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Abstract Generalized cohypersubstitutions of type τ = (ni)i∈I are mappings which send ni-ary co-

operation symbols to coterms of type τ . Every generalized cohypersubstitution can be extended to a

mapping on the set of all coterms. We define a binary operation on the set of all generalized cohyper-

substitutions by using this extension. In this paper, we characterize all unit elements and determine the

set of all unit-regular elements of this monoid of type τ = (2). Finally, a submonoid of the monoid of all

generalized hypersubstitutions of type τ = (2) which is factorisable is presented.
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1. Introduction

The monoid of cohypersubstitutions of type τ is one topics on universal algebra that
interested by many authors. The concept of cohypersubstitutions, the main tool used to
study cohyperidentities, was firstly studied and introduced in 2009 by K. Denecke and
K. Seangsura [1]. They defined terms for coalgebras, coidentities, cohyperidentities and
applied all the concepts to construct the monoid of cohypersubstitutions of type τ . In
2013, S. Jermjitpornchai and N. Seangsura [2] generalized the concepts of [1] by studying
on the generalized cohypersubstitutions. They introducde the coterms, generalized super-
positions, some algebraic-structural properties and constructed the monoid of generalized
cohypersubstitutions of type τ = (ni)i∈I . There are many researchers interested in the
monoid of generalized cohypersubstitutions of type τ = (2), τ = (3) and τ = (n). They
characterized the idempotent and regular elements of these structures and characterized
other special elements. For studying on the factorisable monoid, in 2015, A. Boonmee
and S. Leeratanavalee [3] focused on the monoid of generalized hypersubstitutions of type
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τ . They characterized the set of all unit elements of this monoid [U(HypG(n))] and deter-
mined the set of all unit-regular elements of this monoid of type τ = (2) [UR(HypG(2))].
Moreover, they showed that [UR(HypG(2))] was a maximal unit-regular submonoid of
this monoid which was factorisable. Afterwards, in 2016, the same authors [4] generalized
the concepts of [3] by presenting the set of all unit-regular elements of the monoid of
generalized hypersubstitutions of type τ = (n) [UR(HypG(n))] and showed that it was
a maximal unit-regular submonoid of this monoid which was factorisable. More related
topics on terms may be seen [5–7].

In this present paper, we focus on the monoid of generalized cohypersubstitutions of
type τ . We apply the concepts of [3] for characterizations of the set of all unit elements of
this monoid. We fix a type τ = (2), and determine the set of all unit-regular elements of
this monoid. In the last of this study, we show that it is a maximal unit-regular submonoid
of the monoid of generalized cohypersubstitutions which is factorisable.

2. Monoid of Generalized Cohypersubstitutions

In this section, we provide the basic concept of the monoid of set of all generalized
cohypersubstitutions which is very useful to this research.

Let A be a non-empty set and n ∈ N. Define the union of n disjoint copies of A by
Atn := n× A where n = {1, 2, . . . , n}, so it is called the n-th copower of A. An element
(i, a) in this copower corresponds to the element a in the i-th copy of A where i ∈ n.
A mapping fA : A → Atn is a co-operation on A; the natural number n is called the
arity of the co-operation fA. Every n-ary co-operation fA on the set A can be uniquely
expressed as the pair of mappings (fA1 , f

A
2 ) where fA1 : A → n gives the labelling used

by fA in mapping elements to copies of A, and fA2 : A → A tells us what element of A
any element is mapped to, so fA(a) = (fA1 (a), fA2 (a)). We denoted the set of all n-ary

co-operations defined on A by cO
(n)
A = {fA : A→ Atn}.

Let τ = (ni)i∈I and let (fi)i∈I be an indexed set of co-operation symbols which fi has

arity ni for each i ∈ I. Let
⋃
{enj |n ≥ 1, n ∈ N, 0 ≤ j ≤ n− 1} be a set of symbols which

disjoint from {fi | i ∈ I} such that enj has arity n for each 0 ≤ j ≤ n− 1. The coterms of
type τ are defined as follows:

(i) For every i ∈ I, the co-operation symbol fi is an ni-ary coterm of type τ .
(ii) For every n ≥ 1 and 0 ≤ j ≤ n− 1 the symbol enj is an n-ary coterm of type τ .
(iii) If t1, . . . , tni

are n-ary coterms of type τ , then fi[t1, . . . , tni
] is an n-ary coterm

of type τ for every i ∈ I, and if t0, . . . , tn−1 are m-ary coterms of type τ , then
enj [t0, . . . , tn−1] is an m-ary coterm of type τ for every 0 ≤ j ≤ n− 1.

Let CT
(n)
τ be the set of all n-ary coterms of type τ , and CTτ :=

⋃
n≥1

CT (n)
τ the set of

all coterms of type τ .

Definition 2.1. [2] Let m ∈ N+ = N ∪ {0}. A generalized superposition of coterms
Sm : CTm+1

τ → CTτ is defined inductively by the following steps:

(i) If t = eni and 0 ≤ i ≤ m− 1, then Sm(eni , t0, . . . , tm−1) = ti,
where t0, . . . , tm−1 ∈ CTτ .

