \{\langle \mathfrak{p}, \overline{\Im}_{\Psi}(\mathfrak{p}), \overline{\aleph}_{\Psi}(\mathfrak{p}) \rangle : \mathfrak{p} \in \mho \}$ and $\rho = \{\langle \mathfrak{p}, \mathfrak{G}_{\rho}(\mathfrak{p}), \mathfrak{H}_{\rho}(\mathfrak{p}) \rangle : \mathfrak{p} \in \mho \}$

Definition 2.7. [18] Let $\mathfrak{C} = \{ \langle \mathfrak{p}, \overline{\mathfrak{F}}_{\mathfrak{C}}(\mathfrak{p}), \aleph_{\mathfrak{C}}(\mathfrak{p}) \rangle : \mathfrak{p} \in \mathcal{O} \}$ be a cubic set in a non empty set \mathcal{O} . Then the set \mathfrak{C} is a cubic β - subalgebra if it satisfies the following conditions.

- $(\mathrm{i}) \ \ \overline{\Im}_{\mathfrak{C}}(\mathfrak{p}+\mathfrak{q}) \geq \mathit{rmin}\{\overline{\Im}_{\mathfrak{C}}(\mathfrak{p}), \overline{\Im}_{\mathfrak{C}}(\mathfrak{q})\} \& \overline{\Im}_{\mathfrak{C}}(\mathfrak{p}-\mathfrak{q}) \geq \mathit{rmin}\{\overline{\Im}_{\mathfrak{C}}(\mathfrak{p}), \overline{\Im}_{\mathfrak{C}}(\mathfrak{q})\}$
- $(ii) \ \aleph_{\mathfrak{C}}(\mathfrak{p}+\mathfrak{q}) \leq \max\{\aleph_{\mathfrak{C}}(\mathfrak{p}),\aleph_{\mathfrak{C}}(\mathfrak{q})\}\&\aleph_{\mathfrak{C}}(\mathfrak{p}-\mathfrak{q}) \leq \max\{\aleph_{\mathfrak{C}}(\mathfrak{p}),\aleph_{\mathfrak{C}}(\mathfrak{q})\} \ \forall \mathfrak{p},\mathfrak{q} \in \mho$

Definition 2.8. [18] Let $\mathfrak{C} = \{ \langle \mathfrak{p}, \Psi(\mathfrak{p}), \rho_{(\mathfrak{p})} \rangle : \mathfrak{p} \in \mathfrak{T} \}$ be a cubic intuitionistic set in \mathfrak{T} , where Ψ is an interval valued intuitionistic fuzzy set in \mathfrak{T} and ρ is an intuitionistic fuzzy set in \mathfrak{T} . Then the set \mathfrak{C} is called a cubic intuitionistic β -subalgebra if it satisfies the following conditions:

- (i) $\overline{\Im}_{\Psi}(\mathfrak{p}+\mathfrak{q}) \geq rmin\{\overline{\Im}_{\Psi}(\mathfrak{p}), \overline{\Im}_{\Psi}(\mathfrak{q})\}\&\overline{\Im}_{\Psi}(\mathfrak{p}-\mathfrak{q}) \geq rmin\{\overline{\Im}_{\Psi}(\mathfrak{p}), \overline{\Im}_{\Psi}(\mathfrak{q})\}$
- (ii) $\overline{\aleph}_{\Psi}(\mathfrak{p}+\mathfrak{q}) \leq rmax\{\overline{\aleph}_{\Psi}(\mathfrak{p}), \overline{\aleph}_{\Psi}(\mathfrak{q})\}\&\overline{\aleph}_{\Psi}(\mathfrak{p}-\mathfrak{q}) \leq rmax\{\overline{\aleph}_{\Psi}(\mathfrak{p}), \overline{\aleph}_{\Psi}(\mathfrak{q})\}$
- $(\mathrm{iii}) \ \mathfrak{G}_{\rho}(\mathfrak{p}+\mathfrak{q}) \leq \max\{\mathfrak{G}_{\rho}(\mathfrak{p}),\mathfrak{G}_{\rho}(\mathfrak{q})\} \& \mathfrak{G}_{\rho}(\mathfrak{p}-\mathfrak{q}) \leq \max\{\mathfrak{G}_{\rho}(\mathfrak{p}),\mathfrak{G}_{\rho}(\mathfrak{q})\}$
- (iv) $\mathfrak{H}_{\rho}(\mathfrak{p}+\mathfrak{q}) \geq min\{\mathfrak{H}_{\rho}(\mathfrak{p}),\mathfrak{H}_{\rho}(\mathfrak{q})\}\&\mathfrak{H}_{\rho}(\mathfrak{p}-\mathfrak{q}) \geq min\{\mathfrak{H}_{\rho}(\mathfrak{p}),\mathfrak{H}_{\rho}(\mathfrak{q})\} \quad \forall \mathfrak{p},\mathfrak{q} \in \mathfrak{V}$

3. Cubic Intuitionistic β -Ideals

This section presents the definitions of cubic intuitionistic β -ideals of β -algebras and give some results.

Definition 3.1. Let $\mathfrak{C} = \{\mathfrak{p}, \Psi(\mathfrak{p}), \rho(\mathfrak{p}) : \mathfrak{p} \in \mathcal{O}\}$ be a cubic intuitionistic set in \mathcal{O} is referred as a cubic intuitionistic β -ideal of \mathcal{O} if it satisfies the subsequent conditions for all $\mathfrak{p}, \mathfrak{q} \in \mathcal{O}$

(i)
$$\overline{\Im}_{\Psi}(0) \geq \overline{\Im}_{\Psi}(\mathfrak{p}) \& \overline{\aleph}_{\Psi}(0) \leq \overline{\aleph}_{\Psi}(\mathfrak{p})$$

- (ii) $\mathfrak{G}_{\rho}(0) \leq \mathfrak{G}_{\rho}(\mathfrak{p}) \& \mathfrak{H}_{\rho}(0) \geq \mathfrak{H}_{\rho}(\mathfrak{p})$
- (iii) $\overline{\Im}_{\Psi}(\mathfrak{p}+\mathfrak{q}) \geq rmin\{\overline{\Im}_{\Psi}(\mathfrak{p}), \overline{\Im}_{\Psi}(\mathfrak{q})\}\&\overline{\aleph}_{\Psi}(\mathfrak{p}+\mathfrak{q}) \leq rmax\{\overline{\aleph}_{\Psi}(\mathfrak{p}), \overline{\aleph}_{\Psi}(\mathfrak{q})\}$
- (iv) $\mathfrak{G}_{\rho}(\mathfrak{p}+\mathfrak{q}) \leq \max\{\mathfrak{G}_{\rho}(\mathfrak{p}),\mathfrak{G}_{\rho}(\mathfrak{q})\}\&\mathfrak{H}_{\rho}(\mathfrak{p}+\mathfrak{q}) \geq \min\{\mathfrak{H}_{\rho}(\mathfrak{p}),\mathfrak{H}_{\rho}(\mathfrak{q})\}$
- $(v) \ \overline{\Im}_{\Psi}(\mathfrak{p}) \geq rmin\{\overline{\Im}_{\Psi}(\mathfrak{p}-\mathfrak{q}), \overline{\Im}_{\Psi}(\mathfrak{q})\}\&\overline{\aleph}_{\Psi}(\mathfrak{p}) \leq rmax\{\overline{\aleph}_{\Psi}(\mathfrak{p}-\mathfrak{q}), \overline{\aleph}_{\Psi}(\mathfrak{q})\}$
- (vi) $\mathfrak{G}_{\rho}(\mathfrak{p}) \leq \max{\{\mathfrak{G}_{\rho}(\mathfrak{p}-\mathfrak{q}),\mathfrak{G}_{\rho}(\mathfrak{q})\}} \& \mathfrak{H}_{\rho}(\mathfrak{p}) \geq \min{\{\mathfrak{H}_{\rho}(\mathfrak{p}-\mathfrak{q}),\mathfrak{H}_{\rho}(\mathfrak{q})\}}$

Example 3.2. Let $\mho = \{0, 1, 2, 3\}$ be a β -algebra with constant 0 and binary operations + and - are defined on \mho as in the following cayley's table.

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

-	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	3
3	3	2	1	0

Define a Cubic intuitionistic set $\mathfrak{C} = \{\langle \mathfrak{p}, \Psi(\mathfrak{p}), \rho(\mathfrak{p}) \rangle : \mathfrak{p} \in \mathcal{O} \}$ in \mathcal{O} as follows:

p	$\Psi = \langle \overline{\Im}_{\Psi}, \overline{\aleph}_{\Psi} \rangle$	$\rho = (\mathfrak{G}_{ ho}, \mathfrak{H}_{ ho})$
0	$\langle [0.4, 0.6], [0.1, 0.4] \rangle$	(0.4, 0.7)
1	$\langle [0.2, 0.4], [0.3, 0.6] \rangle$	(0.4, 0.3)
2	$\langle [0.3, 0.5], [0.2, 0.5] \rangle$	(0.4, 0.7)
3	$\langle [0.2, 0.4], [0.3, 0.6] \rangle$	(0.6, 0.3)

Then $\mathfrak C$ is a Cubic intuitionistic β -ideal of \mho .

Theorem 3.3. Let $\mathfrak{C} = \{\mathfrak{p}, \Psi(\mathfrak{p}), \rho(\mathfrak{p}) : \mathfrak{p} \in \mathfrak{I}\}$ be a Cubic intuitionistic β - ideal of a β -algebra \mathfrak{I} . If $\mathfrak{p} \leq \mathfrak{q}$ then $\overline{\mathfrak{I}}_{\Psi}(\mathfrak{p}) \geq \overline{\mathfrak{I}}_{\Psi}(\mathfrak{q})$ & $\overline{\mathfrak{R}}_{\Psi}(\mathfrak{p}) \leq \overline{\mathfrak{R}}_{\Psi}(\mathfrak{q})$ and $\mathfrak{G}_{\rho}(\mathfrak{p}) \leq \mathfrak{G}_{\rho}(\mathfrak{q})$ & $\mathfrak{I}_{\rho}(\mathfrak{p}) \geq \mathfrak{I}_{\rho}(\mathfrak{q})$.

Proof. For $\mathfrak{p}, \mathfrak{q} \in \mathfrak{V}, \mathfrak{p} \leq \mathfrak{q} \Rightarrow \mathfrak{p} - \mathfrak{q} = 0$ then

$$\overline{\Im}_{\Psi}(\mathfrak{p}) \geq rmin\{\overline{\Im}_{\Psi}(\mathfrak{p} - \mathfrak{q}), \overline{\Im}_{\Psi}(\mathfrak{q})\}
= rmin\{\overline{\Im}_{\Psi}(0), \overline{\Im}_{\Psi}(\mathfrak{q})\}
= \overline{\Im}_{\Psi}(\mathfrak{q})$$

Similarly, we can have $\overline{\aleph}_{\Psi}(\mathfrak{p}) \leq \overline{\aleph}_{\Psi}(\mathfrak{q})$

$$\begin{split} \mathfrak{G}_{\rho}(\mathfrak{p}) &\leq \max\{\mathfrak{G}_{\rho}(\mathfrak{p}-\mathfrak{q}),\mathfrak{G}_{\rho}(\mathfrak{q})\}\\ &= \max\{\mathfrak{G}_{\rho}(0),\mathfrak{G}_{\rho}(\mathfrak{q})\}\\ &= \mathfrak{G}_{\rho}(\mathfrak{q}) \end{split}$$

Similarly, we can have $\mathfrak{H}_{\rho}(\mathfrak{p}) \geq \mathfrak{H}_{\rho}(\mathfrak{q})$

Theorem 3.4. Let \mathfrak{C} be a subset of \mathfrak{V} . Define a cubic intuitionistic set $\chi_{\mathfrak{C}}: \mathfrak{V} \to D[0,1]$ such that

$$\overline{\Im}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = \begin{cases} [t_0,t_1] & : \ \mathfrak{p} \in \mathfrak{C} \\ [t_2,t_3] & : \ \mathfrak{p} \notin \mathfrak{C} \end{cases} \qquad \overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = \begin{cases} [s_0,s_1] & : \ \mathfrak{p} \in \mathfrak{C} \\ [s_2,s_3] & : \ \mathfrak{p} \notin \mathfrak{C} \end{cases}$$

$$\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = \begin{cases} k & : \ \mathfrak{p} \in \mathfrak{C} \\ l & : \ \mathfrak{p} \notin \mathfrak{C} \end{cases} \qquad \mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = \begin{cases} m & : \ \mathfrak{p} \in \mathfrak{C} \\ n & : \ \mathfrak{p} \notin \mathfrak{C} \end{cases}$$

where $[t_0, t_1], [t_2, t_3], [s_0, s_1], [s_2, s_3] \in D[0, 1] \ \mathcal{E} \ k, l, m, n \in [0, 1] \ with \ [t_0, t_1] > [t_2, t_3], [s_0, s_1] < [s_2, s_3] \ \& \ k < l, m > n.$

Then $\chi_{\mathfrak{C}}$ is a cubic intuitionistic β -ideal of \mho , if and only if \mathfrak{C} is a β -ideal of \mho .

