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Abstract : In this paper, we introduce and study the modified Noor iterative
scheme for three asymptotically nonexpansive mappings in the intermediate sense.
Weak and strong convergence theorems of such iterations to a common fixed point
of three asymptotically nonexpansive mappings in a uniformly convex Banach
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recent ones announced by Xu and Noor and many others.
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1 Introduction

Fixed-point iterations process for asymptotically nonexpansive mapping in Ba-
nach spaces including Mann and Ishikawa iterations processes have been studied
extensively by many authors. Many of them are used widely to study the approx-
imate solutions of the certain problems. Recently, Xu and Noor [20] introduced
and studied a three-step scheme to approximate fixed points of asymptotically
nonexpansive mappings in Banach space. In 2004, Cho, Zhou and Guo [3] ex-
tended the work of Xu and Noor [20] to the three-step iterative scheme with errors
and gave weak and strong convergence theorems for asymptotically nonexpansive
mapping in Banach space. Suantai [14] defined a new three-step iterations which
is an extension of the modified Noor iterations for asymptotically nonexpansive
mappings in uniformly Banach space. Nammanee and Suantai [7] gave strong
convergence theorem of the modified Noor iterations with errors for completely
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continuous asymptotically nonexpansive mappings in the intermediate sense. In-
spired and motivated by research going on this area, we consider and study the
modified Noor iterations with errors for three asymptotically nonexpansive map-
pings in a uniformly convex Banach space. The scheme is defined as follows.

Let X be a normed space, C be a nonempty convex subset of X, and 73, T5 and T5 :
C — C be given mappings. Then for a given z; € C, compute the sequences
{zn}, {yn} and {z,} by the iterative scheme

Zn = apI5%n + (1 = an — )Ty + Ynin,
Yn = bpT9zn + T3 @y + (1 — by — ¢p — fin )Ty + fin¥n, (1.1)
Tnr1 = oT7Yn + BnTozn + (1 — ap — Brn — M) + Apwy, n>1,

where {a,}, {bn}, {cn}, {an}, {Bn}, {7}, {An} are appropriate sequences in [0, 1]
and {uy,}, {vn} and {wy,} are bounded sequences in C.

The iterative schemes (1.1) are a generalization of the modified Noor iterations
with errors. If Ty = Ty = T5 := T, then (1.1) reduces to modified Noor iterations
with errors .

Zn = anT"xn + (1 — anp — 'Yn)xn + TYnlUn,
Yn = bpT"zp 4+ T xn + (1 — by — ¢ — )T + inUn, (1.2)
Tpn+1 = anTnyn + BnTnZn + (1 — Oy — 671 - An)$n + An'wny n Z 17

Noor iterations include the Mann-Ishikawa iterations as spacial cases.
T =T, =T3:=T, and v, = pp, = A\, = 0, then (1.1) reduces to the modified
Noor iterations defined by Suantai [14]

zn = a,T"xn + (1 —ay)zn,
Yn = bT"zn 4+ cnT"xn + (1 — by — )y, (1.3)
Tn+1 = anTnyn + ﬁnTnZn + (1 — Qp — ﬁn)xnv n Z 17

where {an}, {bn}, {cn}, {an}, {Bn}, are appropriate sequences in [0,1].
Iy, =pn=A=c¢c,=0,=0and Ty =Ty =Tz :=1T, then (1.1) reduces to
Noor iterations defined by Xu and Noor [20].

zn = a,T"xn + (1 —ay)zn,
Yn = bnTnZn + (1 - bn)mna (14)
Tny1 = ayT"yn+ (1 —ap)z,, n>1,

where {an}, {bn}, {an} are appropriate sequences in [0, 1].
For v, =pin =AM =cn=0n=a, =0and T3 =Ty =T5 := T, then (1.1) reduces
to the usual Ishikawa iterative scheme

Yn = b, Tz, + (1 —bp)xn,
Tnt1 = Ty + (1 —an)z,, n>1, (1.5)
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where {b,}, {a,} are appropriate sequences in [0, 1].

The purpose of this paper is to establish several strong convergence theorems
for the modified Noor iterations with errors (1.1) for three asymptotically non-
expansive mappings in the intermediate sense, and weak convergence theorems
for three asymptotically nonexpansive mappings in the intermediate sense in a
uniformly convex Banach space with Opial’s condition. Our results extend and
improve the corresponding ones announced by Xu and Noor [20] and many others.

Now, we recall the well-known concepts and results.

Let X be normed space and C be a nonempty subset of X. A mapping
T : C — C is said to be asymptotically nonexpansive on C if there exists a se-
quence {k,}, k, > 1 with HILH;O k, = 1, such that

[Tz = T"y|| < knllz = yll,

for all z, y € C and each n > 1.
If k, = 1, then T is known as a nonexpansive mapping. The mapping T is
called wuniformly L- Lipschitzian if there exists a positive constant L such that

[Tz = T"y|| < Lz —yl|,

for all x, y € C and each n > 1.
T is called asymptotically nonexpansive in the intermediate sense [2] provided
T is uniformly continuous and

limsup sup (||7"z — T"y| — ||z — y||) <0, Vo, yeC.
n—oo x,ycC
From the definitions, it follows that asymptotically nonexpansive mapping must
be asymptotically nonexpansive in the intermediate sense and L-Lipschitzian map-

ping. But the convergence does not hold such as in the following example.
Example 1.(see [10]) Let X =R, C = [_Tl, %] and |k| < 1. For each x € C, define

_ kxsin% if x#0,
T<x>_{ 0 if x=0.