(ii) If t = eni and 0 < m ≤ i ≤ n− 1, then Sm(eni , t0, . . . , tm−1) = eni ,
where t0, . . . , tm−1 ∈ CTτ .
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(iii) If t = fi[s1, . . . , sni ] , then
Sm(t, t1, . . . , tm) = fi(S

m(s1, t1, . . . , tm), . . . , Sm(sni , t1, . . . , tm)),
where Sm(s1, t1, . . . , tm), . . . , Sm(sni

, t1, . . . , tm) ∈ CTτ .

The above definition can be written as the following forms:

(i) If t = eni and 0 ≤ i ≤ m− 1, then eni [t0, . . . , tm−1] = ti,
where t0, . . . , tm−1 ∈ CTτ .

(ii) If t = eni and 0 < m ≤ i ≤ n− 1, then eni [t0, . . . , tm−1] = eni ,
where t0, . . . , tm−1 ∈ CTτ .

(iii) If t = fi[s1, . . . , sni
], then

(fi[s1, . . . , sni
])[t1, . . . , tm] = fi(s1[t1, . . . , tm], . . . , sni

[t1, . . . , tm]),
where s1[t1, . . . , tm], . . . , sni

[t1, . . . , tm] ∈ CTτ .

Definition 2.2. [2] A generalized cohypersubstitution of type τ is a mapping
σ : {fi | i ∈ I} → CTτ . The extension of σ is a mapping σ̂ : CTτ → CTτ which is
inductively defined by the following steps :

(i) σ̂(enj ) := enj for every n ≥ 1 and 0 ≤ j ≤ n− 1,
(ii) σ̂(fi) := σ(fi) for every i ∈ I,

(iii) σ̂(fi[t1, . . . , tni ]) := σ(fi)[σ̂(t1), . . . , σ̂(tni) for t1, . . . tni ∈ CT
(n)
τ .

Let CohypG(τ) be the set of all generalized cohypersubstitutions of type τ .

Proposition 2.3. [2] If t, t1, . . . , tn ∈ CTτ and σ ∈ CohypG(τ), then

σ̂(t[t1, . . . , tn]) = σ̂(t)[σ̂(t1), . . . , σ̂(tn)].

On the set CohypG(τ) of all generalized cohypersubstitutions of type τ we may define
a function ◦CG : CohypG(τ) × CohypG(τ) → CohypG(τ) by σ1 ◦CG σ2 := σ̂1 ◦ σ2 for
all σ1, σ2 ∈ CohypG(τ) where ◦ is the usual composition of mappings. Let σid be the
generalized cohypersubstitution such that σid(fi) := fi[e

n
0 , e

n
1 , . . . , e

n
ni−1] for all i ∈ I.

Then σid is an identity element in CohypG(τ). Thus CohypG(τ) := (CohypG(τ), ◦CG, σid)
is a monoid and called the monoid of generalized cohypersubstitutions of type τ . The
algebraic structural-properties of the monoid CohypG(τ) can be found in [2].

Throughout this paper, we denote:
σt := the generalized cohypersubstitution σ of type τ which maps f to the coterm t,
enj := the injection symbol for all 0 ≤ j ≤ n− 1, n ∈ N,
E := the set of all injection symbols, i.e. E := {enj | n, j ∈ N},
E(t) := the set of all injection symbols occuring in the coterm t,
leftmostinj(t) := the first injection symbol (from the left) occuring in the coterm t,
rightmostinj(t) := the last injection symbol occuring in the coterm t.

3. Unit Elements in the Monoid CohypG(n)

In this section, we focus on the type τ = (n) and characterize the unit elements of the
monoid CohypG(n). Firstly, we recall the definition of unit element as follow.

Definition 3.1. Let M be a monoid. An element u ∈ M is call unit if there exists
u−1 ∈M such that uu−1 = e = u−1u where e is an identity element ofM. The set of all
unit elements of M is denoted by U(M).

To give a characterization of unit elements in CohypG(n), the following two lemmas
are needed.
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Lemma 3.2. Let σt ∈ CohypG(n), where t = f [t0, . . . , tn−1] ∈ CT(n). If ti ∈ CT(n) \ E
for some i ∈ {0, 1, . . . , n− 1}, then σt is not unit element.

Proof. Let t = f [t0, . . . , tn−1] ∈ CT(n) where ti ∈ CT(n) \E for some i ∈ {0, 1, . . . , n− 1}.
Let σs ∈ CohypG(n) and s = f [s0, . . . , sn−1] ∈ CT(n) where si ∈ CT(n) for all i ∈
{0, 1, . . . , n− 1}. Then

(σt ◦CG σs)(f) = σ̂t(f [s0, . . . , sn−1])

= (σt(f))[σ̂t(s0), . . . , σ̂t(sn−1)]

= (f [t0, . . . , ti, . . . , tn−1])[σ̂t(s0), . . . , σ̂t(sn−1)]

= f [t0[σ̂t(s0), . . . , σ̂t(sn−1)], . . . , ti[σ̂t(s0), . . . , σ̂t(sn−1)], . . . ,

tn−1[σ̂t(s0), . . . , σ̂t(sn−1)]].