Proof. Suppose $\chi_{\mathfrak{C}}$ is cubic set on \mho .

(i)
$$\overline{\Im}_{\chi_{\mathfrak{C}}}(0) \geq \overline{\Im}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) \ \forall \mathfrak{p} \in \mathbb{U}$$
. Then $\overline{\Im}_{\chi_{\mathfrak{C}}}(0) = [t_0, t_1] \text{ or } [t_2, t_3] \text{ with } [t_0, t_1] > [t_2, t_3]$ (1)

If $\overline{\Im}_{\chi_{\mathfrak{C}}}(0) = [t_0, t_1]$, then $[0, 0] \in \mathfrak{C}$ which gives $\overline{\Im}_{\chi_{\mathfrak{C}}}(0) = [t_2, t_3]$ (2)

From (1) and (2), $[t_2, t_3] \ge \overline{\Im}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = [t_0, t_1]$, Which is a contradiction. Hence $\overline{\Im}_{\chi_{\mathfrak{C}}}(0) = [t_0, t_1]$, gives $[0, 0] \in \mathfrak{C}$.

(ii) For $\mathfrak{p}, \mathfrak{q} \in \mathfrak{C}$ we have $\overline{\mathfrak{F}}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = [t_0, t_1] = \overline{\mathfrak{F}}_{\chi_{\mathfrak{C}}}(\mathfrak{q})$. Also,

 $\overline{\Im}_{\chi_{\mathfrak{C}}}(\mathfrak{p}+\mathfrak{q}) \geq rmin\{\overline{\Im}_{\chi_{\mathfrak{C}}}(\mathfrak{p}), \overline{\Im}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\} = rmin\{[t_0, t_1], [t_0, t_1]\} = [t_0, t_1].$

Therefore $\overline{\Im}_{\chi_{\mathfrak{C}}}(\mathfrak{p}+\mathfrak{q})=[t_0,t_1]$ yields $\mathfrak{p}+\mathfrak{q}\in C$.

(iii) For any $\mathfrak{p}, \mathfrak{q} \in \mathfrak{V}$ if $\mathfrak{p} - \mathfrak{q} \& \mathfrak{q} \in \mathfrak{C}$ then $\overline{\mathfrak{F}}_{\chi_{\mathfrak{C}}}(\mathfrak{p} - \mathfrak{q}) = [t_0, t_1] = \overline{\mathfrak{F}}_{\chi_{\mathfrak{C}}}(\mathfrak{q})$. Now, $\overline{\mathfrak{F}}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) \geq rmin\{\overline{\mathfrak{F}}_{\chi_{\mathfrak{C}}}(\mathfrak{p} - \mathfrak{q}), \overline{\mathfrak{F}}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\} = rmin\{[t_0, t_1], [t_0, t_1]\} = [t_0, t_1]$ hence $\mathfrak{p} \in \mathfrak{C}$.

(i)
$$\overline{\aleph}_{\chi_{\mathfrak{C}}}(0) \leq \overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) \ \forall \mathfrak{p} \in \mathfrak{G}$$
. We have $\overline{\aleph}_{\chi_{\mathfrak{C}}}(0) = [s_0, s_1] \ or \ [s_2, s_3] with \ [s_0, s_1] < [s_2, s_3]. \dots (3)$

If $\overline{\aleph}_{\chi_{\mathfrak{C}}}(0) = [s_0, s_1]$, then $[1, 1] \in C$ gives $\overline{\aleph}_{\chi_{\mathfrak{C}}}(0) = [s_2, s_3]$(4)

(3) and (4) \Rightarrow $[s_2, s_3] \leq \overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = [s_0, s_1]$, Which is a contradiction. Hence $\overline{\aleph}_{\chi_{\mathfrak{C}}}(0) = [s_0, s_1]$, gives $[1, 1] \in \mathfrak{C}$.

(ii) For $\mathfrak{p}, \mathfrak{q} \in \mathfrak{C}$ we have $\overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = [s_0, s_1] = \overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{q})$. Now,

 $\overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p}+\mathfrak{q}) \underline{\leq} rmax\{\overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p}), \overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\} = rmax\{[s_0,s_1], [s_0,s_1]\} = [s_0,s_1].$

Therefore $\overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p}+\mathfrak{q})=[s_0,s_1]$ gives $\mathfrak{p}+\mathfrak{q}\in\mathfrak{C}$.

(iii) For any $\mathfrak{p}, \mathfrak{q} \in \mathfrak{V}$ if $\mathfrak{p} - \mathfrak{q}$ & $\mathfrak{q} \in \mathfrak{C}$ then $\overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p} - \mathfrak{q}) = [s_0, s_1] = \overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{q})$. Also $\overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) \leq rmax\{\overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p} - \mathfrak{q}), \overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\} = rmax\{[s_0, s_1], [s_0, s_1]\} = [s_0, s_1]$ then $\mathfrak{p} \in \mathfrak{C}$.

 $(i) \, \mathfrak{G}_{\chi_{\mathfrak{C}}}(0) \leq \mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) \, \, \forall \mathfrak{p} \in \mho. Then \, \mathfrak{G}_{\chi_{\mathfrak{C}}}(0) = k \, \, or \, \, l \, \, with \, \, k < l. \, \ldots \, \, (5)$

If $\mathfrak{G}_{\chi_{\mathfrak{C}}}(0) = k$, then $1 \in \mathfrak{C}$. Therefore $\mathfrak{G}_{\chi_{\mathfrak{C}}}(0) = l$ (6)

(5) and (6) yields $l \leq \mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = k$, Which is a contradiction. Hence $\mathfrak{G}_{\chi_{\mathfrak{C}}}(0) = k$, gives $1 \in \mathfrak{C}$.

(ii) For $\mathfrak{p}, \mathfrak{q} \in \mathfrak{C} \Rightarrow \mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = k = \mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{q})$. Now $\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p} + \mathfrak{q}) \leq \max\{\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p}), \mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\}$ = $\max\{k, k\} = k$. Therefore, $\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p} + \mathfrak{q}) = k$ then $\mathfrak{p} + \mathfrak{q} \in \mathfrak{C}$.

(iii) For any $\mathfrak{p}, \mathfrak{q} \in \mathfrak{V}$ if $\mathfrak{p} - \mathfrak{q} \& \mathfrak{q} \in \mathfrak{C} \Rightarrow \mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p} - \mathfrak{q}) = k = \mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{q})$.

Now $\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) \leq \max\{\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p}-\mathfrak{q}),\mathfrak{G}_{\chi_{C}}(\mathfrak{q})\} = \max\{k,k\} = k \text{ then } \mathfrak{p} \in \mathfrak{C}.$

(ii) For $\mathfrak{p}, \mathfrak{q} \in \mathfrak{C}$ then $\mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = m = \mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{q})$. Now $\mathfrak{H}_{\chi_{\mathfrak{C}}}(x+\mathfrak{q}) \geq \min\{\mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p}), \mathfrak{m} \in \mathfrak{T}\}$

 $\mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{q}) = min\{m, m\} = m$. Therefore, $\mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p} + \mathfrak{q}) = m$ then $\mathfrak{p} + \mathfrak{q} \in \mathfrak{C}$.

(iii) For any $\mathfrak{p}, \mathfrak{q} \in \mathfrak{V}$ if $\mathfrak{p} - \mathfrak{q} \& \mathfrak{q} \in \mathfrak{C} \Rightarrow \mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p} - \mathfrak{q}) = m = \mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{q})$.

Now $\mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) \geq \min\{\mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p}-\mathfrak{q}), \mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\} = \min\{m,m\} = m \Rightarrow \mathfrak{p} \in \mathfrak{C}$. Hence \mathfrak{C} is a cubic intuitionistic β -ideal of \mathfrak{V} .

Conversely, assume $\mathfrak C$ is cubic intuitionistic β -ideal of $\mathfrak V$, then $[0,0] \in \mathfrak C$ gives $\overline{\mathfrak V}_{\chi_{\mathfrak C}}(0) = [t_0,t_1]$. Also $Im(\overline{\mathfrak V}_{\chi_{\mathfrak C}}) = \{[t_0,t_1],[t_2,t_3]\}$ & $[t_0,t_1] > [t_2,t_3]$ thus $\overline{\mathfrak V}_{\chi_{\mathfrak C}}(0) \geq \overline{\mathfrak V}_{\chi_{\mathfrak C}}(\mathfrak p)$ for all $\mathfrak p \in \mathfrak V$. For $\mathfrak p,\mathfrak q \in \mathfrak C$ we have $\mathfrak p + \mathfrak q \in \mathfrak C$ then $\overline{\mathfrak V}_{\chi_{\mathfrak C}}(\mathfrak p) = \overline{\mathfrak V}_{\chi_{\mathfrak C}}(\mathfrak q) = \overline{\mathfrak V}_{\chi_{\mathfrak C}}(\mathfrak p) + \mathfrak q) = [t_0,t_1] \geq rmin\{\overline{\mathfrak V}_{\chi_{\mathfrak C}}(\mathfrak p),\overline{\mathfrak V}_{\chi_{\mathfrak C}}(\mathfrak q)\}$. Hence $\overline{\mathfrak V}_{\chi_{\mathfrak C}}(\mathfrak p + \mathfrak q) \geq rmin\{\overline{\mathfrak V}_{\chi_{\mathfrak C}}(\mathfrak p),\overline{\mathfrak V}_{\chi_{\mathfrak C}}(\mathfrak q)\}$. For $\mathfrak p,\mathfrak q \in \mathfrak V$ if $\mathfrak p - \mathfrak q$ and $\mathfrak q \in \mathfrak C$ then $\mathfrak p \in \mathfrak C$. Moreover, $\overline{\mathfrak V}_{\chi_{\mathfrak C}}(\mathfrak p) = [t_0,t_1] = rmin\{[t_0,t_1],[t_0,t_1]\} = rmin\{\overline{\mathfrak V}_{\chi_{\mathfrak C}}(\mathfrak p - \mathfrak q),\overline{\mathfrak V}_{\chi_{\mathfrak C}}(\mathfrak q)\}$. For some $\mathfrak p \in \mathfrak V$ if $\mathfrak p - \mathfrak q \in \mathfrak C$ and $\mathfrak q \notin \mathfrak C \Rightarrow \mathfrak p \in \mathfrak C$. Then we have $\overline{\mathfrak V}_{\chi_{\mathfrak C}}(\mathfrak p) = [t_2,t_3] = rmin\{[t_0,t_1],[t_2,t_3]\} \geq rmin\{\overline{\mathfrak V}_{\chi_{\mathfrak C}}(\mathfrak p - \mathfrak q),\overline{\mathfrak V}_{\chi_{\mathfrak C}}(\mathfrak q)\}$. Hence $\overline{\mathfrak V}_{\chi_{\mathfrak C}}(\mathfrak p) \geq rmin\{\overline{\mathfrak V}_{\chi_{\mathfrak C}}(\mathfrak p - \mathfrak q),\overline{\mathfrak V}_{\chi_{\mathfrak C}}(\mathfrak q)\}$