Then T is asymptotically nonexpansive in the intermediate sense. It is well known
[9] that T2z — 0 wuniformly, but is not a Lipschitzian mapping so that it is not
asymptotically nonexpansive mapping.

It is known [5] that if X is a uniformly convex Banach space and T is asymp-
totically nonexpansive in the intermediate sense, then F(T') # (.

Recall that a Banach space X is said to satisfy Opial’s condition [10] if x,, — x
weakly as n — oo and x # y imply that

limsup ||z, — 2| < limsup ||, — y]|.

n—oo n—0oo
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2 Preliminaries

Lemma 2.1. [16, Lemma 1]. Let {a,},{bn} and {0, } be sequences of nonnegative
real numbers satisfying the inequality

ant1 < (14 0p)an + by, Yn=1,2,...

oo o0
IfZén < 00 anden < 00, then

n=1 n=1
(i) lim a,, exists.

n—oo
(i) lim a, =0 whenever liminf a,, = 0.

n—oo n—oo

Lemma 2.2. [6, Lemma 1.4]. Let X be a uniformly convex Banach space and
B, ={x € X : ||z|| < r},r > 0. Then there exists a continuous, strictly increasing,
and convez function g : [0,00) — [0,00),9(0) = 0 such that

lloa + By + pz + dw|* < allz]|? + Bllyll* + ullz]* + Allwl* — aBg (= — yl)),
for all z,y, z, w € B, and all «, B, u, A € [0,1] witha+ B+ p+A=1.

Lemma 2.3. [3, Lemma 1.6] Let X be a uniformly convex Banach space,C a
nonempty closed convex subset of X, and T : C — C be an asymptotically non-
expansive mapping. Then I — T is demiclosed at 0, i.e., if x, — = weakly and
Xy — Txy, — 0 strongly, then x € F(T), where F(T) is the set of fixed point of T

Lemma 2.4. [14, Lemma 2.7]. Let X be a Banach space which satisfies Opial’s
condition and let {x,} be a sequence in X. Let u,v € X be such that lim |z, —ull

and lim ||z, — v|| exist. If {zn,} and {xm,} are subsequences of {x,} which

converge weakly to u and v, respectively, then u = v.

3 Main Results

In this section, we prove strong convergence theorems for the modified Noor
iterations with errors (1.1) for three asymptotically nonexpansive mappings in the
intermediate sense in a uniformly convex Banach space. In order to prove our
main results, the following lemmas are needed.

The next lemma is crucial for proving the main theorems.

Lemma 3.1. Let X be a uniformly convex Banach space and let C' be a nonempty
closed and convex subset of X . Let Ty, Ty and T3 be an asymptotically nonexpansive
in the intermediate sense self-maps of C

Put

G = sup (T —T7y| - Iz —y]) v O
z,yeC
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for all z,y € C, n > 1,4 = 1,2,3, so that ZGS) < 00,1 = 1,2,3. Let

n=1
{an}, {bn}, {cn}, {an}, {Bn}, {1}, {1} and {\,} be real sequences in [0,1] such
that an + Yn , bn + cn + pn and o, + B + A are in [0,1] for all n > 1 and

Z’yn < 00, Z“” < 00, Z)\n < 00, and let {un}, {vn} and {w,} be bounded

n=1 n=1 n=1

sequences in C. For a given x1 € C, let {z,}, {yn} and {z,} be the sequences
defined as in (1.1). Then we have

(i) lim ||x, — p| ezists for all p € F(Ty) N F(T3) N F(T3).

(i) If 0 < hnnigéfo‘" < limsup(ay, + Bn + An) < 1, then nh_)rrgo 1T yn — n|| = 0.

n—oo
(#5) If 0 < liminf b, <limsup(b, + ¢n + pin) < 1, then lim [|T5'z, — x,|| = 0.
(w) If 0 <liminfa, <limsup(a, +7,) <1, then lim ||T3'z, — x| = 0.

Proof. (i) Let p € F(Ty) N F(Ty) N F(T53). Since {Ggf)}, {un}, {vn} and {w,} are
bounded sequences in C'.
We can put M = sup,,>; ng)\/suanI |tn,—pl|VSup,,>1 [vn —pl| Vsup, > [lw, —pl|.
Then
”Zn - pH = HanT??xn + (1 — Qp — 'Yn)xn + Ynn _p”

= Han(Tz’?xn —p) + (1= an —v)(@n — p) + Yn(un — )|l

< (IT—=an—wllen = pll + anl|T5'zn — pll + Ynllun — |

< (1= — e~ ol + anllen — pll+ GO+ 70—

= (I =7n)llzn —pl + anGS’) + Ynllun — pll

< lzn —pll+ G%B) + My, (3.1)

and
lyn — pll = 16075 20 + cnT5'zn + (1 = by — ¢ — pn)Tn + pnvn — pl|
lbn (15 20 — p) + Cn(T?:lxn —p)+ (1 =bp —cn — pin)(@n — p) + pin(vn — p)||