Since ti /∈ E. Then ti[σ̂t(s0), . . . , σ̂t(sn−1)] 6= eni ; 0 ≤ i ≤ n − 1. Therefore (σt ◦CG
σs)(f) 6= f [en0 , . . . , e

n
i , . . . , e

n
n−1] = σid(f) for all σs ∈ CohypG(n).

Lemma 3.3. Let σt ∈ CohypG(n), where t = f [enj0 , . . . , e
n
jn−1

] ∈ CT(n). If ji ≥ n for

some i ∈ {0, 1, . . . , n− 1}, then σt is not unit element.

Proof. Let t = f [enj0 , . . . , e
n
jn−1

], where ji ≥ n for some i ∈ {0, 1, . . . , n − 1} and let

σs ∈ CohypG(n), where s = f [s0, . . . , sn−1]. Then

(σt ◦CG σs)(f) = σ̂t(f [s0, . . . , sn−1])

= (σt(f))[σ̂t(s0), . . . , σ̂t(sn−1)]

= (f [enj0 , . . . , e
n
ji , e

n
jn−1

])[σ̂t(s0), . . . , σ̂t(sn−1)]

= f [enj0 [σ̂t(s0), . . . , σ̂t(sn−1)], . . . , enji [σ̂t(s0), . . . , σ̂t(sn−1)], . . . ,

enjn−1
[σ̂t(s0), . . . , σ̂t(sn−1)]].

Since ji ≥ n, then enji [σ̂t(s0), . . . , σ̂t(sn−1)] 6= eni ; 0 ≤ i ≤ n − 1.. So, that means
(σt ◦CG σs)(f) 6= σid(f) for all σs ∈ CohypG(n). Hence σt is not unit in CohypG(n).

Theorem 3.4. Let n ∈ N+ and let S be a set of all permutation on the set
{0, 1, . . . , n− 1}. An element σt ∈ U(CohypG(n)) if and only if t = f [enπ(0), . . . , e

n
π(n−1)],

where π ∈ Sn.

Proof. Assume that σt ∈ U(CohypG(n)). Then there exists σs ∈ CohypG(n) such that
σt ◦CG σs = σid = σs ◦CG σt. By Lemma 3.2 and Lemma 3.3, if t = f [t0, . . . , tn−1]
and s = f [s0, . . . , sn−1], then ti, sj ∈ {en0 , . . . , enn−1} for all i, j ∈ {0, 1, . . . , n − 1}. Let
π, π′ ∈ S and s = f [enπ′(0), . . . , e

n
π′(n−1)]. Consider

σid(f) = (σt ◦CG σs)(f)

= σ̂t(f [enπ′(0), e
n
π′(1), . . . , e

n
π′(n−1)])

f [en0 , e
n
1 , . . . , e

n
n−1] = (f [enπ(0), e

n
π(1), . . . , e

n
π(n−1)])[e

n
π′(0), e

n
π′(1), . . . , e

n
π′(n−1)]

= f [enπ′(π(0)), e
n
π′(π(1)), . . . , e

n
π′(π(n−1))]

= f [en(π′◦π)(0), e
n
(π′◦π)(1), . . . , e

n
(π′◦π)(n−1)].
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And

σid(f) = (σs ◦CG σt)(f)

= σ̂s(f [enπ(0), e
n
π(1), . . . , e

n
π(n−1)])

f [en0 , e
n
1 , . . . , e

n
n−1] = (f [enπ′(0), e

n
π′(1), . . . , e

n
π′(n−1)])[e

n
π(0), e

n
π(1), . . . , e

n
π(n−1)]

= f [enπ(π′(0)), e
n
π(π′(1)), . . . , e

n
π(π′(n−1))]

= f [en(π◦π′)(0), e
n
(π◦π′)(1), . . . , e

n
(π◦π′)(n−1)].

Then π◦π′ = (1) = π′◦π and π◦π′, π′◦π are bijective. Next, we will show that π ∈ Sn.
Let π(i) = π(j) for some i, j ∈ {0, . . . , n − 1}. Then (π′ ◦ π)(i) = π′(π(i)) = π′(π(j)) =
(π′◦π)(j). Since π′◦π is one-to-one, so i = j. Thus π is one-to-one. Let i ∈ {0, . . . , n−1}.
Since π ◦ π′ is onto, there exists j ∈ {0, . . . , n− 1} such that (π ◦ π′)(j) = i = π(π′(j)) for
some π′(j) ∈ {0, . . . , n− 1}. Hence π is onto, so π ∈ Sn.