 $\begin{array}{l} [1,1] \in \mathfrak{C} \ \ \text{then} \ \ \overline{\aleph}_{\chi_{\mathfrak{C}}}(0) = [s_{0},s_{1}]. \ \ \text{Also} \ Im(\overline{\aleph}_{\chi_{\mathfrak{C}}}) = \{[s_{0},s_{1}],[s_{2},s_{3}]\} \ \& \ [s_{0},s_{1}] < [s_{2},s_{3}] \Rightarrow \overline{\aleph}_{\chi_{\mathfrak{C}}}(0) \leq \overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) \ \forall \mathfrak{p} \in \mathfrak{V}. \ \ \text{For} \ \mathfrak{p},\mathfrak{q} \in \mathfrak{C} \ \ \text{gives} \ \mathfrak{p} + \mathfrak{q} \in \mathfrak{C}. \ \ \text{Then} \ \overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = \overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = \overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p} + \mathfrak{q}) = [s_{0},s_{1}] \leq rmax\{\overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p}),\overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\}. \\ \text{Hence} \ \overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p} + \mathfrak{q}) \leq rmax\{\overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p}),\overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\}. \ \ \text{For} \ \mathfrak{p},\mathfrak{q} \in \mathfrak{V} \ \ \text{if} \ \mathfrak{p} - \mathfrak{q} \ \ \text{and} \ \mathfrak{q} \in \mathfrak{C} \ \ \text{then} \ \mathfrak{p} \in \mathfrak{C}. \\ \text{Also,} \ \overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = [s_{0},s_{1}] = rmax\{[s_{0},s_{1}],[s_{0},s_{1}]\} = rmax\{\overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p} - \mathfrak{q}),\overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\}. \ \ \text{For some} \\ \mathfrak{p} \in \mathcal{V} \ \ \text{if} \ \mathfrak{p} - \mathfrak{q} \in \mathfrak{C} \ \ \text{and} \ \mathfrak{q} \notin \mathfrak{C} \ \ \text{gives} \ \mathfrak{p} \in \mathfrak{C}. \ \ \text{Then} \ \overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = [s_{2},s_{3}] = rmax\{[s_{0},s_{1}],[s_{2},s_{3}]\} \leq rmax\{\overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p} - \mathfrak{q}),\overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\}. \ \ \text{Hence} \ \overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) \leq rmax\{\overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{p} - \mathfrak{q}),\overline{\aleph}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\}. \end{array}$

Now $1 \in \mathfrak{C}$ then $\mathfrak{G}_{\chi_{\mathfrak{C}}}(0) = k$. Also $Im(\mathfrak{G}_{\chi_{\mathfrak{C}}}) = \{k,l\} \& k < l \text{ yields } \mathfrak{G}_{\chi_{\mathfrak{C}}}(0) \leq \mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p})$ $\forall \mathfrak{p} \in \mathfrak{V}$. For $\mathfrak{p}, \mathfrak{q} \in \mathfrak{C} \Rightarrow \mathfrak{p} + \mathfrak{q} \in \mathfrak{C}$. Then $\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = \mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{q}) = \mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p} + \mathfrak{q}) = k \leq max\{\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p}), \mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\}$. Hence $\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p} + \mathfrak{q}) \leq max\{\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p}), \mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\}$. For $\mathfrak{p}, \mathfrak{q} \in \mathfrak{V}$ if $\mathfrak{p} - \mathfrak{q}$ and $\mathfrak{q} \in \mathfrak{C}$ implies $\mathfrak{p} \in \mathfrak{C}$. Then $\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = k = max\{k, k\} = max\{\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p} - \mathfrak{q}), \mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\}$. For some $\mathfrak{p} \in \mathfrak{V}$ if $\mathfrak{p} - \mathfrak{q} \in \mathfrak{C}$ and $\mathfrak{q} \notin \mathfrak{C}$ then $\mathfrak{p} \in \mathfrak{C}$. Then we have $\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = l = max\{k, l\} \leq max\{\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p} - \mathfrak{q}), \mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\}$. Hence $\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) \leq max\{\mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{p} - \mathfrak{q}), \mathfrak{G}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\}$

If $0 \in \mathfrak{C}$ then $\mathfrak{H}_{\chi_{\mathfrak{C}}}(0) = k$. Also $Im(\mathfrak{H}_{\chi_{\mathfrak{C}}}) = \{m,n\} \& m > n \text{ gives } \mathfrak{H}_{\chi_{\mathfrak{C}}}(0) \geq \mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p})$ $\forall \mathfrak{p} \in \mathfrak{V}$. For $\mathfrak{p}, \mathfrak{q} \in \mathfrak{C}$ we have $\mathfrak{p} + \mathfrak{q} \in \mathfrak{C}$. Then $\mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = \mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{q}) = \mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p} + \mathfrak{q}) = m \geq min\{\mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p}), \mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\}$. Hence $\mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p} + \mathfrak{q}) \geq min\{\mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p}), \mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\}$. For $\mathfrak{p}, \mathfrak{q} \in \mathfrak{V}$ if $\mathfrak{p} - \mathfrak{q}$ and $\mathfrak{q} \in \mathfrak{C} \Rightarrow \mathfrak{p} \in \mathfrak{C}$. Then $\mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = m = min\{m, m\} = min\{\mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p} - \mathfrak{q}), \mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\}$. For some $\mathfrak{p} \in \mathfrak{V}$ if $\mathfrak{p} - \mathfrak{q} \in \mathfrak{C}$ and $\mathfrak{q} \notin \mathfrak{C} \Rightarrow \mathfrak{p} \in \mathfrak{C}$. Then $\mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) = n = min\{m, n\} \geq min\{\mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p} - \mathfrak{q}), \mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\}$. $\mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p}) \geq min\{\mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{p} - \mathfrak{q}), \mathfrak{H}_{\chi_{\mathfrak{C}}}(\mathfrak{q})\}$. Hence $\mathfrak{L}_{\mathfrak{C}}$ is a cubic intuitionistic β -ideal of \mathfrak{V} .

4. Product on Cubic Intuitionistic β -Ideals

This section discusses the product on cubic intuitionistic β -ideals on β -algebras and some related results.

Definition 4.1. Let $(\mho, +, -, 0)$ and $(\Theta, +, -, 0)$ be two sets. Let $\mathfrak{A} = \{\langle \mathfrak{p}, \Psi_{\mathfrak{A}}(\mathfrak{p}), \rho_{\mathfrak{A}}(\mathfrak{p}) \rangle : \mathfrak{p} \in \mathcal{O}\}$ and $\mathfrak{B} = \{\langle \mathfrak{q}, \Psi_{\mathfrak{B}}(\mathfrak{q}), \rho_{\mathfrak{B}}(\mathfrak{q}) \rangle : \mathfrak{q} \in \Theta\}$ be cubic intuitionistic sets in \mho and Θ respectively. The Cartesian product of \mathfrak{A} and \mathfrak{B} denoted by $\mathfrak{A} \times \mathfrak{B}$ is defined to be the set $\mathfrak{A} \times \mathfrak{B} = \{\langle (\mathfrak{p}, \mathfrak{q}), \Psi_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{p}, \mathfrak{q}), \rho_{\mathfrak{A} \times \mathfrak{B}}(\mathfrak{p}, \mathfrak{q}) \rangle : (\mathfrak{p}, \mathfrak{q}) \in \mho \times \Theta\}$ where $\Psi_{\mathfrak{A} \times \mathfrak{B}} = [\overline{\mathfrak{I}}_{\mathfrak{A} \times \mathfrak{B}}, \overline{\mathfrak{N}}_{\mathfrak{A} \times \mathfrak{B}}] \& \rho_{\mathfrak{A} \times \mathfrak{B}} = (\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}, \mathfrak{H}_{\mathfrak{A} \times \mathfrak{B}})$ and

 $\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}: \mathcal{O}\times\Theta \to D[0,1]$ is given by $\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p},\mathfrak{q})=rmin\{\overline{\Im}_{\mathfrak{A}}(\mathfrak{p}),\overline{\Im}(\mathfrak{q})\},$

 $\overline{\aleph}_{\mathfrak{A}\times\mathfrak{B}}: \mathfrak{V}\times\Theta\to D[0,1] \text{ is given by } \overline{\aleph}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p},\mathfrak{q})=rmax\{\overline{\aleph}_{\mathfrak{A}}(\mathfrak{p}),\overline{\aleph}_{\mathfrak{B}}(\mathfrak{q})\}, \\
\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}: \mathfrak{V}\times\Theta\to [0,1] \text{ is given by } \mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p},\mathfrak{q})=max\{\mathfrak{G}_{\mathfrak{A}}(\mathfrak{p}),\mathfrak{G}_{\mathfrak{B}}(\mathfrak{q})\} \text{ and } \mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}: \\
\mathfrak{V}\times\Theta\to [0,1] \text{ is given by } \mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p},\mathfrak{q})=min\{\mathfrak{H}_{\mathfrak{A}}(\mathfrak{p}),\mathfrak{H}_{\mathfrak{B}}(\mathfrak{q})\}$

Theorem 4.2. Let $\mathfrak{A} = \{\langle \mathfrak{p}, \Psi_{\mathfrak{A}}(\mathfrak{p}), \rho_{\mathfrak{A}}(\mathfrak{p}) \rangle : \mathfrak{p} \in \mathcal{U} \}$ and $\mathfrak{B} = \{\langle \mathfrak{q}, \Psi_{\mathfrak{B}}(\mathfrak{q}), \rho_{\mathfrak{B}}(\mathfrak{q}) \rangle : \mathfrak{q} \in \Theta \}$ be two cubic intuitionistic β -ideals of \mathcal{U} and Θ respectively. Then $\mathfrak{A} \times \mathfrak{B}$ is also a cubic intuitionistic β - ideal of $\mathcal{U} \times \Theta$.

Proof. Let $\mathfrak{A} = \{ \langle \mathfrak{p}, \Psi_{\mathfrak{A}}(\mathfrak{p}), \rho_{\mathfrak{A}}(\mathfrak{p}) \rangle : \mathfrak{p} \in \mathcal{O} \}$ and $\mathfrak{B} = \{ \langle \mathfrak{q}, \Psi_{\mathfrak{B}}(\mathfrak{q}), \rho_{\mathfrak{B}}(\mathfrak{q}) \rangle : \mathfrak{q} \in \Theta \}$ be two cubic intuitionistic subsets in \mathcal{O} and Θ respectively. Take $(\mathfrak{p}, \mathfrak{q}) \in \mathcal{O} \times \Theta$

$$\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(0,0) \geq rmin\{\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(0), \overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(0)\}$$

$$= rmin\{\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}), \overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{q})\}$$

$$= \overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}, \mathfrak{q})$$

$$\begin{split} \overline{\aleph}_{\mathfrak{A}\times\mathfrak{B}}(0,0) &\leq rmax\{\overline{\aleph}_{\mathfrak{A}\times\mathfrak{B}}(0), \overline{\aleph}_{\mathfrak{A}\times\mathfrak{B}}(0)\}\\ &= rmax\{\overline{\aleph}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}), \overline{\aleph}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{q})\}\\ &= \overline{\aleph}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p},\mathfrak{q}) \end{split}$$

$$\begin{split} \mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(0,0) &\leq \max\{\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(0),\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(0)\}\\ &= \max\{\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}),\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{q})\}\\ &= \mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p},\mathfrak{q}) \end{split}$$

$$\begin{split} \mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(0,0) &\geq \min\{\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(0),\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(0)\}\\ &= \min\{\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}),\mathfrak{H}_{A\times\mathfrak{B}}(\mathfrak{q})\}\\ &= \mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p},\mathfrak{q}) \end{split}$$