< (I =bn—cn— pn)llTn = pll + 00|15 20 — Pl + || T3 w0 — pll + pinl|vn — |
< (l_bn_cn_ﬂn)nmn_p”"'bn[Hzn_pH'i'Gg)]

+ enlllzn — pll + Gq(zg)] + My,
< (1 =by—cn— pn)llzn — ol + bulllzn — pll + G%S) + My, + G7(12)]

+ eallzn —pll + GP)+ My,
= (U= p)llan = pll + balGE + My + GP) 4 n G + M,
< lwn = pll + G + 2G5 + M (v + i) (3.2)

It follows from (3.1) and (3.2) that
||xn+1 - p|| = |lan T yn + BnT5 20 + (1 — Qn = B = An)Tn + Aqwy _pH

IN

(1 —ay — Bn — >\n)||33n _pH + anHTlnyn _pH =+ ﬂn”T;Zn _pH + )\nHwn _p”
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(1 —=an = Bn = A)llzn —pll + anlllyn — pll + ngl)] + Bulllzn — pll + G7(12)] + MM,
(1= an =B = An)lln —pll

+ ap(llen —pll + G +2GF + M(yn + pa) + G

+ ﬁn[”mn - p” + ng3) + My, + G’E’LZ)] + M,

(1= Xo)llzn — pll + an[G’Ell) + G7(12) + 2G£13) + M (vn + pin)]

+ BulG®) + M~, + GP] 4+ M,

< e = pll + GV +2G2 +3G3) + M(2v, + fin + An)

Since i Ggf)<oo,z' =1,2,3, i’yn«)o, i <00 and i Ap < 00,

n=1 n=1 n=1 n=1
it follows from Lemma 2.1 that lim ||z, — p|| exists.
n—oo

(ii) By (i) we have that lim ||x, —pl|| exists for any p € F(T1)N F(T3)N F(T3).
It follow that {z, —p}, {yn — p}, {20 — P}, {TT'yn — P}, {1520 — 0}, {1520 — p}

are all bounded also both {u, — p}, {v, —p} and {w,, — p} by assumption. Next,
we set

INIA

r1 = sup ||z, — p||, r2 = sup || 15'z, — pl|, 73 = sup || 15 zn, — pl|, 74 = sup || T{yn — pl,
n n n n
15 = sup ||[yn — pl|, re = sup ||z — p||, r7 = sup ||un, — pl|, 78 = sup |jv, — p||
n n n n
and r9 = sup ||w, — p||.
n

Choose a number r = max{ry, re, r3, 74, s, I's, T7, I's, T'o}. Then B, contains the

following sequences {z, —p}, {yn—p}{zn—0}, {T7yn—p}, {T0'2n—p} {152, —D},
{un — p}, {vn — p},{w, — p}. By Lemma 2.2, there exists a continuous, strictly
increasing, and convex function g : [0, 00) — [0,00), g(0) = 0 such that

lacw+ By + pz+dwl* < alll* + Bllyll* + ull2l* + Alwl® —ag(llz—yll),  (3.3)

forall z, y, z, w € B and all o, B, p, A € [0,1] with a+ 8+ pu+ X =1.
It follows from (3.3) that

Hzn - P||2 = HanT;mn + (1 — Gp — ’Yn)xn + Ynn _p||2

”an(ngn =)+ (1= an —v)(Tn — p) + Yn(un *p)”z

< (1 — Qpn — 'Yn)”xn _pH2 + anHT??xn _pH2 +'Yn||un —pH2
— an(1 = an — ) 9([| T3 2n, — 240||)

< (1 a3l — pl? + aulllen —pll + G2+ 2%,
— an(l = an = 7)9([| T5'Tn — 240l])

= (1 —)lzn —pl* + an2GP ||z, — p|| + (GP)?]
+ My, — an(l = an = v0)g(|1T5'Tn — 24l|)

< on —pl? + 260 2 — pll + (GP)? + My,

- an(l — Qp — 'Yn)g(”T??xn - an)a (3-4)
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”yn

And

||xn+1

- p||2 = [1bnT5" 20 + cnT5'Tn + (1 — by — . — fin)Tn + finUn — p||2

<

IN

IN

IN

16(T5 20 — p) + (1 = bn — e — pn) (@0 — p) + cn(T5'Tn — p) + pin(vn *p)HQ
(1= bn = — ptn)[l2n = Pl1* + b0 | 15 2 — 2|

+ enl|T5'Tn —p||2 + pin v, _pH2 = bp(1 = bp = cn — pn)g(| 15 20 — w0
(1= bn = cn = pn)ll2n = pII* + bulllzn — pll + GPT?

+ cnllln — pll + G%S)]Q + M2l‘n = b (1 = bn — e — pn)g(I115" 20 — wa])
(1= bn = e = pn)l[@n = PI* + ballzn = plI* + 2G|z — pl| + (GF)?]