Conversely, let σt ∈ CohypG(n) where t = f [enπ(0), e
n
π(1), . . . , e

n
π(n−1)] and π ∈ Sn. Since

(Sn, ◦) is a group, there exists π′ ∈ Sn such that π ◦ π′ = (1) = π′ ◦ π.
Let σs ∈ CohypG(n) where s = f [enπ′(0), e

n
π′(1), . . . , e

n
π′(n−1)]. Then

(σt ◦CG σs)(f) = σ̂t(f [enπ′(0), e
n
π′(1), . . . , e

n
π′(n−1)])

= (f [enπ(0), e
n
π(1), . . . , e

n
π(n−1)])[e

n
π′(0), e

n
π′(1), . . . , e

n
π′(n−1)]

= f [enπ′(π(0)), e
n
π′(π(1)), . . . , e

n
π′(π(n−1))]

= f [en(π′◦π)(0), e
n
(π′◦π)(1), . . . , e

n
(π′◦π)(n−1)]

= f [en0 , e
n
1 , . . . , e

n
n−1]

= σid(f).

Similarly, we have σs ◦CG σt = σid. Hence σt ∈ U(CohypG(n)).

Corollary 3.5. |U(CohypG(n))| = n!.

Example 3.6. Let τ = (2), we have U(CohypG(2)) = {σf [e20,e21] = σid, σf [e21,e20]}.

4. Unit Regular Elements and Factorisable Monoid

In this section, we fix a type τ = (2) and characterize the set of all unit-regular
elements. We show that it is a factorisable. We first recall the definitions and the sets
of elements using in this section. Let S be a semigroup and an element e ∈ S is called
idempotent if e2 = ee = e, and we denote the set of all idempotent elements in S by E(S).
An element a ∈ S is called regular if there exists x ∈ S such that axa = a. A semigroup
S is called regular if all its elements are regular.

Definition 4.1. An element a of a monoid S is called unit-regular if there exists u ∈ U(S)
such that aua = a. A monoid S is called unit-regular if all its elements are unit-regular.

Next, we fix type τ = (2) with a binary cooperation symbol f and denote the set of
element of the monoid CohypG(2) as follows.

Let σt ∈ CohypG(2), we denote
E0 := {σe20 , σe21 , σid, σf [e21,e20]},
E1 := {σt | E(t) ∩ {e20, e21} = ∅},
E2 := {σt | t = f [e20, s] where E(t) ∩ {e20, e21} = {e20}, s ∈ CT(2)},
E3 := {σt | t = f [s, e21] where E(t) ∩ {e20, e21} = {e21}, s ∈ CT(2)},
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E4 := {σt | t = f [s, e20] where E(t) ∩ {e20, e21} = {e20}, s ∈ CT(2)},
E5 := {σt | t = f [e21, s] where E(t) ∩ {e20, e21} = {e21}, s ∈ CT(2)}.

In 2013 [8], N. Seangsura and S. Jermjitpornchai showed that :

5⋃
n=0

En is a set of all

regular elements in CohypG(2) and
( 3⋃
n=0

En
)
\ {σf [e21,e20]} = E(CohypG(2)).

Lemma 4.2.

5⋃
n=0

En is a set of all unit-regular elements in CohypG(2).

Proof. Let σt ∈
5⋃

n=0

En. Then σt ∈
( 3⋃
n=0

En
)
\ {σf [e21,e20]} or σt ∈ E4 or σt ∈ E5 or

σt = σf [e21,e20]. From Corollary 3.5, we have U(CohypG(2)) = {σf [e20,e21] = σid, σf [e21,e20]}.

Case 1: σt ∈
( 3⋃
n=0

En
)
\ {σf [e21,e20]} = E(CohypG(2)). Then there exists σid ∈

U(CohypG(2)) such that (σt ◦CG σid ◦CG σt)(f) = (σt ◦CG σt)(f) = σt(f).
Case 2: σt ∈ E4. Then t = f [s, e20] where s ∈ CT(2) and E(t)∩{e20, e21} = {e20}. There

exists σf [e21,e20] ∈ U(CohypG(2)) such that

(σt ◦CG σf [e21,e20] ◦CG σt)(f) = σ̂t(σ̂f [e21,e20](f [s, e20]))

= σ̂t((f [e21, e
2
0])[σ̂f [e21,e20](s), e

2
0])

= σ̂t(f [e20, σ̂f [e21,e20](s)])

= (f [s, e20])[e20, σ̂t(σ̂f [e21,e20](s))]

= f [s, e20] = σt(f) since E(t) ∩ {e20, e21} = {e20}.

Thus σt ◦CG σf [e21,e20] ◦CG σt = σt.

Case 3 : σt ∈ E5. Then t = f [e21, s] where s ∈ CT(2) and E(t) ∩ {e20, e21} = {e21}.
There exists σf [e21,e20] ∈ U(CohypG(2)) such that

(σt ◦CG σf [e21,e20] ◦CG σt)(f) = σ̂t(σ̂f [e21,e20](f [e21, s]))

= σ̂t((f [e21, e
2
0])[e21, σ̂f [e21,e20](s)])

= σ̂t(f [σ̂f [e21,e20](s), e
2
1])

= (f [e21, s])[σ̂t(σ̂f [e21,e20](s)), e
2
1]

= f [e21, s] = σt(f), since E(t) ∩ {e20, e21} = {e21}.

Thus σt ◦CG σf [e21,e20] ◦CG σt = σt.