Take $(a,b) \in \mho \times \Theta$, where $a = (\mathfrak{p}_1,\mathfrak{q}_1) \& b = (\mathfrak{p}_2,\mathfrak{q}_2)$. Then we have $\overline{\mathfrak{F}}_{\mathfrak{A}\times\mathfrak{B}}(a+b) \geq rmin\{\overline{\mathfrak{F}}_{\mathfrak{A}\times\mathfrak{B}}(a),\overline{\mathfrak{F}}_{\mathfrak{A}\times\mathfrak{B}}(b)\} \& \overline{\mathfrak{K}}_{\mathfrak{A}\times\mathfrak{B}}(a+b) \leq rmax\{\overline{\mathfrak{K}}_{\mathfrak{A}\times\mathfrak{B}}(a),\overline{\mathfrak{K}}_{\mathfrak{A}\times\mathfrak{B}}(b)\}$ and $\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(a+b) \leq max\{\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(a),\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(b)\}$. Now,

$$\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(a) = \overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{1},\mathfrak{q}_{1}) \\
= rmin\{\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{1}), \overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{q}_{1})\} \\
\geq rmin\{rmin\{\overline{\Im}_{\mathfrak{A}}(\mathfrak{p}_{1} - \mathfrak{p}_{2}), \overline{\Im}_{\mathfrak{A}}(\mathfrak{p}_{2})\}, rmin\{\overline{\Im}_{\mathfrak{B}}(\mathfrak{q}_{1} - \mathfrak{q}_{2}), \overline{\Im}_{\mathfrak{B}}(\mathfrak{q}_{2})\}\} \\
\geq rmin\{rmin\{\overline{\Im}_{\mathfrak{A}}(\mathfrak{p}_{1} - \mathfrak{p}_{2}), \overline{\Im}_{\mathfrak{B}}(\mathfrak{q}_{1} - \mathfrak{q}_{2})\}, rmin\{\overline{\Im}_{\mathfrak{A}}(\mathfrak{p}_{2}), \overline{\Im}_{\mathfrak{B}}(\mathfrak{q}_{2})\}\} \\
= rmin\{\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_{1},\mathfrak{q}_{1}) - (\mathfrak{p}_{2},\mathfrak{q}_{2})), \overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{2},\mathfrak{q}_{2})\} \\
= rmin\{\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(a - b), \overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(b)\}$$

$$\begin{split} \overline{\aleph}_{\mathfrak{A}\times\mathfrak{B}}(a) &= \overline{\aleph}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_1,\mathfrak{q}_1) \\ &= rmax\{\overline{\aleph}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_1), \overline{\aleph}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{q}_1)\} \end{split}$$

$$\leq rmax\{rmax\{\overline{\aleph}_{\mathfrak{A}}(\mathfrak{p}_{1}-\mathfrak{p}_{2}),\overline{\aleph}_{\mathfrak{A}}(\mathfrak{p}_{2})\},rmax\{\overline{\aleph}_{\mathfrak{B}}(\mathfrak{q}_{1}-\mathfrak{q}_{2}),\overline{\aleph}_{\mathfrak{B}}(\mathfrak{q}_{2})\}\}$$

$$\leq rmax\{rmax\{\overline{\aleph}_{\mathfrak{A}}(\mathfrak{p}_{1}-\mathfrak{p}_{2}),\overline{\aleph}_{\mathfrak{B}}(\mathfrak{q}_{1}-\mathfrak{q}_{2})\},rmax\{\overline{\aleph}_{\mathfrak{A}}(\mathfrak{p}_{2}),\overline{\aleph}_{\mathfrak{B}}(\mathfrak{q}y_{2})\}\}$$

$$= rmax\{\overline{\aleph}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_{1},\mathfrak{q}_{1})-(\mathfrak{p}_{2},\mathfrak{q}_{2})),\overline{\aleph}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{2},\mathfrak{q}_{2})\}$$

$$= rmax\{\overline{\aleph}_{\mathfrak{A}\times\mathfrak{B}}(a-b),\overline{\aleph}_{\mathfrak{A}\times\mathfrak{B}}(b)\}$$

$$\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(a) = \mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{1},\mathfrak{q}_{1})$$

$$= max\{\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{1}),\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{q}_{1})\}$$

$$\leq max\{max\{\mathfrak{G}_{\mathfrak{A}}(\mathfrak{p}_{1}-\mathfrak{p}_{2}),\mathfrak{G}_{\mathfrak{A}}(\mathfrak{p}_{2})\},max\{\mathfrak{G}_{\mathfrak{A}}(\mathfrak{p}_{2}),\mathfrak{G}_{\mathfrak{B}}(\mathfrak{q}_{2})\}\}$$

$$\leq max\{max\{\mathfrak{G}_{\mathfrak{A}}(\mathfrak{p}_{1}-\mathfrak{p}_{2}),\mathfrak{G}_{\mathfrak{B}}(\mathfrak{q}_{1}-\mathfrak{q}_{2})\},max\{\mathfrak{G}_{\mathfrak{A}}(\mathfrak{p}_{2}),\mathfrak{G}_{\mathfrak{B}}(\mathfrak{q}_{2})\}\}$$

$$= max\{\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_{1},\mathfrak{q}_{1})-(\mathfrak{p}_{2},\mathfrak{q}_{2})),\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{2},\mathfrak{q}_{2})\}$$

$$= max\{\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(a-b),\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(b)\}.$$

$$\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(a) = \mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{1}),\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{1})$$

$$= min\{\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{1}),\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{q}_{1})\}$$

$$\geq min\{min\{\mathfrak{H}_{\mathfrak{A}}(\mathfrak{p}_{1}-\mathfrak{p}_{2}),\mathfrak{H}_{\mathfrak{A}}(\mathfrak{p}_{2})\},min\{\mathfrak{H}_{\mathfrak{A}}(\mathfrak{p}_{2}),\mathfrak{H}_{\mathfrak{B}}(\mathfrak{q}_{2})\}\}$$

$$\geq min\{min\{\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{1}-\mathfrak{p}_{2}),\mathfrak{H}_{\mathfrak{B}}(\mathfrak{q}_{1}-\mathfrak{q}_{2})\},min\{\mathfrak{H}_{\mathfrak{A}}(\mathfrak{p}_{2}),\mathfrak{H}_{\mathfrak{B}}(\mathfrak{q}_{2})\}\}$$

$$= min\{\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{1},\mathfrak{q}_{1})-(\mathfrak{p}_{2},\mathfrak{q}_{2})\},\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{2},\mathfrak{H}_{2})\}$$

$$= min\{\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{1},\mathfrak{H}_{1})-(\mathfrak{p}_{2},\mathfrak{H}_{2})\},\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{2},\mathfrak{H}_{2})\}$$

$$= min\{\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{2},\mathfrak{H}_{2}),\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{2})\}$$

$$= min\{\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{q}_{2},\mathfrak{H}_{2}),\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{2})\}$$

$$= min\{\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{q}_{2},\mathfrak{H}_{2})\}$$

$$= min\{\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{q}_{2},\mathfrak{H}_{2})\}$$

$$= min\{\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{q}_{2},\mathfrak{H}_{2})\}$$

$$= min\{\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{q}_{2},\mathfrak{H}_{2})\}$$

 $\mathfrak{A} \times \mathfrak{B}$ is a cubic intuitionistic β -ideal of $\mathfrak{V} \times \Theta$.

Lemma 4.3. Let \mathfrak{A} and \mathfrak{B} be two cubic intuitionistic subsets of \mathfrak{V} and Θ respectively. Then $\mathfrak{A} \times \mathfrak{B}$ is a cubic intuitionistic β - ideal of $\mathfrak{V} \times \Theta$ then $\overline{\mathfrak{F}}_{\mathfrak{A}}(0) \geq \overline{\mathfrak{F}}_{\mathfrak{A}}(\mathfrak{p}), \overline{\mathfrak{F}}_{\mathfrak{B}}(0) \geq \overline{\mathfrak{F}}_{\mathfrak{A}}(\mathfrak{p}), \overline{\mathfrak{F}}_{\mathfrak{B}}(0) \leq \overline{\mathfrak{K}}_{\mathfrak{B}}(\mathfrak{q})$ and $\mathfrak{G}_{\mathfrak{A}}(0) \leq \mathfrak{G}_{\mathfrak{A}}(\mathfrak{p}), \mathfrak{G}_{\mathfrak{B}}(0) \leq \mathfrak{G}_{\mathfrak{B}}(\mathfrak{q})$ & $\mathfrak{H}_{\mathfrak{A}}(0) \leq \mathfrak{H}_{\mathfrak{B}}(\mathfrak{q})$ and $\mathfrak{G}_{\mathfrak{A}}(0) \leq \mathfrak{G}_{\mathfrak{A}}(\mathfrak{p}), \mathfrak{G}_{\mathfrak{B}}(0) \leq \mathfrak{G}_{\mathfrak{B}}(\mathfrak{q})$.

Proof. Let \mathfrak{A} and \mathfrak{B} be two cubic intuitionistic subsets of \mathfrak{V} and Θ Suppose $\overline{\mathfrak{F}}_{\mathfrak{A}}(\mathfrak{p}) \geq \overline{\mathfrak{F}}_{\mathfrak{A}}(0)$ and $\overline{\mathfrak{F}}_{\mathfrak{B}}(\mathfrak{q}) \geq \overline{\mathfrak{F}}_{\mathfrak{B}}(0)$ $\overline{\aleph}_{\mathfrak{A}}(0) \geq \overline{\aleph}_{\mathfrak{B}}(\mathfrak{p})$ and $\overline{\aleph}_{\mathfrak{B}}(0) \geq \overline{\aleph}_{\mathfrak{B}}(\mathfrak{q})$ for some $\mathfrak{p} \in \mathfrak{V}, \mathfrak{q} \in \Theta$. Then

$$\overline{\mathfrak{F}}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p},\mathfrak{q}) \geq rmin\{\overline{\mathfrak{F}}_{\mathfrak{A}}(\mathfrak{p}), \overline{\mathfrak{F}}_{\mathfrak{B}}(\mathfrak{q})\}
= rmin\{\overline{\mathfrak{F}}_{\mathfrak{A}}(0), \overline{\mathfrak{F}}_{\mathfrak{B}}(0)\}
= \overline{\mathfrak{F}}_{\mathfrak{A}\times\mathfrak{B}}(0,0)$$

Similarly, we can get $\overline{\aleph}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p},\mathfrak{q}) \leq \overline{\aleph}_{\mathfrak{A}\times\mathfrak{B}}(0,0)$. Suppose $\mathfrak{G}_{\mathfrak{A}}(0) \geq \mathfrak{G}_{\mathfrak{A}}(\mathfrak{p})$ and $\mathfrak{G}_{\mathfrak{B}}(0) \geq \mathfrak{G}_{\mathfrak{B}}(\mathfrak{q})$

 $\mathfrak{H}_{\mathfrak{A}}(\mathfrak{p}) \geq \mathfrak{H}_{\mathfrak{A}}(0)$ and $\mathfrak{H}_{\mathfrak{B}}(\mathfrak{q}) \geq \mathfrak{H}_{\mathfrak{B}}(0)$ for some $\mathfrak{p} \in \mathfrak{V}, \mathfrak{q} \in \Theta$. Then

$$\begin{split} \mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p},\mathfrak{q}) &\leq \max\{\mathfrak{G}_{\mathfrak{A}}(\mathfrak{p}),\aleph_{\mathfrak{B}}(\mathfrak{q})\}\\ &= \max\{\mathfrak{G}_{\mathfrak{A}}(0),\mathfrak{G}_{\mathfrak{B}}(0)\}\\ &= \mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(0,0) \end{split}$$

Similarly, we can have $\mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p},\mathfrak{q}) \geq \mathfrak{H}_{\mathfrak{A}\times\mathfrak{B}}(0,0)$. Which is a contradiction, proving the result.

Theorem 4.4. Let $\mathfrak A$ and $\mathfrak B$ be two cubic intuitionistic subsets of $\mathfrak V$ and Θ such that $\mathfrak A \times \mathfrak B$ is also a cubic intuitionistic β - ideal of $\mathfrak V \times \Theta$. Then either $\mathfrak A$ is a cubic intuitionistic β -ideal of $\mathfrak V$ or $\mathfrak B$ is a cubic intuitionistic β -ideal of Θ .