+ cnlllzn = pl* +2GP |2 — pll + (G)?]

+ MQNn —bp(1 = by — ¢ — ) 9|15 20 — @)

(1= bn = e = )20 = P> + b2 — plI* + 2G| — pl| + (GP)?

+ M?y, + QG%Q)(Hmn —pll + G’I(’Lg) + M) + (G;Q))Q]

+ cnlllzn = pl* + 26D 2 — pll + (GF)?] + M pin

= b (L = bn — ¢ — ) 9|15 20 — @)

(1= )@ = plI?* + 622G + 2G|z — pll + (GP)? + (GY)?

+ 2GPGCY + 2M~,GP + M?7,] + ¢, 2G P ||z, — p| + (GP)?]

+ M2ﬁbn = b (1 = by = cn — pn)g(| 15 20 — 0 ])

= pl* + G +4G) |l — pll + (GIP)* +2(GP)? + 26D G

+ 2MG1(12) + M (yn + i) = b (1= by — o — pn)g(|| T3 20 — znl)- (3.5)

- p||2 = lanT"Yn + BnT5' 20 + (1 — i — B — An)Tn + Apwn, — sz

A

IN

IN

IA

v (T1yn = p) + (1 = an = B = An) (@0 — D) + B (T3 20 — p) + An(wn — p)||?
(1 —an = Bn—n)lzn —p||2 + an [T yn — p”2 + Bnl| T35 2n — p”2

+ Apllwn — p”2 —an(l —an = Bn — A)g(I T yn — wnl)

(1= an = Bn = An)ll@n — P> + anlllyn — pll + GO + Bulllzn — pll + GP)?
+ M2\, — an(1—an = By — M) g(IT1"Yn — x0))

(I —an = Bn—An)l2n —p||2 + an(llyn —p||2 + 2G£z”||yn —pll+ (ngl))Q]

+ Balllzn = plI* + 2G5 |20 — pll + (GI)?] + MA,

— an(l = an = Bn = M) g1 T yn — znl|)

(1= an = Bn = Aa)ll@n = plI* + anllzn = plI* + G +4G)) |20 — p|
+(GP)? +2(GP) + 26 CP) + 2MG P + M (v + i)

= bu(1 = by — e — pn)g(| 15 20 — n|)

+ 260 ([l = pll + G + 26 + M (1 + pin)) + (G1))?)

+ Balllzn = plI* +2GP |2 — pl| + (G1P)* + My,

— an(1 = an — ) g(|T5'Tn — znll)

+ 263 (| = pll + G + M) + (GP)?] + M),

— an(l —an = Bn — M) T yn — zall)

(1= Aa)lln = plI* + @nl2G5) + 26 + 4GP |2, — pl + (G + (GP))?
+2(GP)?2 +2GVGP +4GHNGY) +2GPGP + 2M (v, + p1n) G

+ QMGng) + M2('Yn + tin) = b (1 = bp — e — pn)g(I1 15" 20 — wa])]

+ Bu]2GD + 260 ||wn — pl| + (GD) + (GF)?

+ 2G$12)G513) + 2M7nG£LQ) +M? - Ynn(1 — an —vn)g(||T5' Ty — 2n|)]

+ M\, — an(l —apn = B = A)g(1T1"yn — 2all)
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< an = pl? + G + 4GP +6G) |2, — pll + (GIV)? +2(GP)* + 3(GP)?
+26HGP +4G1GY 4+ 462G +4MGY + 4MGP
+ M2(2’Yn + pn + >\n) - an(l — Op — ﬁn - )\n)g(”Tlnyn - xn”)
= bn(1 = bn — cn — ) 9|73 20 — @0||) — an(1 — an — V) g([| 75" w0 — 24|

<

Iz — plI2 + 2GD) +4G@ +6G3) |z — p|| + MGV +2MG?P + 3MG
+2MGY +aM G + AMGP + aMGY + 4MGP)

+ M2(2’Yn + pn + )‘n) - an(l —ap — fBn — )\n)g(HTlnyn - xn”)

- bn(l —by—cp— Mn)g(HTznzn - an - an(l — Qpn — 'Vn)g(HT??CEn - $n||036)

This implies that

an(l—ap = Bn — M)g(IT7'yn — znl]) < ll2n _pH2 = |@nt1 — pH2 + L(?GS)HG%Q)—HSGS))
+ MG +10GP) +3GP) + M (23 + pin + An), (3.7)

bu(1=bp — o — pn)g(T5 20 — 2all) < llan = pl* = [J2n1 — pl* + L(QGS) + 4G’EL2) + 6G£zg))
+ MG + 110G +3GP)) + M2 (23 + o + An), (3.8)

an(l=an — W)g(|T5'zn — znll) < |25 —pl? = l#nsr —plI* + L(2G511) + 4G£z2) + GG%B))
+ MG + 110G +3GF)) + M2 (23 + pin + An), (3.9)

where L = sup{||x,, — p|| : n > 1}.
If 0 < liminf o, < limsup(a, + B + An) < 1, then there exist a positive integer

ng and 71, N2 € (0, 1) such that
0 <m <ap, anda, + Bn + Ay <2 <1 for all n > ny.
This implies by (3.7) that

m(L=m)g(IT7yn —al) < Nwn —pl* = l@nsr = plI* + LG + 4G +6GY)
+ M11GWY +10GP +3GD)) + M?(27, + pin + An)
< an = plPP = lznn —pl* + K2GP + 4G +6G7)