Case 4 : σt = σf [e21,e20]. Then there exists σf [e21,e20] ∈ U(CohypG(2)) such that

(σf [e21,e20] ◦CG σf [e21,e20] ◦CG σf [e21,e20])(f) = (σid ◦CG σf [e21,e20])(f) = σf [e21,e20](f).

Hence, for any σt ∈
5⋃

n=0

En, there exists σu ∈ U(CohypG(2)) such that σt ◦CG σu ◦CG

σt = σt. Therefore

5⋃
n=0

En is a set of all unit-regular elements in CohypG(2).
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We see that

5⋃
n=0

En is not a submonoid of CohypG(2) as the following example.

Example 4.3. (1) Let σt ∈ E2 and σr ∈ E3 such that t = f [e20, f [e22, e
2
0]] and r =

f [f [e21, e
2
3], e21]. Consider

(σt ◦CG σr)(f) = σ̂t(f [f [e21, e
2
3], e21])

= (σt(f))[σ̂t(f [e21, e
2
3]), e21]

= (f [e20, f [e22, e
2
0]])[f [e21, f [e22, e

2
1]], e21]

= f [f [e21, f [e22, e
2
1]], f [e22, f [e21, f [e22, e

2
1]]]].

So σt ◦CG σr /∈
5⋃

n=0

En.

(2) Let σt ∈ E4 such that t = f [f [e20, e
2
5], e20]. Then

(σt ◦CG σt)(f) = σ̂t(f [f [e20, e
2
5], e20])

= (σt(f))[σ̂t(f [e20, e
2
5]), e20]

= (f [f [e20, e
2
5], e20])[f [f [e20, e

2
5], e20], e20]

= f [f [f [f [e20, e
2
5], e20], e25], f [f [e20, e

2
5], e20]].

So σt ◦CG σt /∈
5⋃

n=0

En.

(3) Let σt ∈ E5 such that t = f [e21, f [e24, e
2
1]]. Then

(σt ◦CG σt)(f) = σ̂t(f [e21, f [e24, e
2
1]])

= (σt(f))[e21, σ̂t(f [e24, e
2
1])]

= (f [e21, f [e24, e
2
1]])[e21, f [e21, f [e24, e

2
1]]]

= f [f [e21, f [e24, e
2
1]], f [e24, f [e21, f [e24, e

2
1]]]].

So σt ◦CG σt /∈
5⋃

n=0

En.

Therefore,

5⋃
n=0

En is not a submonoid of CohypG(2).

Let σt ∈ CohypG(2), we denote
E′2 := {σt | t = f [e20, s] where E(t) ∩ {e20, e21} = {e20}, s ∈ CT(2) and

rightmostinj(s) 6= e20},
E′3 := {σt | t = f [s, e21] where E(t) ∩ {e20, e21} = {e21}, s ∈ CT(2) and

leftmostinj(s) 6= e21},
E′4 := {σt | t = f [s, e20] where E(t) ∩ {e20, e21} = {e20}, s ∈ CT(2) and

leftmostinj(s) 6= e20},
E′5 := {σt | t = f [e21, s] where E(t) ∩ {e20, e21} = {e21}, s ∈ CT(2) and

rightmostinj(s) 6= e21}.
In 2020, N. Chansuriya [9] presented the following proposition.

Proposition 4.4. [9] E′2 ∪ {σid} and E′3 ∪ {σid} are submonoids of CohypG(2).
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Now, we see that E′4 ⊂ E4, E
′
5 ⊂ E5 and also have the following proposition.

Proposition 4.5. E′4 ∪ {σid} and E′5 ∪ {σid} are submonoids of CohypG(2).

Proof. It is easy to see that E′4 ⊂ CohypG(2) Next, we will show that E′4 closed under
the binary operation ◦CG. Let σt, σr ∈ E′4. Then t = f [s, e20] where E(t) ∩ {e20, e21} =
{e20}, s ∈ CT(2), leftmostinj(s) 6= e20 and r = f [s′, e20] where E(r) ∩ {e20, e21} = {e20}, s′ ∈
CT(2), leftmostinj(s

′) 6= e20. Consider

(σt ◦CG σr)(f) = σ̂t(f [s′, e20])

= (σt(f))[σ̂t(s
′), e20]

= (f [s, e20])[σ̂t(s
′), e20]

= f [s, e20], since E(t) ∩ {e20, e21} = {e20}.

By the same way, we have (σr ◦CG σt)(f) = σf [s′,e20](f). Hence σt ◦CG σr, σr ◦CG σt ∈ E′4.

Therefore, E′4 ∪ {σid} is a submonoid of CohypG(2).

Similarly, we can prove that E′5 ∪ {σid} is a submonoid of CohypG(2).

To determine the unit-regular submonoid of CohypG(2), we denote the set of all unit-

regular elements of CohypG(2) by UR(CohypG(2)) = E0 ∪ E1 ∪ (

5⋃
n=2

E′n).

Theorem 4.6. UR(CohypG(2)) is the unit-regular submonoid of CohypG(2).