Proof. Now by lemma 5.3,let us take $\overline{\Im}_{\mathfrak{A}}(0) \geq \overline{\Im}_{\mathfrak{A}}(\mathfrak{p}), \overline{\Im}_{\mathfrak{B}}(0) \geq \overline{\Im}_{\mathfrak{B}}(\mathfrak{q}) \ \& \ \overline{\aleph}_{\mathfrak{A}}(0) \leq \overline{\aleph}_{\mathfrak{A}}(\mathfrak{p}), \overline{\aleph}_{\mathfrak{B}}(0) \leq \overline{\aleph}_{\mathfrak{B}}(\mathfrak{q}) \ (1)$ $\mathfrak{G}_{\mathfrak{A}}(0) \leq \mathfrak{G}_{\mathfrak{A}}(\mathfrak{p}), \mathfrak{G}_{\mathfrak{B}}(0) \leq \mathfrak{G}_{\mathfrak{B}}(\mathfrak{q}) \ \& \ \mathfrak{H}_{\mathfrak{A}}(0) \leq \mathfrak{H}_{\mathfrak{A}}(\mathfrak{p}), \mathfrak{H}_{\mathfrak{B}}(0) \leq \mathfrak{H}_{\mathfrak{B}}(\mathfrak{q}) \ (2) \ \text{then} \ \overline{\Im}_{\mathfrak{A} \times \mathfrak{B}}(0, \mathfrak{q})$ $= rmin\{\overline{\Im}_{\mathfrak{A}}(0), \overline{\Im}_{\mathfrak{B}}(\mathfrak{q})\} \ \& \ \overline{\aleph}_{\mathfrak{A} \times \mathfrak{B}}(0, \mathfrak{q}) = rmax\{\overline{\aleph}_{\mathfrak{A}}(0), \overline{\aleph}_{\mathfrak{B}}(\mathfrak{q})\}$ and $\mathfrak{G}_{\mathfrak{A} \times \mathfrak{B}}(0, \mathfrak{q}) = max\{\mathfrak{G}_{\mathfrak{A}}(0), \mathfrak{G}_{\mathfrak{B}}(\mathfrak{q})\} \ \& \ \mathfrak{H}_{\mathfrak{A} \times \mathfrak{B}}(0, \mathfrak{q}) = min\{\mathfrak{H}_{\mathfrak{A}}(0), \mathfrak{H}_{\mathfrak{B}}(\mathfrak{q})\}$ Since $\mathfrak{A} \times \mathfrak{B} \text{ is a cubic intuitionistic } \beta - \text{ideals of } \mho \times \Theta,$

$$\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_1,\mathfrak{q}_1),(\mathfrak{p}_2,\mathfrak{q}_2))\geq rmin\{\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_1,\mathfrak{q}_1)-(\mathfrak{p}_2,\mathfrak{q}_2)),\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_2,\mathfrak{q}_2)\}$$

and since

$$\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_{1},\mathfrak{q}_{1}),(\mathfrak{p}_{2},\mathfrak{q}_{2})) \geq rmin\{\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_{1},\mathfrak{q}_{1})-(\mathfrak{p}_{2},\mathfrak{q}_{2})),\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_{2},\mathfrak{q}_{2}))\}$$

$$\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_{1},\mathfrak{q}_{1}),(\mathfrak{p}_{2},\mathfrak{q}_{2})) \geq rmin\{\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_{1}-\mathfrak{p}_{2}),(\mathfrak{q}_{1}-y_{2})),\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{2},y_{2})\}$$

$$\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_{1}-\mathfrak{p}_{2}),(y_{1}-\mathfrak{q}_{2})) \geq rmin\{\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_{1},\mathfrak{q}_{1}),\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{2},\mathfrak{q}_{2})\} (3)$$

Putting $\mathfrak{p}_1 = \mathfrak{p}_2 = 0$ in (3) Then

$$\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}((0,\mathfrak{q}_1)\geq rmin\{\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(0,(\mathfrak{q}_1-\mathfrak{q}_2)),\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(0,\mathfrak{q}_2)\} \text{ and } \\ \overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(0,(\mathfrak{q}_1-\mathfrak{q}_2))\geq rmin\{\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(0,\mathfrak{q}_1),\overline{\Im}_{\mathfrak{A}\times\mathfrak{B}}(0,\mathfrak{q}_2)\}$$
(4)

Using equations (1) in (4)

$$\Rightarrow \overline{\Im}_{\mathfrak{B}}(\mathfrak{q}_1) \geq rmin\{\{\overline{\Im}_{\mathfrak{B}}(\mathfrak{q}_1 - \mathfrak{q}_2), \overline{\Im}_{\mathfrak{B}}(\mathfrak{q}_2)\}\}$$

and
$$\overline{\Im}_{\mathfrak{B}}(\mathfrak{q}_1 - \mathfrak{q}_2) \geq rmin\{\overline{\Im}_{\mathfrak{B}}(\mathfrak{q}_1), \overline{\Im}_{\mathfrak{B}}(\mathfrak{q}_2)\}$$

Similarly,

$$\overline{\aleph}_{\mathfrak{B}}(\mathfrak{q}_1) \leq rmax\{\{\overline{\aleph}_{\mathfrak{B}}(\mathfrak{q}_1 - \mathfrak{q}_2), \overline{\aleph}_{\mathfrak{B}}(\mathfrak{q}_2)\} \text{ and } \overline{\aleph}_{\mathfrak{B}}(\mathfrak{q}_1 - \mathfrak{q}_2) \leq rmax\{\overline{\aleph}_{\mathfrak{B}}(\mathfrak{q}_1), \overline{\aleph}_{\mathfrak{B}}(\mathfrak{q}_2)\}$$

Also,
$$\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_{1},\mathfrak{q}_{1}),(\mathfrak{p}_{2},\mathfrak{q}_{2})) \leq max\{\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_{1},\mathfrak{q}_{1})-(\mathfrak{p}_{2},\mathfrak{q}_{2})),\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{2},\mathfrak{q}_{2})\}$$
 and
$$\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_{1},\mathfrak{q}_{1}),(\mathfrak{p}_{2},\mathfrak{q}_{2})) \leq max\{\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_{1},\mathfrak{q}_{1})-(\mathfrak{p}_{2},\mathfrak{q}_{2})),\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_{2},\mathfrak{q}_{2}))\}$$

$$\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_{1},\mathfrak{q}_{1}),(\mathfrak{p}_{2},\mathfrak{q}_{2})) \leq max\{\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_{1}-\mathfrak{p}_{2}),(\mathfrak{q}_{1}-\mathfrak{q}_{2})),\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{2},\mathfrak{q}_{2})\}$$

$$\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_{1}-\mathfrak{p}_{2}),(\mathfrak{q}_{1}-\mathfrak{q}_{2})) \leq max\{\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}((\mathfrak{p}_{1},\mathfrak{q}_{1}),\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(\mathfrak{p}_{2},\mathfrak{q}_{2})\}$$
 (5)

Putting $\mathfrak{p}_1 = \mathfrak{p}_2 = 0$ in (5) Then

$$\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}((0,\mathfrak{q}_1)\leq \max\{\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(0,(\mathfrak{q}_1-\mathfrak{q}_2)),\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(0,\mathfrak{q}_2)\} \text{ and }$$

$$\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(0,(\mathfrak{q}_1-\mathfrak{q}_2))\leq \max\{\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(0,\mathfrak{q}_1),\mathfrak{G}_{\mathfrak{A}\times\mathfrak{B}}(0,\mathfrak{q}_2)\}\ (6)$$

Using equations (1) in (6) which gives $\Rightarrow \mathfrak{G}_{\mathfrak{B}}(\mathfrak{q}_1) \leq max\{\{\mathfrak{G}_{\mathfrak{B}}(\mathfrak{q}_1 - \mathfrak{q}_2), \mathfrak{G}_{\mathfrak{B}}(\mathfrak{q}_2)\}\}$ and $\mathfrak{G}_{\mathfrak{B}}(\mathfrak{q}_1 - \mathfrak{q}_2) \leq max\{\mathfrak{G}_{\mathfrak{B}}(\mathfrak{q}_1), \mathfrak{G}_{\mathfrak{B}}(\mathfrak{q}_2)\}.$

Similarly we have, $\mathfrak{H}_{\mathfrak{B}}(\mathfrak{q}_1) \geq \min\{\{\mathfrak{H}_{\mathfrak{B}}(\mathfrak{q}_1-\mathfrak{q}_2), \mathfrak{H}_{\mathfrak{B}}(\mathfrak{q}_2)\}\ \text{and}\ \mathfrak{H}_{\mathfrak{B}}(\mathfrak{q}_1-\mathfrak{q}_2) \geq \min\{\mathfrak{H}_{\mathfrak{B}}(\mathfrak{q}_1), \mathfrak{H}_{\mathfrak{B}}(\mathfrak{q}_2)\}\$. Hence \mathfrak{B} is a cubic intuitionistic β -ideal of Θ .

5. Homomorphic Image(Inverse Image) of Cubic Intuitionistic $\beta-$ Ideals

This section deals the properties on homomorphic image (inverse image) of Cubic intuitionistic $\beta-\text{ideals}.$ **Definition 5.1.** Let $f: \mathcal{O} \to \Theta$ be a function. Let \mathfrak{A} and \mathfrak{B} be two cubic intuitionistic β -ideals in \mathcal{O} and Θ respectively. Then inverse image of \mathfrak{B} under f is defined by $f^{-1}(\mathfrak{B}) = \{f^{-1}(\overline{\mathfrak{I}}_{\mathfrak{B}}(\mathfrak{p})), f^{-1}(\overline{\mathfrak{N}}_{\mathfrak{B}}(\mathfrak{p})), f^{-1}(\mathfrak{G}_{\mathfrak{B}}(x)), f^{-1}(\mathfrak{H}_{\mathfrak{B}}(\mathfrak{p})) : \mathfrak{p} \in \mathcal{O}\}$ such that $f^{-1}(\overline{\mathfrak{I}}_{\mathfrak{B}}(\mathfrak{p})) = (\overline{\mathfrak{I}}_{\mathfrak{B}}(f(\mathfrak{p})), f^{-1}(\overline{\mathfrak{N}}_{\mathfrak{B}}(\mathfrak{p})) = (\mathfrak{G}_{\mathfrak{B}}(f(\mathfrak{p})), f^{-1}(\mathfrak{G}_{\mathfrak{B}}(\mathfrak{p})) = (\mathfrak{G}_{\mathfrak{B}}(f(\mathfrak{p})), f^{-1}(\mathfrak{H}_{\mathfrak{B}}(\mathfrak{p})))$ and $f^{-1}(\mathfrak{H}_{\mathfrak{B}}(\mathfrak{p})) = (\mathfrak{H}_{\mathfrak{B}}(f(\mathfrak{p})), f^{-1}(\mathfrak{H}_{\mathfrak{B}}(\mathfrak{p}))$

Theorem 5.2. Let $f: \mathcal{V} \to \mathcal{V}$ be an endomorphism on \mathcal{V} and $\mathfrak{C} = \{\mathfrak{p}, \Psi(\mathfrak{p}), \rho(x) : x \in \mathcal{V}\}$ be a cubic intuitionistic β -ideal of \mathcal{V} . Then $\mathfrak{C}_f = \{f(\mathfrak{p}), \{\overline{\mathfrak{I}}_f(\mathfrak{p}), \overline{\aleph}_f(\mathfrak{p})\}, \{\mathfrak{G}_f(\mathfrak{p}), \mathfrak{H}_f(\mathfrak{p})\} : \mathfrak{p} \in \mathcal{V}\}$ where $\overline{\mathfrak{I}}_f : \mathcal{V} \to D[0,1]$ & $\overline{\aleph}_f : \mathcal{V} \to D[0,1]$ and $\mathfrak{G}_f : \mathcal{V} \to [0,1]$ & $\mathfrak{F}_f : \mathcal{V} \to [0,1]$ are defined by $\overline{\mathfrak{I}}_f(\mathfrak{p}) = \overline{\mathfrak{I}}(f(\mathfrak{p})), \overline{\aleph}_f(\mathfrak{p}) = \overline{\aleph}(f(\mathfrak{p})), \mathfrak{G}_f(\mathfrak{p}) = \mathfrak{G}(f(\mathfrak{p}))$ and $\mathfrak{H}_f(\mathfrak{p}) = \mathfrak{H}_f(\mathfrak{p}), \forall \mathfrak{p} \in \mathcal{V}$, is a cubic intuitionistic β -ideal of \mathcal{V} .

Proof. Let \mathfrak{C} be a cubic intuitionistic β -ideal of \mho .