+ K(11GW +10G? + 3GD)) + M(295 + pin + An)
|n = Pl = [@n41 — | + K(13GL) + 1465 +9G)
+ M2 (29 + pin + An), (3.10)
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where K = max{M, L} , for all n > ng. It follows from (3.10) that for m > ng

m

1 m
> o ~al) < s (Y (= 5l i~ plP)
n=no 171(1 o T]2) n=no
+ ) (K(3GY + 14GQ) +9GD)) + M? (23 + pin + )\n))>
n=ngo
1 2 = 1 2 3)
—— PR [L Y 13G¢0) +14G6P 4+ 9G¢
s (ll pal )
m
oy <2%+un+xn>). (3.11)
n=no

Sincei7n<oo,iun<oo7§3/\n<oo7 and iGg)<oo, i=1,2,3,

n=1 n=1 n=1 n=1

(o]
by letting m — oo in inequality (3.11), we get that Z 97T Yn — Tnl|) < 00, and
n=ngo
therefore lim g(||77'yn — x,||) = 0. Since g is strictly increasing and continuous
n—oo
at 0 with g(0) = 0, it follows that lim |77y, — 2, = 0.
n—oo

(iii) If lim inf b,, < limsup(b, + ¢, + pn) < 1, then by using a similar method,

n—oo

together with inequality (3.8), it can be shown that lim |73'z, — x| = 0.
n—oo

(iv) If liminfa, < limsup(a, + v,) < 1, then by using a similar method,

n— n— oo

together with inequality (3.9), it can be shown that lim |73z, —z,| =0. O
n—oo

Lemma 3.2. Let X be a uniformly convex Banach space and let C' be a nonempty
closed and convex subset of X. Let Ty, Ty and T3 be an asymptotically nonexpansive
in the intermediate sense self-maps of C'.
Put
GO = sup (|T7w - Ty| — [lz — yl) v O
z,yeC

forall z,y € C, n > 1,1 = 1,2,3, so that ZGS) < 00,1 = 1,2,3. Let

n=1
{an}, {bn}, {cn}, {an}, {Bn}; {An}, {tn} and {\,} be real sequences in [0, 1] such
that an + Vn , b + cn + i and o + By, + Ay are in [0,1] for all n > 1 and

nyn < 00, Zun < 00, Z/\n < 00, and let {un}, {vn} and {w,} be bounded
n=1 n=1 n=1
sequences in C. For a given x1 € C, let {xn}, {yn} and {z,} be the sequences
defined as in (1.1) and
(i) 0 < liminf o, < limsup(a, + Gn + An) < 1,

n—oo n— oo
(i1) 0 < liminfb, < limsup(b, + ¢y + pn) < 1,

n—oo
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(#3) 0 < liminf a,, <limsup(a, +v,) <1,

n—oo
then lim ||Tyx, — x| = lim [|[Thz, — 2, = lm || T2, — z,] = 0.
n—oo n—oo n—o0

Proof. By Lemma 3.1, we have

lm ||TV'yn — 2, =0, Um ||T5'z, — x,|| =0, lim || T3z, — z,| = 0. (3.12)
n—oo n—oo n—oo
From x,11 = @nT1yn + 8T8 2n + (1 — ay — B — Ap)Tp + Anwy, we have

||$n+1 - xn” = ||anT1nyn + ﬁnTQnZn + (1 — Op — ﬂn - An)xn + A wy, — xn”

< anl|TT'yn — oll + BullT3 20 — 2n | + Anllwn — 24| — 0O,
and
< bullT5 20 — x|l + ol T3 @0 — 2nll + pnlvn — 20l — 0. (3.13)
By (3.12) and (3.13), we have
117z —zpll < [ T7%0 — T7ynll + 117 Y — 20|
< an = yal + G + 1T yn — 0| — 0.
Hence
[#n1 = TV Zpsall < N@nsr — @all + 1T @041 — T || + |17 20 — 24|
< 2lzngr — @a|l + Gg) + |11 Ty — 20| — 0.

Since

[Zn41 = Tizngall < l@nsr = TP epp || + | Tiznn = TP 2nga ]| - 0 and

||xn - Tlxn” < Hxn - xn-i-lH + ||37n+1 - Tlxn-&-l” + HTlxn-i-l - Tlan,
it follows from uniform continuity of 77 that lim ||Tix, — z,|| = 0.
n—oo
From z, = ¢, T53@n + (1 — an, — Yn) Ty + YnUn, we have
||Zn*an = ‘|anT§an+(17an*’)’n)xn+7nun*xn”
< an|| T3 Tn — o + Ynlltn — xn|| — 0. (3.14)

By (3.12) and (3.14), we have

1T5'zn —znll < (T30 — T3 20 || + |15 20 — 2|

< lzn = zall + szz) + |73 20 — @0 — O,
and

[znt1 — T5' T ||

IN A

2|21 — @nll + GE) + | T3an — 2all = 0,

|Znt1 — ol + (|15 Tng1 — T3zl + |13 20 — 20|
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Since