Proof. It is easy to see that UR(CohypG(2)) ⊂ CohypG(2) and every elements in
UR(CohypG(2)) is unit-regular. Then we will prove that UR(CohypG(2)) is a submonoid
of CohypG(2). We have the following cases.
Case 1: σt ∈ E′2. Then t = f [e20, s] where E(t) ∩ {e20, e21} = {e20}, s ∈ CT(2) and

rightmostinj(s) 6= e20. Let σr ∈ UR(CohypG(2)). We consider the six subcases:
Case 1.1: σr ∈ E0, so r ∈ {e20, e21, f [e20, e

2
1], f [e21, e

2
0]}.

If r = e20, then (σt ◦CG σr)(f) = σ̂t(e
2
0) = e20 and (σr ◦CG σt)(f) = σ̂r(f [e20, s]) =

e20[e20, σ̂e20(s)] = e20.

If r = e21, then (σt ◦CG σr)(f) = σ̂t(e
2
1) = e21 and (σr ◦CG σt)(f) = σ̂r(f [e20, s]) =

e21[e20, σ̂e21(s)]. Since E(t)∩{e20, e21} = {e20} and rightmostinj(s) 6= e20, we have e21[e20, σ̂e21(s)] =

e2i ; i ≥ 2.
If r = f [e20, e

2
1], then (σt ◦CG σr)(f) = σt(f) = (σr ◦CG σt)(f).

If r = f [e21, e
2
0], then

(σt ◦CG σr)(f) = σ̂t(f [e21, e
2
0]) = (f [e20, s])[e

2
1, e

2
0] = f [e21, s[e

2
1, e

2
0]].

Since E(t) ∩ {e20, e21} = {e20} and rightmostinj(s) 6= e20, this force that E(s[e21, e
2
0]) ∩

{e20, e21} = {e21} and rightmostinj(s[e
2
1, e

2
0]) 6= e21. Thus σt◦CGσr ∈ E′5 ⊂ UR(CohypG(2)).

Consider

(σr ◦CG σt)(f) = σ̂r(f [e20, s]) = (f [e21, e
2
0])[e20, σ̂r(s)] = f [σ̂r(s), e

2
0].

Since E(t) ∩ {e20, e21} = {e20} and rightmostinj(s) 6= e20, then E(σ̂r(s)) ∩ {e20, e21} = {e20}
and leftmostinj(σ̂r(s)) 6= e20. Thus we get σr ◦CG σt ∈ E′4 ⊂ UR(CohypG(2)).
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Case 1.2: σr ∈ E1. Then r = f [r1, r2] where E(r) ∩ {e20, e21} = ∅. Consider

(σr ◦CG σt)(f) = σ̂r(f [e20, s])

= (σr(f))[e20, σ̂r(s)]

= (f [r1, r2])[e20, σ̂r(s)]

= f [r1, r2] since E(r) ∩ {e20, e21} = ∅.

Thus σr ◦CG σt ∈ E1 ⊂ UR(CohypG(2)). Consider

(σt ◦CG σr)(f) = σ̂t(f [r1, r2])

= (σt(f))[σ̂t(r1), σ̂t(r2)]

= (f [e20, s])[σ̂t(r1), σ̂t(r2)]

= f [e20[σ̂t(r1), σ̂t(r2)], s[σ̂t(r1), σ̂t(r2)]].

Since E(r)∩{e20, e21} = ∅, we have e20, e
2
1 /∈ E(σ̂t(r1))∪E(σ̂t(r2)). So e20, e

2
1 /∈ E(σ̂t(r1), σ̂t(r2)).

Thus σt ◦CG σr ∈ E1 ⊂ UR(CohypG(2)).
Case 1.3: σr ∈ E′2. Then, by Proposition 4.4, we have σt ◦CG σr, σr ◦CG σt ∈ E′2 ⊂

UR(CohypG(2)).
Case 1.4: σr ∈ E′3. Then r = f [s′, e21] where E(r) ∩ {e20, e21} = {e21}, s′ ∈ CT(2) and

leftmostinj(s
′) 6= e21. Compute

(σt ◦CG σr)(f) = σ̂t(f [s′, e21])

= (σt(f))[σ̂t(s
′), e21]

= (f [e20, s])[σ̂t(s
′), e21]

= f [e20[σ̂t(s
′), e21], s[σ̂t(s

′), e21]].

Since E(r) ∩ {e20, e21} = {e21} and leftmostinj(s
′) 6= e21, we have e20, e

2
1 /∈ E(σ̂t(s

′)).
Since E(t) ∩ {e20, e21} = {e20} and e20, e

2
1 /∈ E(σ̂t(s

′)), so we have e20, e
2
1 /∈ E(s[σ̂t(s

′), e21]).
Thus σt ◦CG σr ∈ E1 ⊂ UR(CohypG(2)).