For $\mathfrak{p} \in \mho$,

$$\overline{\Im}_f(0) = \overline{\Im}(f(0)) = \overline{\Im}(0) \le \overline{\Im}(\mathfrak{p}),$$

$$\overline{\aleph}_f(0) = \overline{\aleph}(f(0)) = \overline{\aleph}(0) \ge \overline{\aleph}(\mathfrak{p}) \ \forall \mathfrak{p} \in \mathbb{G}.$$
Then

$$\overline{\mathfrak{F}}_{f}(\mathfrak{p}+\mathfrak{q}) = \overline{\mathfrak{F}}(f(\mathfrak{p}+\mathfrak{q}))$$

$$\geq \overline{\mathfrak{F}}(f(\mathfrak{p})+f(y))$$

$$= rmin\{\overline{\mathfrak{F}}(f(\mathfrak{p})),\overline{\mathfrak{F}}(f(\mathfrak{q}))\}$$

$$= rmin\{\overline{\mathfrak{F}}_{f}(\mathfrak{p}),\overline{\mathfrak{F}}_{f}(\mathfrak{q})\}.$$

Similarly, we will have $\overline{\aleph}_f(\mathfrak{p}+\mathfrak{q}) \leq rmax\{\overline{\aleph}_f(\mathfrak{p}), \overline{\aleph}_f(\mathfrak{q})\}$ Also,

$$\overline{\Im}_{f}(\mathfrak{p}) = \overline{\Im}(f(\mathfrak{p}))$$

$$\geq rmin\{\overline{\Im}(f(\mathfrak{p}) - f(\mathfrak{q})), \overline{\Im}(f(\mathfrak{q}))\}$$

$$= rmin\{\overline{\Im}(f(\mathfrak{p} - \mathfrak{q})), \overline{\Im}(f(\mathfrak{q}))\}$$

$$= rmin\{\overline{\Im}_{f}(\mathfrak{p} - \mathfrak{q}), \overline{\Im}_{f}(\mathfrak{q})\}.$$

Similarly, we can have $\overline{\aleph}_f(\mathfrak{p}) \leq rmax\{\overline{\aleph}_f(\mathfrak{p}-\mathfrak{q}), \overline{\aleph}_f(\mathfrak{q})\}.$ For $\mathfrak{p} \in \mathcal{V}$, $\mathfrak{G}_f(0) = \mathfrak{G}(f(0)) = \mathfrak{G}(0) \geq \mathfrak{G}(\mathfrak{p}); \, \mathfrak{H}_f(0) = \mathfrak{H}(f(0)) = \mathfrak{H}(0) \leq \mathfrak{H}(\mathfrak{p}) \, \, \forall \mathfrak{p} \in \mathcal{V}.$ Then

$$\mathfrak{G}_{f}(\mathfrak{p} + \mathfrak{q}) = \mathfrak{G}(f(\mathfrak{p} + \mathfrak{q}))$$

$$\leq \mathfrak{G}(f(\mathfrak{p}) + f(\mathfrak{q}))$$

$$= \max\{\mathfrak{G}(f(\mathfrak{p})), \mathfrak{G}(f(\mathfrak{q}))\}$$

$$= \max\{\mathfrak{G}_{f}(\mathfrak{p}), \mathfrak{G}_{f}(\mathfrak{q})\}$$

$$\begin{split} \mathfrak{H}_f(\mathfrak{p} + \mathfrak{q}) &= \mathfrak{H}(f(\mathfrak{p} + \mathfrak{q})) \\ &\geq \mathfrak{H}(f(\mathfrak{p}) + f(\mathfrak{q})) \\ &= \min\{\mathfrak{H}(f(\mathfrak{p})), \mathfrak{H}(f(\mathfrak{q}))\} \\ &= \min\{\mathfrak{H}_f(\mathfrak{p}), \mathfrak{H}_f(\mathfrak{q})\}. \end{split}$$

Also,

$$\mathfrak{G}_f(\mathfrak{p}) = \mathfrak{G}(f(\mathfrak{p}))$$

$$\leq \max\{\mathfrak{G}(f(\mathfrak{p}) - f(\mathfrak{q})), \mathfrak{G}(f(\mathfrak{q}))\}$$

$$= \max\{\mathfrak{G}(f(\mathfrak{p} - \mathfrak{q})), \mathfrak{G}(f(\mathfrak{q}))\}$$

$$= \max\{\mathfrak{G}_f(\mathfrak{p} - \mathfrak{q}), \mathfrak{G}_f(y)\}.$$

$$\mathfrak{H}_f(\mathfrak{p}) = \mathfrak{H}(f(\mathfrak{p}))$$

$$\geq \min\{\mathfrak{H}(f(\mathfrak{p}) - f(\mathfrak{q})), \mathfrak{H}(f(\mathfrak{q}))\}$$

$$= \min\{\mathfrak{H}(f(\mathfrak{p} - \mathfrak{q})), \mathfrak{H}(f(\mathfrak{q}))\}$$

$$= \min\mathfrak{H}_f(\mathfrak{H}(\mathfrak{p} - \mathfrak{q})), \mathfrak{H}_f(\mathfrak{q})\}.$$

Hence \mathfrak{C}_f is a cubic intuitionistic β -ideal of \mho .

Theorem 5.3. Let $f: \mathcal{V} \to \Theta$ be an onto homomorphism of β -algebras. If $\mathfrak{C} = \{\mathfrak{p}, \Psi(\mathfrak{p}), \rho(\mathfrak{p}) : \mathfrak{p} \in \mathcal{V}\}$ is a cubic intuitionistic β -ideal of Θ , then the preimage $f^{-1}(\mathfrak{C})$ is a cubic intuitionistic β -ideal of \mathcal{V} .

Proof. Let \mathfrak{C} be a cubic intuitionistic β -ideal of Θ . For $\mathfrak{p} \in \mathcal{O}$,

$$f^{-1}(\overline{\Im}_{\Psi}(0)) = \overline{\Im}_{\Psi}(f(0)) = \overline{\Im}_{\Psi}(0) \ge \overline{\Im}_{\Psi}(\mathfrak{p})$$

For $\mathfrak{p}, \mathfrak{q} \in \mathfrak{V}$,

$$\begin{split} f^{-1}(\overline{\Im}_{\varPsi})(\mathfrak{p}+\mathfrak{q}) &= \overline{\Im}_{\varPsi}(f(\mathfrak{p}+\mathfrak{q})) \\ &= \overline{\Im}_{\varPsi}(f(\mathfrak{p})+f(\mathfrak{q}\mathfrak{q}) \\ &\geq rmin\{\overline{\Im}_{\varPsi}(f(\mathfrak{p})),\overline{\Im}_{\varPsi}(f(\mathfrak{q}))\} \\ &= rmin\{f^{-1}(\overline{\Im}_{\varPsi}(\mathfrak{p})),f^{-1}(\overline{\Im}_{\varPsi}(\mathfrak{q}))\} \end{split}$$

$$f^{-1}(\overline{\Im}_{\Psi})(\mathfrak{p}) = \overline{\Im}_{\Psi}(f(\mathfrak{p}))$$

$$\geq rmin\{\overline{\Im}_{\Psi}(f(\mathfrak{p}) - f(\mathfrak{q})), \overline{\Im}_{\Psi}(f(\mathfrak{q}))\}$$

$$= rmin\{\overline{\Im}_{\Psi}(f(\mathfrak{p} - \mathfrak{q})), \overline{\Im}_{\Psi}(f(\mathfrak{q}))\}$$

$$= rmin\{f^{-1}((\overline{\Im}_{\Psi})(\mathfrak{p} - \mathfrak{q})), f^{-1}(\overline{\Im}_{\Psi}(\mathfrak{q}))\}$$

Similarly for $\mathfrak{p}, \mathfrak{q} \in \mathfrak{V}$, $f^{-1}(\overline{\aleph}_{\Psi}(0)) = \overline{\aleph}_{\Psi}(f(0)) = \overline{\aleph}_{\Psi}(0) \leq \overline{\aleph}_{\Psi}(\mathfrak{p}) \& f^{-1}(\overline{\aleph}_{\Psi})(\mathfrak{p}+\mathfrak{q}) \leq rmax\{f^{-1}(\overline{\aleph}_{\Psi}(\mathfrak{p})), f^{-1}(\overline{\aleph}_{\Psi}(\mathfrak{q}))\} \text{ and } f^{-1}(\overline{\aleph}_{\Psi})(\mathfrak{p}) \leq rmax\{f^{-1}((\overline{\aleph}_{\Psi})(\mathfrak{p}-\mathfrak{q})), f^{-1}(\overline{\aleph}_{\Psi}(\mathfrak{q}))\}$ For $\mathfrak{p} \in \mathfrak{V}$,

$$f^{-1}(\mathfrak{G}_{\rho}(0)) = \mathfrak{G}_{\rho}(f(0)) = \mathfrak{G}_{\rho}(0) \le \mathfrak{G}_{\rho}(\mathfrak{p})$$

For $\mathfrak{p}, \mathfrak{q} \in \mathfrak{V}$,

$$\begin{split} f^{-1}(\mathfrak{G}_{\rho})(\mathfrak{p}+\mathfrak{q}) &= \mathfrak{G}_{\rho}(f(\mathfrak{p}+\mathfrak{q})) \\ &= \mathfrak{G}_{\rho}(f(\mathfrak{p})+f(\mathfrak{q})) \\ &\leq \max\{\mathfrak{G}_{\rho}(f(\mathfrak{p})),\mathfrak{G}_{\rho}(f(\mathfrak{q}))\} \\ &= \max\{f^{-1}(\mathfrak{G}_{\rho}(\mathfrak{p})),f^{-1}(\mathfrak{G}_{\rho}(\mathfrak{q}))\} \end{split}$$

$$\begin{split} f^{-1}(\mathfrak{G}_{\rho})(\mathfrak{p}) &= \mathfrak{G}_{\rho}(f(\mathfrak{p})) \\ &\leq \max\{\mathfrak{G}_{\rho}(f(\mathfrak{p}) - f(\mathfrak{q})), \mathfrak{G}_{\rho}(f(\mathfrak{q}))\} \end{split}$$

$$= \max\{\mathfrak{G}_{\rho}(f(\mathfrak{p} - \mathfrak{q})), \mathfrak{G}_{\rho}(f(\mathfrak{q}))\}$$
$$= \max\{f^{-1}((\mathfrak{G}_{\rho})(\mathfrak{p} - \mathfrak{q})), f^{-1}(\mathfrak{G}_{\rho}(\mathfrak{q}))\}$$

Likewise for $\mathfrak{p}, \mathfrak{q} \in \mathfrak{V}$, $f^{-1}(\mathfrak{H}_{\rho}(0)) = \mathfrak{H}_{\rho}(f(0)) = \mathfrak{H}_{\rho}(0) \geq \mathfrak{H}_{\rho}(\mathfrak{p}) \& f^{-1}(\mathfrak{H}_{\rho})(\mathfrak{p} + \mathfrak{q}) \geq \min\{f^{-1}(\mathfrak{H}_{\rho}(\mathfrak{p})), f^{-1}(\mathfrak{H}_{\rho}(\mathfrak{q}))\}$ and $f^{-1}(\mathfrak{H}_{\rho})(\mathfrak{p}) \geq \min\{f^{-1}(\mathfrak{H}_{\rho})(\mathfrak{p} - \mathfrak{q})), f^{-1}(\mathfrak{H}_{\rho}(\mathfrak{q}))\}$. Hence $f^{-1}(\mathfrak{C})$ is a cubic intuitionistic β -ideal of \mathfrak{V} .

6. Multiplications of Cubic Intuitionistic β -Ideals

This section gives the notion of multiplications of cubic intuitionistic β -ideal and some of its results are investigated.

Definition 6.1. Let $\mathfrak{C} = \{\mathfrak{p}, \Psi(\mathfrak{p}), \rho(\mathfrak{p}) : \mathfrak{p} \in \mathcal{O}\}$ be a cubic fuzzy set of \mathcal{O} and $\mu \in (0, 1]$. An object having the form $\mathfrak{C}_{\mu}^{M} = \{(\Psi(\mathfrak{p}))_{\mu}^{M}, (\rho(\mathfrak{p})_{\mu}^{M}\} \text{ is said to be cubic } \mu\text{-multiplication of } \mathfrak{C}$ if it satisfies $(\overline{\mathfrak{I}}_{\Psi})_{\mu}^{M}(x) = \mu.\overline{\mathfrak{I}}_{\Psi}(x); (\overline{\mathfrak{I}}_{\Psi})_{\mu}^{M}(x) = \mu.\overline{\mathfrak{I}}_{\Psi}(x); (\mathfrak{G}_{\rho})_{\mu}^{M}(x) = \mu.\mathfrak{G}_{\rho}(x)$ and $(\mathfrak{H}_{\rho})_{\mu}^{M}(x) = \mu.\mathfrak{H}_{\rho}(x)$ for all $x \in \mathcal{O}$.