[znt1 — Towpa || [2n41 = T3 | + | Toxnis = T3 @nga ]| = 0 and

<
<

20 — Toxn || |20 = Tog1ll + P01 — Tovpia || + | T2Tnt1 — Towal,

it follows from uniform continuity of 75 that lim ||Tex, — x,|| = 0.
n—oo

From lim || 732, — x| = 0, we have
n—o0

[Znt1 = @nll + |1 T5' Tp11 — T5'2nl| + |15 0 — 0|
2 ni1 — xall + G + | TPz, — 2] — 0.

|Znt1 — T3 Tnqa]] <
<

Since

@41 = Tsapiall < Moot = T3 epl| + | Tszngs — T3 app|| — 0 and
|z — T3zl < |20 — Togall + |Tns1 — Tazngrl| + [ T3040 — Tz,

it follows from uniform continuity of T3 that lim |75z, — 2,|| = 0. O
n—oo

Theorem 3.3. Let X be a uniformly convexr Banach space and let C' be a nonempty

closed and convex subset of X. Suppose that T be a completely continuous asymp-

totically nonexpansive in the intermediate sense self-maps of C' and Ty and T3 are

continuous asymptotically nonexpansive in the intermediate sense self-maps of C
Put

G = sup (| Tz =T}yl — | — yl)) v O
z,yeC

forallxz,y € C, n > 1 and i = 1,2,3, so that ZGS) < o0o0,t = 1,2,3. Let

n=1
{an}, {bn}, {cn}, {an}, {Bn}; {An}, {tn} and {\,} be real sequences in [0, 1] such
that an + Vn , b + cn + i and oy + By, + Ay are in [0,1] for all n > 1 and

nyn < 00, Z“" < 00, Z)\n < oo and let {un}, {vn} and {w,} be bounded

n=1 n=1 n=1
sequences in C For a given x1 € C, let {zn}, {yn} and {z,} be the sequences

defined as in (1.1) and
(i) 0 <liminf e, < limsup(a, + Gn + An) < 1,
n—oo

n—oo
(i) 0 < liminfb, < limsup(b, + ¢, + pn) < 1,

(#i) 0 < liminf a,, < limsup(a, +v,) <1,
n—oo n— oo
then the sequences {xy},{yn} and {z,} converge strongly to a common fized point
OfJH,JB and]%.
Proof. By Lemma 3.2, we have
lim Tz, — 2| = lim [|[Thz, — x| = lm || T2, — z,| = 0.
n—o00 n—oo n—oo

Since T is completely continuous and {z,,} is bounded, there exists a subsequence
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{zn, } of {z,} such that {Tx,, } converges. Therefore from lim |71z, —z,| =0,
n—oo

{zn, } converges. Let klim Zn, = p. By continuity of T and lim ||Thz, —z,| =0,
— 00 n—o0

we have that Tip = p, so p is a fixed point of T}. Since T5,T5 are continuous,
Toxy, — Top and Tz, — Tsp. Since ||[Tozy, — Tn, || — 0 and || T32y,, —xn, || — 0,
it follows that z,, = Toxn, — (T2%n, — Tn,) — Top and z,, = Tax,, — (T32n, —
Zn,, ) — T3p. Hence Top = p and Tsp = p. So p € F(T1)NF(T2)NF(T3). By Lemma
3.1, lim ||, — p|| = 0 exists. But lim ||z, —p|| =0. Thus lim |z, —p| = 0.
n—oo n—oo n—oo
Since ||yn, — zn|| — 0 and ||z, — x,|| — 0 as n — oo, it follows that lim y, = p
n—oo

and lim z, = p. O

For Ty =Ty = T3 := T in Theorem 3.3, the following results are obtained.

Corollary 3.4. [7, Theorem 2.2]. Let X be a uniformly convex Banach space, and
let C' be a nonempty bounded closed and convex subset of X. Let T be a completely
continuous asymptotically nonexpansive in the intermediate sense. Put

Gn = sup (|[T"z =T"yl| = lz —y[) vO Yn=1,
z,ye

so that ZG” < oo. Let {an}, {bn}, {cn}, {an}, {Bn}, {m}, {pn} and {\,} be

n=1

real sequences in [0,1] such that a, + yn , by + cn + i and oy, + By, + Ay are in
[0,1] for allm > 1, andZ'yn < 00, Zun < 00, Z)\ < o0, and let {u,}, {vn}

n=1 n=1

and {wy} be bounded sequences in C. For a given :rl € Clet {zn},{yn} and {z,}
be the sequences defined as in (1.2) and
(i) 0 < hmmfan < hmsup(an + 06n+An) <1 and

n—
(i) 0 < hmlnfb < hmsup(b +oen+pn) < 1.
Then {xn} {yn} and {zn} converge strongly to a fixed point of T