Similarly, we have σr ◦CG σt ∈ E1 ⊂ UR(CohypG(2)).
Case 1.5: σr ∈ E′4. Then r = f [s′, e20] where E(r) ∩ {e20, e21} = {e20}, s′ ∈ CT(2) and

leftmostinj(s
′) 6= e20. Consider

(σt ◦CG σr)(f) = σ̂t(f [s′, e20])

= (σt(f))[σ̂t(s
′), e20]

= (f [e20, s])[σ̂t(s
′), e20]

= f [e20[σ̂t(s
′), e20], s[σ̂t(s

′), e20]].

Since E(r)∩{e20, e21} = {e20} and leftmostinj(s
′) 6= e20, we have e20, e

2
1 /∈ E(σ̂t(s

′)). Since
E(t)∩{e20, e21} = {e20} and e20, e

2
1 /∈ E(σ̂t(s

′)), then we obtain e20, e
2
1 /∈ E(s[σ̂t(s

′), e20]). Thus
σt ◦CG σr ∈ E1 ⊂ UR(CohypG(2)).

Similarly, we have σr ◦CG σt ∈ E1 ⊂ UR(CohypG(2)).



1324 Thai J. Math. Vol. 20 (2022) /N. Chansuriya and S. Phuapong

Case 1.6: σr ∈ E′5. Then r = f [e21, s
′] where E(r) ∩ {e20, e21} = {e21}, s′ ∈ CT(2) and

rightmostinj(s
′) 6= e21. Consider

(σt ◦CG σr)(f) = σ̂t(f [e21, s
′])

= (σt(f))[e21, σ̂t(s
′)]

= (f [e20, s])[e
2
1, σ̂t(s

′)]

= f [e20[e21, σ̂t(s
′)], s[e21, σ̂t(s

′)]].

So e20 ∈ E(s[e21, σ̂t(s
′)]). Since rightmostinj(s) 6= e20, we have

rightmostinj(s[e
2
1, σ̂t(s

′)]) 6= e21. Thus σt ◦CG σr ∈ E′5 ⊂ UR(CohypG(2)). Consider

(σr ◦CG σt)(f) = σ̂r(f [e20, s])

= (σr(f))[e20, σ̂r(s)]

= (f [e21, s
′])[e20, σ̂r(s)]

= f [e21[e20, σ̂r(s)], s
′[e20, σ̂r(s)]].

Since E(t) ∩ {e20, e21} = {e20} and rightmostinj(s) 6= e20, then e20, e
2
1 /∈ E(σ̂r(s)). Since

E(r)∩{e20, e21} = {e21} and e20, e
2
1 /∈ E(σ̂r(s)), so e20, e

2
1 /∈ E(s′[e20, σ̂t(s)]). Thus σr ◦CGσt ∈

E1 ⊂ UR(CohypG(2)).
Case 2: σt ∈ E′3 and σr ∈ E0 ∪ E1 ∪ E′4 ∪ E′5. We can prove similarly to Case 1.
Case 3: σt ∈ E′4. Then t = f [s, e20] where E(t) ∩ {e20, e21} = {e20}, s ∈ CT(2) and

leftmostinj(s) 6= e20. Let σr ∈ E0 ∪ E1 ∪ E′4 ∪ E′5. We cansider the four subcases:
Case 3.1: σr ∈ E0, we can prove similarly to Case 1.1.
Case 3.2: σr ∈ E1, the proceed proof similarly Case 1.1. We have that σr ◦CG σt and

σt ◦CG σr are in UR(CohypG(2)).
Case 3.3: σr ∈ E′4. By Proposition 4.5, we obtain that σr ◦CG σt and σt ◦CG σr are

in UR(CohypG(2)).
Case 3.4: σr ∈ E′5. Then r = f [e21, s

′] where E(r) ∩ {e20, e21} = {e21}, s′ ∈ CT(2) and

rightmostinj(s
′) 6= e21. Consider

(σt ◦CG σr)(f) = σ̂t(f [e21, s
′])

= (f [s, e20])[e21, σ̂t(s
′)]

= f [s[e21, σ̂t(s
′)], e21].

So, e20 /∈ E(s[e21, σ̂t(s
′)]). Since leftmostinj(s) 6= e20, this force that

leftmostinj(s[e
2
1, σ̂t(s

′)]) 6= e21. Thus σt ◦CG σr ∈ E′3 ⊂ UR(CohypG(2)).
Consider

(σr ◦CG σt)(f) = σ̂r(f [s, e21])

= (f [e21, s
′])[σ̂r(s), e

2
0]

= f [e20, s
′[σ̂r(s), e

2
0]].

So, e21 /∈ E(s′[σ̂r(s), e
2
0]). Since rightmostinj(s

′) 6= e21, this force that
rightmostinj(s

′[σ̂r(s), e
2
0]) 6= e20. Thus σr ◦CG σt ∈ E′2 ⊂ UR(CohypG(2)).

Case 4: σt ∈ E′5 and σr ∈ E0 ∪ E1 ∪ E′5. We can prove similarly to Case 3.
Case 5: σt ∈ E0 and σr ∈ E0 ∪ E1. We can prove similarly to Case 1.1.
Case 6: σt ∈ E1 and σr ∈ E1. Then σt ◦CG σr = σt and σr ◦CG σt = σr. So, σr ◦CG σt ,
σt ◦CG σr ∈ E1 ⊂ UR(CohypG(2)).
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Hence UR(CohypG(2)) is a submonoid of CohypG(2).