Theorem 6.2. If $\mathfrak{C} = \{\mathfrak{p}, \Psi(\mathfrak{p}), \rho(\mathfrak{p}) : \mathfrak{p} \in \mathfrak{I}\}$ is a cubic β -ideal of \mathfrak{I} and let $\mu \in [0, 1]$. Then the cubic μ -multiplication \mathfrak{C}_{μ}^{M} of \mathfrak{C} is cubic β -ideal of X.

Proof. Suppose $\mathfrak{C} = \{\mathfrak{p}, \Psi(\mathfrak{p}), \rho(\mathfrak{p}) : \mathfrak{p} \in \mathcal{O}\}$ is a cubic β -ideal of \mathcal{O} . Then

$$\left(\overline{\Im}_{\Psi}\right)_{\mu}^{M}(0) = \mu.\overline{\Im}_{\Psi}(0)$$

$$\geq \mu.\overline{\Im}_{\Psi}(\mathfrak{p})$$

$$= \left(\overline{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p})$$

$$\left(\overline{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p})$$

$$(i.e) \left(\overline{\Im}_{\Psi}\right)_{\mu}^{M}(0) \ge \left(\overline{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p})$$

In a simalar way, we can have $\left(\overline{\aleph}_{\varPsi}\right)_{\mu}^{M}\left(0\right) \leq \left(\overline{\aleph}_{\varPsi}\right)_{\mu}^{M}\left(\mathfrak{p}\right)$

$$(\mathfrak{G}_{\rho})_{\mu}^{M}(0) = \mu.\mathfrak{G}_{\rho}(0)$$

$$\leq \mu.\mathfrak{G}_{\rho}(\mathfrak{p})$$

$$= (\mathfrak{G}_{\rho})_{\mu}^{M}(\mathfrak{p})$$

$$(i.e) \left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(0) \leq \left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{p})$$

In the same manner, we have $\left(\mathfrak{H}_{\rho}\right)_{\mu}^{M}(0) \geq \left(\mathfrak{H}_{\rho}\right)_{\mu}^{M}(\mathfrak{p})$

$$\begin{split} \left(\overline{\Im}_{\Psi}\right)_{\mu}^{M}\left(\mathfrak{p}+\mathfrak{q}\right) &= \mu.\overline{\Im}_{\Psi}\left(\mathfrak{p}+\mathfrak{q}\right) \\ &\geq \mu.rmin\{\overline{\Im}_{\Psi}\left(\mathfrak{p}\right),\overline{\Im}_{\Psi}\left(\mathfrak{q}\right)\} \\ &= rmin\{\mu.\overline{\Im}_{\Psi}\left(\mathfrak{p}\right),\mu.\overline{\Im}_{\Psi}\left(\mathfrak{q}\right)\} \\ &= rmin\left\{\left(\overline{\Im}_{\Psi}\right)_{\mu}^{M}\left(\mathfrak{p}\right),\left(\overline{\Im}_{\Psi}\right)_{\mu}^{M}\left(\mathfrak{q}\right)\right\} \end{split}$$

$$(i.e) \left(\overline{\Im}_{\Psi} \right)_{\mu}^{M} (\mathfrak{p} + \mathfrak{q}) \geq rmin \left\{ \left(\overline{\Im}_{\Psi} \right)_{\mu}^{M} (\mathfrak{p}), \left(\overline{\Im}_{\Psi} \right)_{\mu}^{M} (\mathfrak{q}) \right\}$$

Likewise, we obtain $\left(\overline{\aleph}_{\varPsi}\right)_{\mu}^{M}\left(\mathfrak{p}+\mathfrak{q}\right) \leq rmax\left\{\left(\overline{\aleph}_{\varPsi}\right)_{\mu}^{M}\left(\mathfrak{p}\right),\left(\overline{\aleph}_{\varPsi}\right)_{\mu}^{M}\left(\mathfrak{q}\right)\right\}$

$$\begin{split} \left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}\left(\mathfrak{p}+\mathfrak{q}\right) &= \mu.\mathfrak{G}_{\rho}\left(\mathfrak{p}+\mathfrak{q}\right) \\ &\leq \mu.max\left\{\mathfrak{G}_{\rho}\left(\mathfrak{p}\right),\mathfrak{G}_{\rho}\left(\mathfrak{q}\right)\right\} \\ &= max\left\{\mu.\mathfrak{G}_{\rho}\left(\mathfrak{p}\right),\mu.\mathfrak{G}_{\rho}\left(\mathfrak{q}\right)\right\} \\ &= max\left\{\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}\left(\mathfrak{p}\right),\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}\left(\mathfrak{q}\right)\right\} \\ &(i.e)\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}\left(\mathfrak{p}+\mathfrak{q}\right) \leq max\left\{\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}),\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}\left(\mathfrak{q}\right)\right\} \\ &\text{In the similar way, we get } (i.e)\left(\mathfrak{H}_{\rho}\right)_{\mu}^{M}\left(\mathfrak{p}+\mathfrak{q}\right) \geq min\left\{\left(\mathfrak{H}_{\rho}\right)_{\mu}^{M}(\mathfrak{p}),\left(\mathfrak{H}_{\rho}\right)_{\mu}^{M}\left(\mathfrak{q}\right)\right\} \\ &\left(\overline{\Im}_{\Psi}\right)^{M}\left(\mathfrak{p}\right) = \mu.\overline{\Im}_{\Psi}\left(\mathfrak{p}\right) \end{split}$$

$$(\mathfrak{F}_{\Psi})_{\mu} \quad (\mathfrak{p}) = \mu.\mathfrak{F}_{\Psi} (\mathfrak{p})$$

$$\geq \mu.rmin\{\overline{\mathfrak{F}}_{\Psi} (\mathfrak{p} - \mathfrak{q}), \overline{\mathfrak{F}}_{\Psi} (y)\}$$

$$= rmin\{\mu.\overline{\mathfrak{F}}_{\Psi} (\mathfrak{p} - \mathfrak{q}), \mu.\overline{\mathfrak{F}}_{\Psi} (\mathfrak{q})\}$$

$$= rmin\{\mu.\overline{\mathfrak{F}}_{\Psi} (\mathfrak{p} - \mathfrak{q}), \mu.\overline{\mathfrak{F}}_{\Psi} (\mathfrak{q})\}$$

$$= rmin\{(\overline{\mathfrak{F}}_{\Psi})_{\mu}^{M} (\mathfrak{p} - \mathfrak{q}), (\overline{\mathfrak{F}}_{\Psi})_{\mu}^{M} (\mathfrak{q})\}$$

$$(i.e) (\overline{\mathfrak{F}}_{\Psi})_{\mu}^{M} (\mathfrak{p}) \geq rmin\{(\overline{\mathfrak{F}}_{\Psi})_{\mu}^{M} (\mathfrak{p} - \mathfrak{q}), (\overline{\mathfrak{F}}_{\Psi})_{\mu}^{M} (\mathfrak{q})\}$$

By using the same process, we get $\left(\overline{\aleph}_{\varPsi}\right)_{\mu}^{M}(\mathfrak{p}) \leq rmax\left\{\left(\overline{\aleph}_{\varPsi}\right)_{\mu}^{M}(\mathfrak{p}-\mathfrak{q}),\left(\overline{\aleph}_{\varPsi}\right)_{\mu}^{M}(\mathfrak{q})\right\}$

$$(\mathfrak{G}_{\rho})_{\mu}^{M}(\mathfrak{p}) = \mu.\mathfrak{G}_{\rho}(\mathfrak{p})$$

$$\leq \mu.max \left\{ \mathfrak{G}_{\rho}(\mathfrak{p} - \mathfrak{q}), \mathfrak{G}_{\rho}(\mathfrak{q}) \right\}$$

$$= max \left\{ \mu.\mathfrak{G}_{\rho}(\mathfrak{p} - \mathfrak{q}), \mu.\mathfrak{G}_{\rho}(\mathfrak{q}) \right\}$$

$$= max \left\{ (\mathfrak{G}_{\rho})_{\mu}^{M}(\mathfrak{p} - \mathfrak{q}), (\mathfrak{G}_{\rho})_{\mu}^{M}(\mathfrak{q}) \right\}$$

$$(i.e) (\mathfrak{G}_{\rho})_{\mu}^{M}(\mathfrak{p}) \leq max \left\{ (\mathfrak{G}_{\rho})_{\mu}^{M}(\mathfrak{p} - \mathfrak{q}), (\mathfrak{G}_{\rho})_{\mu}^{M}(\mathfrak{q}) \right\}$$

Similarly, we can have $(\mathfrak{H}_{\rho})_{\mu}^{M}(\mathfrak{p}) \leq \max \left\{ (\mathfrak{H}_{\rho})_{\mu}^{M}(\mathfrak{p} - \mathfrak{q}), (\mathfrak{H}_{\rho})_{\mu}^{M}(\mathfrak{q}) \right\}$ For all $\mathfrak{p}, \mathfrak{q} \in \mathfrak{V}$ and $\mu \in (0, 1]$. Hence C_{μ}^{M} of C is cubic β -ideal of X.

Theorem 6.3. If \mathfrak{C} is a cubic set of X such that cubic μ -multiplication \mathfrak{C}^M_{μ} of \mathfrak{C} is cubic β -ideal of \mho and $\mu \in [0,1]$ then \mathfrak{C} is cubic β -ideal of \mho .

Proof. Assume that $\mathfrak{C}_{\mu}^{M}\left(x\right)$ of \mathfrak{C} be a cubic β -ideal of \mho , $\mu\in\left(0,1\right]$ Then

$$\mu.\overline{\Im}_{\Psi}(0) = \left(\overline{\Im}_{\Psi}\right)_{\mu}^{M}(0)$$

$$\geq \left(\overline{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p})$$

$$= \mu.\overline{\Im}_{\Psi}(\mathfrak{p})$$

$$(i.e) \ \overline{\Im}_{\Psi} (0) \ge \overline{\Im}_{\Psi} (\mathfrak{p})$$

In a similar way, we have $\overline{\aleph}_{\Psi}(0) \leq \overline{\aleph}_{\Psi}(\mathfrak{p})$

$$\mu.\mathfrak{G}_{\rho}(0) = (\mathfrak{G}_{\rho})_{\mu}^{M}(0)$$

$$\leq (\mathfrak{G}_{\rho})_{\mu}^{M}(\mathfrak{p})$$

$$= \mu.\mathfrak{G}_{\rho}(\mathfrak{p})$$

$$(i.e) \,\mathfrak{G}_{\rho}(0) \leq \mathfrak{G}_{\rho}(\mathfrak{p})$$

Likewise, we get $\mathfrak{H}_{\rho}(0) \geq \mathfrak{H}_{\rho}(\mathfrak{p})$

$$\mu.\overline{\Im}_{\Psi}\left(\mathfrak{p}+\mathfrak{q}\right) = \left(\overline{\Im}_{\Psi}\right)_{\mu}^{M}\left(\mathfrak{p}+\mathfrak{q}\right)$$

$$\geq rmin\left\{\left(\overline{\Im}_{\Psi}\right)_{\mu}^{M}\left(\mathfrak{p}\right),\left(\overline{\Im}_{\Psi}\right)_{\mu}^{M}\left(\mathfrak{q}\right)\right\}$$

$$= rmin\left\{\mu.\overline{\Im}_{\Psi}\left(\mathfrak{p}\right),\mu.\overline{\Im}_{\Psi}\left(\mathfrak{q}\right)\right\}$$

$$= \mu.rmin\left\{\overline{\Im}_{\Psi}\left(\mathfrak{p}\right),\overline{\Im}_{\Psi}\left(\mathfrak{q}\right)\right\}$$

$$(i.e)\ \overline{\Im}_{\varPsi}\left(\mathfrak{p}+\mathfrak{q}\right)\geq rmin\left\{\overline{\Im}_{\varPsi}\left(\mathfrak{p}\right),\overline{\Im}_{\varPsi}\left(\mathfrak{q}\right)\right\}$$