Corollary 3.5. [6, Theorem 2.3]. Let X be a uniformly convexr Banach space,
and C' a nonempty closed, bounded and convex subset of X. Let T be a completely
contmuous asymptotically nonexpansive self-map of C with {k,} satisfying kn, > 1

andz —1) < oo. Let {an}, {bn}, {cn}, {an}, {Bn}, {7}, {tn} and {\,} be
sequences of real numbers in [0, 1] with by +cp, + iy € [0, 1] and o+ Bn+ Ay € [0,1]

for alln > 1, and27n<oo7z,un<oo,2)\n<ooand

n=1 n=1 n=1
(i) 0 < hmmfb < limsup(b, + ¢n + pin) < 1, and

(i) 0 < hmlnfan < hmsup(an + 60+ M) <

Let {z,}, {yn} and {zn} be sequences defined by the modified Noor iterations with
errors (1.2). Then {x,},{yn} and {z,} converge strongly to a fized point of T.
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Corollary 3.6. [14, Theorem 2.3]. Let X be a uniformly convexr Banach space,
and C a nonempty closed , bounded and convex subset of X. Let T be a completely
continuous asymptotically nonexpansive self-map of C' with {ky} satisfying k, > 1

and Z(k” —1) < oo. Let {an}, {bn}, {cn}, {an}, {Bn} be sequences of real

n=1
numbers in [0, 1] with b, + ¢, € [0,1] and oy, + B, € [0,1] for alln > 1, and
(i) 0 < hmlnfb < limsup(b, + ¢,) < 1, and

n—oo

(i1) 0 < hmlnf oy < hmsup(an +6n) < L.

Let {z,}, {yn} and {zn} be the sequences defined by the modified Noor iterations
(1.8). Then {zn},{yn} and {z,} converge strongly to a fived point of T

ForTy =Ty =T5:=T and ¢, = 8, = Yn = b = Ay = 0 in Theorem 3.3, we
obtain the following result.

Corollary 3.7. [20, Theorem 2.1]. Let X be a uniformly convexr Banach space,
and let C' be a bounded, closed and convex subset of X. Let T be a completely
continuous asymptotically nonexpansive self-map of C' with {ky,} satisfying kn, > 1

and Z —1) < o00. Let {an}, {bn}, {an} be real sequences in [0,1] satisfying

() 0 < hmlnfb <limsupb, <1, and
n—oo
(i) 0 < hmlnfan <limsup o, < 1.

For a given x1 € C, define

zn = apnT"xn+ (1 —an)xn,
Yn = bnTnZn + (1 - bn)xna n Z 17
Tnt1 = T yn + (1 — an)xp.

Then {xn}, {yn} and {z,} converge strongly to a fized point of T.

When Th =T, =15 :=T and a, = ¢, = Bn = Vn = pin = Ap = 0 in Theorem
3.3, we can obtain Ishikawa-type convergence result.

Corollary 3.8. Let X be a uniformly conver Banach space, and let C' be a
bounded, closed and convex subset of X. Let T be a completely continuous asymp-
oo

totically nonexpansive self-map of C with {ky} satisfying k, > 1 and Z(kn—l) <
n=1

oo. Let {b,}, {an} be a real sequences in [0, 1] satisfying

(i) 0 < hmlnfb <limsupb, <1, and

n—oo
(i1) 0 < hmmfan <limsup o, < 1.
n—oo

For a given z1 € C, define

Yn = bpT"zp 4+ (1 —by)xy,
Tpnt1 = apT"yn+ (1 —an)xn, n>1.
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Then {x,} and {y,} converge strongly to a fized point of T.

In the next result, we prove weak convergence for the iterative scheme (1.1)
for asymptotically nonexpansive mapping in the intermediate sense in a uniformly
convex Banach space satisfying Opial’s condition.

Theorem 3.9. Let X be a uniformly convexr Banach space which satisfies Opial s
condition, and let C' be a nonempty closed and convex subset of X. Let Ty, Ty and T3
be asymptotically nonexpansive in the intermediate sense self-maps of C
Put
G = sup (| 17z — T}yl — ||z — y|l) v O

z,ye
e .
forall z,y € C, n > 1,1 = 1,2,3, so that ZGS) < o0,i = 1,2,3. Let

n=1
{an}, {bn}, {cn}, {an}, {Bn}s {1}, {tn} and {\,} be real sequences in [0, 1] such
that G + Yo 5 by +cn + un and o, + Bn + A\ are in [0,1] for alln > 1 and

oo

Z’yn < 00, Z,un < 00, Z/\ < oo and let {un}, {vn} and {w,} be bounded

sequences in C’ IfF F(Tl) ﬂ F(Ty) N F(Tg) 7é 0 and
(i) 0 < hmmfan < limsup(a, + Bn + An) <

n—oo

(i) 0 < hmlnfb < limsup(bn, + ¢n + pn) < 1,

n—oo

(#3) 0 < hmmf ay, < hmsup(an +9,) <1,

then the sequence {xn} {yn} and {z,} defined by (1.1) converges weakly to a com-
mon fixed point of Ty, To and T3.