Therefore, UR(CohypG(2)) is a unit-regular submonoid of CohypG(2).

Theorem 4.7. UR(CohypG(2)) is a maximal unit-regular submonoid of CohypG(2).

Proof. LetM be a proper unit-regular submonoid of CohypG(2) such that UR(CohypG(2)) ⊆
M ⊂ CohypG(2). Let σt ∈M . Then σt is a unit-regular element.

Case 1: If σt ∈ E2 \ E′2, then t = f [e20, s] where E(t) ∩ {e20, e21} = {e20}, s ∈ CT(2) and

rightmostinj(s) = e20. We choose σr ∈ E′3 ⊆M . Then r = f [s′, e21] where E(r)∩{e20, e21} =
{e21}, s′ ∈ CT(2) and leftmostinj(s

′) 6= e21. Consider

(σr ◦CG σt)(f) = σ̂r(f [e20, s])

= (σr(f))[e20, σ̂r(s)]

= (f [s′, e21])[e20, σ̂r(s)]

= f [s′[e20, σ̂r(s)], e
2
1[e20, σ̂r(s)]]

= f [s′[e20, σ̂r(s)], σ̂r(s)].

Since E(r) ∩ {e20, e21} = {e21} and rightmostinj(s) = e20, so e20 ∈ E(σ̂r(s)). Since e20 ∈
E(σ̂r(s)), this force that σr ◦CG σt is not unit-regular. It is a contradiction. So σt ∈ E′2.

Case 2: If σt ∈ E3 \ E′3, then t = f [s, e21] where E(t) ∩ {e20, e21} = {e21}, s ∈ CT(2) and

leftmostinj(s) = e21. We choose σr ∈ E′2 ∈M . Then r = f [e20, s
′] where E(r)∩{e20, e21} =

{e20}, s′ ∈ CT(2) and rightmostinj(s
′) 6= e20. Consider

(σr ◦CG σt)(f) = σ̂r(f [s, e21])

= (σr(f))[σ̂r(s), e
2
1]

= (f [e20, s
′])[σ̂r(s), e

2
1]

= f [e20[σ̂r(s), e
2
1], s′[σ̂r(s), e

2
1]]

= f [σ̂r(s), s
′[σ̂r(s), e

2
1]].

Since E(r) ∩ {e20, e21} = {e20} and leftmostinj(s) = e21, so e21 ∈ E(σ̂r(s)). Since e21 ∈
E(σ̂r(s)), we have that σr ◦CG σt is not unit-regular. It is a contradiction. So σt ∈ E′3.

Case 3: If σt ∈ E4 \ E′4, then t = f [s, e20] where E(t) ∩ {e20, e21} = {e20}, s ∈ CT(2) and

leftmostinj(s) = e20. Since e20 ∈ E(s) and leftmostinj(s) = e20, σ̂t(s) = t. Consider

(σt ◦CG σt)(f) = σ̂t(f [s, e20])

= (σt(f))[σ̂t(s), e
2
0]

= (f [s, e20])[σ̂t(s), e
2
0]

= (f [s, e20])[t, e20]

= f [s[t, e20], e20[t, e20]]

= f [s[t, e20], t].

Since e20 ∈ E(s) and t occurs in s[t, e20], so e20 ∈ E(s[t, e20]). SinceE(t)∩{e20, e21} = {e20} and
e20 ∈ E(s[t, e20]), we have σt ◦CG σt is not unit-regular. It is a contradiction. So σt ∈ E′4.
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Case 4: If σt ∈ E5 \ E′5, then t = f [e21, s] where E(t) ∩ {e20, e21} = {e21}, s ∈ CT(2) and

rightmostinj(s) = e21. Since e21 ∈ E(s) and rightmostinj(s) = e21, σ̂t(s) = t. Consider

(σr ◦CG σt)(f) = σ̂t(f [e21, s])

= (σt(f))[e21, σ̂t(s)]

= (f [e21, s])[e
2
1, t]

= f [t, s[e21, t]].

Since e21 ∈ E(s) and t occurs in s[e21, t], so e21 ∈ E(s[e21, t]). Since E(t) ∩ {e20, e21} = {e21}
and e21 ∈ E(s[e21, t]), we have σt ◦CG σt is not unit-regular. It is a contradiction. So
σt ∈ E′5.

ThusM ⊆ UR(CohypG(2)). HenceM = UR(CohypG(2)). Therefore, UR(CohypG(2))
is a maximal unit-regular submonoid of CohypG(2).

Definition 4.8. [10] Let S be a semigroup and E(S) be the set of all idempotents in S.
We say S is left [right] factorisable if S = GE(S) [S = E(S)H] for some subgroup G,H
of S. Moreover, S is factorisable if S is both left and right factorisable.

Theorem 4.9. [10] A monoid S is factorisable if and only if it is unit-regular.

Corollary 4.10. UR(CohypG(2)) is factorisable.
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