In the same manner, we can have $\overline{\aleph}_{\Psi}(\mathfrak{p}+\mathfrak{q}) \leq rmax\{\overline{\aleph}_{\Psi}(\mathfrak{p}), \overline{\aleph}_{\Psi}(\mathfrak{q})\}$

$$\begin{split} \mu.\mathfrak{G}_{\rho}\left(\mathfrak{p}+\mathfrak{q}\right) &= \left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}\left(\mathfrak{p}+\mathfrak{q}\right) \\ &\leq \max\{\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}\left(\mathfrak{p}\right),\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}\left(\mathfrak{q}\right)\} \\ &= \max\{\mathfrak{G}_{\rho}\left(\mathfrak{p}\right),\mu.\mathfrak{G}_{\rho}\left(\mathfrak{q}\right)\} \\ &= \mu.\max\left\{\mathfrak{G}_{\rho}\left(\mathfrak{p}\right),\mathfrak{G}_{\rho}\left(\mathfrak{q}\right)\right\} \end{split}$$

$$(i.e) \, \mathfrak{G}_{\rho}(\mathfrak{p} + \mathfrak{q}) \leq \max \left\{ \mathfrak{G}_{\rho}(\mathfrak{p}), \mathfrak{G}_{\rho}(\mathfrak{q}) \right\}$$

Similarly, we have $\mathfrak{H}_{\rho}(\mathfrak{p}+\mathfrak{q}) \geq \min \{\mathfrak{H}_{\rho}(\mathfrak{p}), \mathfrak{H}_{\rho}(\mathfrak{q})\}$

$$\mu.\overline{\Im}_{\Psi}(\mathfrak{p}) = \left(\overline{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p})$$

$$\geq rmin\left\{\left(\overline{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p} - \mathfrak{q}), \left(\overline{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{q})\right\}$$

$$= rmin\left\{\mu.\overline{\Im}_{\Psi}(\mathfrak{p} - \mathfrak{q}), \mu.\overline{\Im}_{\Psi}(\mathfrak{q})\right\}$$

$$= \mu.rmin\left\{\overline{\Im}_{\Psi}(\mathfrak{p} - \mathfrak{q}), \overline{\Im}_{\Psi}(\mathfrak{q})\right\}$$

$$(i.e) \overline{\Im}_{\Psi}(\mathfrak{p}) \geq rmin\left\{\overline{\Im}_{\Psi}(\mathfrak{p} - \mathfrak{q}), \overline{\Im}_{\Psi}(\mathfrak{q})\right\}$$

In the same way, we have $\overline{\aleph}_{\Psi}(\mathfrak{p}) \leq rmax \left\{ \overline{\aleph}_{\Psi}(\mathfrak{p} - \mathfrak{q}), \overline{\aleph}_{\Psi}(\mathfrak{q}) \right\}$

$$\begin{split} \mu.\mathfrak{G}_{\rho}\left(\mathfrak{p}\right) &= \left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}\left(\mathfrak{p}\right) \\ &\leq \max\{\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}\left(\mathfrak{p}-\mathfrak{q}\right),\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}\left(\mathfrak{q}\right)\} \\ &= \max\{\mu.\mathfrak{G}_{\rho}\left(\mathfrak{p}-\mathfrak{q}\right),\mu.\mathfrak{G}_{\rho}\left(\mathfrak{q}\right)\} \\ &= \mu.\max\left\{\mathfrak{G}_{\rho}\left(\mathfrak{p}-\mathfrak{q}\right),\mathfrak{G}_{\rho}\left(\mathfrak{q}\right)\right\} \\ &(i.e) \ \mathfrak{G}_{\rho}\left(\mathfrak{p}\right) \leq \max\left\{\mathfrak{G}_{\rho}\left(\mathfrak{p}-\mathfrak{q}\right),\mathfrak{G}_{\rho}\left(\mathfrak{q}\right)\right\} \end{split}$$

Likewise, we obtain $\mathfrak{H}_{\rho}(\mathfrak{p}) \geq \min \left\{ \mathfrak{H}_{\rho}(\mathfrak{p} - \mathfrak{q}), \mathfrak{H}_{\rho}(\mathfrak{q}) \right\}$ For all $\mathfrak{p}, \mathfrak{q} \in \mathcal{V}$ and $\mu \in (0, 1]$. Hence \mathfrak{C} is cubic β -ideal of \mathcal{V} . **Theorem 6.4.** Intersection of any two cubic μ -multiplication \mathfrak{C}^M_μ of a cubic β -ideal \mathfrak{C} of \mathfrak{V} is a cubic β -ideal of \mathfrak{V} .

Proof. Suppose \mathfrak{C}_{μ}^{M} and $\mathfrak{C}_{\mu'}^{M}$ are two cubic μ -multiplication of cubic β -ideal \mathfrak{C} of \mathfrak{I} , where $\mu, \mu' \in (0, 1]$. Assume $\mu = \mu'$ Since \mathfrak{C}_{μ}^{M} and $\mathfrak{C}_{\mu'}^{M}$ are cubic μ -multiplication of cubic β -ideal of \mathfrak{I} . So,

$$\left(\left(\overline{\Im}_{\Psi}\right)_{\mu}^{M} \cap \left(\overline{\Im}_{\Psi}\right)_{\mu'}^{M}\right)(\mathfrak{p}) = rmin\left\{\left(\overline{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p}), \left(\overline{\Im}_{\Psi}\right)_{\mu'}^{M}(\mathfrak{p})\right\} \\
= rmin\{\mu.\overline{\Im}_{\Psi}(\mathfrak{p}), \mu'.\overline{\Im}_{\Psi}(\mathfrak{p})\} \\
= \mu.\overline{\Im}_{\Psi}(\mathfrak{p}) \\
= \left(\overline{\Im}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p})$$

In the same way, we can have $\left(\left(\overline{\aleph}_{\Psi}\right)_{\mu}^{M}\cap\left(\overline{\aleph}_{\Psi}\right)_{\mu'}^{M}\right)(\mathfrak{p})=rmax\left(\overline{\aleph}_{\Psi}\right)_{\mu}^{M}(\mathfrak{p})$

$$\begin{split} \left(\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}\cap\left(\mathfrak{G}_{\rho}\right)_{\mu'}^{M}\right)\left(\mathfrak{p}\right)&=\max\left\{ \left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}\left(\mathfrak{p}\right),\left(\mathfrak{G}_{\rho}\right)_{\mu'}^{M}(\mathfrak{p})\right\} \\ &=\max\{\mu.\mathfrak{G}_{\rho}\ \left(\mathfrak{p}\right),\mu'.\mathfrak{G}_{\rho}\left(\mathfrak{p}\right)\} \\ &=\mu.\mathfrak{G}_{\rho}\left(\mathfrak{p}\right) \\ &=\left(\mathfrak{G}_{\rho}\right)_{\mu}^{M}\left(\mathfrak{p}\right) \end{split}$$

In the same manner, we have

$$\left(\left(\mathfrak{H}_{\rho}\right)_{\mu}^{M}\cap\left(\mathfrak{H}_{\rho}\right)_{\mu'}^{M}\right)(\mathfrak{p})=min(\mathfrak{H}_{\rho})_{\mu}^{M}\left(\mathfrak{p}\right)$$

Hence, $\mathfrak{C}^{M}_{\mu} \cap \mathfrak{C}^{M}_{\mu'}$ is cubic β -ideal of \mho .

7. Conclusion

In this work, the thought of cubic intuitionistic β -ideal is proposed and examined some of its engrossing associated outcomes. Moreover, the results on cartesian product and few properties on homomorphism of cubic β -ideal have been investigated. Furthermore, interesting results based on cubic μ - multiplication are also provided. In particular, we have proved that the intersection of cubic μ - multiplication is also a cubic β -ideal.In future work, this can be extended into other algebraic structures.

References

- [1] L.A. Zadeh, Fuzzy sets, Information and Control 8 (3) (1965) 338–353.
- [2] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems 20 (1) (1986) 87–96.
- [3] K. Sujatha, M. Chandramouleeswaran, P. Muralikrishna, On intuitionistic fuzzy β —sub algebras of β —algebras, Global Journal of Pure and Applied Mathematics 9 (6) (2013) 559–566.
- [4] J. Neggers, H.S. Kim, On β -algebras, Mathematica Slovaca 52 (5) (2002) 517–530.
- [5] P. Hemavathi, P. Muralikrishna, K. Palanivel, On interval valued intuitionistic fuzzy β -subalgebras, Afrika Matematika 29 (1–2) (2018) 249–262.

- [6] P. Hemavathi, P. Muralikrishna, K. Palanivel, i-v-f β -ideals of β Algebras, Materials Science and Engineering Conference Series 263 (4) (2017) 1–10.
- [7] A. Borumand Saeid, P. Muralikrishna, P. Hemavathi, Bi-normed intuitionistic fuzzy β -ideals of β -algebra, Journal of Uncertain Systems 13 (1) (2019) 42–55.
- [8] T. Senapati, Y. B. Jun, G. Muhiuddin, K.P. Shum, Cubic intuitionistic structures applied to ideals of *BCI*—algebras, Analele stiintifice ale Universitatii Ovidius Constanta 25 (2) (2019) 213–232.
- [9] T. Senapati, Y.B. Jun, K.P. Shum, Cubic intuitionistic subalgebras and closed cubic intuitionistic ideals of B-algebras, Journal of Intelligent & Fuzzy Systems 36 (2019) 1563–1571.
- [10] T. Senapati, Y.B. Jun, K.P. Shum, Cubic intuitionistic structure of KU-algebras, Afrika Matematika 31 (2) (2020) 237–248.
- [11] M. Khalid, N.A. Khalid, H. Khalid, S. Broumi, Multiplicative Interpretation of neutrosophic cubic set on B-algebra, International Journal of Neutrosophic Science 1 (2) (2020) 64–73.
- [12] T. Senapati, Y.B. Jun, K.P. Shum, Cubic intuitionistic implicative ideals of BCK-algebras, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences 91 (2021) 273–282.
- [13] T. Senapati, R.R. Yager, G. Chen, Cubic intuitionistic WASPAS technique and its application in multi-criteria decision-making, Journal of Ambient Intelligence and Humanized Computing 12 (9) (2021) 8823–8833.
- [14] Y.B. Jun, C.S. Kim, M.S. Kang, Cubic subalgebras and ideals of BCK/BCI-algebras, Far East Journal of Mathematical Sciences 44 (2) (2010) 239–250.
- [15] H. Garg, G. Kaur, Cubic intuitionistic fuzzy sets and its fundamental properties, Journal of Multiple-Valued Logic & Soft Computing 33(6)(2019) 507–537.
- [16] Y. B. Jun, S.Z. Song, S. Kim, Cubic interval-valued intuitionistic fuzzy sets and their application in BCK/BCI-Algebras, Axioms 7 (1) (2018) 1–17.
- [17] T. Senapati, C. Jana, M. Pal, Y.B. Jun, Cubic intuitionistic q-ideals of BCI-algebras, Symmetry 10 (12) (2018) 1–14.
- [18] P. Muralikrishna, R. Vinodkumar, G. Palani, Some aspects on cubic fuzzy β -subalgebra of β -algebra, Journal of Physics: Conference Series IOP Publishing 1597 (1) (2020) 12–18.
- [19] P. Muralikrishna, B. Davvaz, R. Vinodkumar, G. Palani, Applications of cubic level set on β -subalgebras, Advances in Mathematics: Scientific Journals 9 (3) (2020) 1359–1365.
- [20] P. Muralikrishna, A.B. Saeid, R. Vinodkumar, G. Palani, An overview of cubic intuitionistic β -subalgebras, Proyecciones 41 (1) (2022) 23–44.
- [21] T. Senapati, Y.B. Jun, A. Iampan, R. Chinram, Cubic intuitionistic structure applied to commutative Ideals of BCK-Algebras, Thai Journal of Mathematics 20 (2) (2022) 877–887.
- [22] M.A.A. Anasri, M. Chandramouleeswaran, Fuzzy β —ideals of β —algebras, International Journal of Mathematical Science and Engineering Applications 5 (1) (2014) 1–10.