Proof. It follows from Lemma 3.2 that lim [|[Thz, —x,| =0, lim ||Tex, —z,| =
0, lim ||T32, — x,|| = 0. Since X is uniformly convex and {z,} is bounded, we

may assume that x,, — u weakly as n — oo, without loss of generality. By Lemma
2.3, we have u € F. Suppose that subsequences {z, } and {z,,, } of {x,,} converge
weakly to uw and v, respectively. From Lemma 2.3, u, v € F. By Lemma 3.1 (i),
nlirr;o ||z — || and nlergo ||lzn — v|| exist. It follows from Lemma 2.4 that u = v.

Therefore {x,,} converges weakly to a common fixed point of T3, T and T3.Since
|yn — 0]l — 0 (as n — o0) and ||z, — || — 0 (as n — o0) and z,, — u weakly
as n — oo, it follows that y, — uw and z, — u weakly as n — oo. O

For Ty =Ty, = T3 := T, in Theorem 3.9, we follow results.

Corollary 3.10. [7, Theorem 2.7]. Let X be a uniformly convex Banach space
which satisfies Opial ’s condition, and let C be a nonempty bounded, closed and
convez subset of X. Let T be an asymptotically nonexpansive in the intermediate
sense. Put

Gpn = sup (|[T"z = T"y|| — [z —yl) VO, Vn=>1,
z,yeC
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so that Z Gy, < 00. For a given x1 € C,let {zy}, {yn} and {z,} be the sequences
n=1

defined as in (1.2) and

(i) 0 < liminf e, < limsup(a, + Gn + An) < 1 and

n—oo
(#1) 0 < liminfb, < limsup(b, + ¢, + pn) < 1.

Then {x,} converges weakly to a fized point of T.

Corollary 3.11. [6, Theorem 2.8]. Let X be a uniformly conver Banach space

which satisfies Opial ’s condition, and C' a nonempty closed,bounded and convex

subset of X. Let T be an asymptotically nonexpansive self-map of C with {k,} sat-
oo

isfying ky, > 1 and Z(kn—l) < o0. Let{an}, {bn}, {cn}, {an} {Bn}, {n}, {0}

n=1
be sequences of real numbers in [0, 1] with an + Y, by + cn + pin and ap + Bn + An

o0 oo o0

are in [0,1] for alln > 1, and Z’yn < oo,Zun < OO,Z)\n < oo and
n=1 n=1 n=1
(i) 0 <liminfb, <limsup(b, + ¢, + pn) < 1, and
(i) 0 < liminf oy, < limsup(a, + Gn + An) < 1.
n—oo n—oo

Let {x,,} be the sequence defined by the modified Noor iterations with errors (1.2).
Then {x,} converges weakly to a fixed point of T.

Corollary 3.12. [14, Theorem 2.8]. Let X be a uniformly convex Banach space
which satisfies Opial s condition, and C' a nonempty closed, bounded and convex
subset of X. Let T be an asymptotically nonexpansive self-map of C' with {ky}

satisfying k, > 1 and Z(kn —1) < oo. Let {an}, {bn},{cn}, {an}, {Bn} be se-
n=1

quences of real numbers in [0, 1] with by, + ¢, € [0,1] and o, + B, € [0,1] for all

n>1, and

(i) 0 < liminf b, <limsup(b, + ¢,) <1, and

(#) 0 < liminf oy, < limsup(a, + 6p) < 1.

Let {x,} be the sequence defined by the modified Noor iterations (1.3). Then {x,}
converges weakly to a fized point of T'.

When Ty =15 =715 :=T and v, = ptyy, = Ay = ¢ = B, = 0 in Theorem 3.9,
we obtain the following result.

Corollary 3.13. Let X be a uniformly convexr Banach space which satisfies Opial
’s condition, and C' a nonempty bounded, closed and convezr subset of X. Let T
be an asymptotically nonexpansive self-map of C with {k,} satisfying k, > 1 and

Z(kn —1) < oo. Let {an}, {bn}, {an} be sequences of real numbers in [0,1] and
n=1

(i) 0 <liminfb, <limsupb, <1, and

n—oo n—o00
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(i) 0 < liminf oy, < limsup o, < 1.

Let {x,}, {yn} and {z,} be the sequences defined by

zn = ap T"xn + (1 —ay)xn,
Yn = bnTnZn + (1 - bn)xru n>1,
Tnr1 = apT"yn+ (1 — apn)zp.

Then {x,} converges weakly to a fixed point of T

When Ty =T, =T5 :=T and 7, = p, = A\, = ¢, = B, = @, = 0 in Theorem
3.9, we obtain Ishikawa-type weak convergence theorem as follows:

Corollary 3.14. Let X be a uniformly convex Banach space which satisfies Opial
’s condition, and C' a nonempty bounded, closed and convexr subset of X. Let T
be an asymptotically nonexpansive self-map of C with {k,} satisfying k, > 1 and
o0

Z(kn —1) < o0. Let {b,}, {an} be sequences of real numbers in [0,1] such that
n=1

(i) 0 <liminfbd, <limsupb, <1, and
n—00 n—oo

(i) 0 < liminf o,, < limsup ey, < 1.
n—00 n—o00o

Let {z,} and {y,} be the sequences defined by

Tpnt1 = Ty + (1 —an)zn, n>1.

Then {x,} converges weakly to a fixed point of T.
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