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Abstract: Tn this paper we define a generalized Cesaro sequence space Cesar
where M = (M}) is a Musielak-Orlicz function , and consider it equipped with
the Luxemburg norm. We call this space the Cesaro Musielak-Orlicz sequence
space. The main purpose of the paper is to show that if M € §, N3 and satisfies
condition (%) then Cesa is k— nearly uniform convex (k — NUC) for k > 2.
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1 Introduction

The Cesaro sequence space ces, (1 < p < o00) were introduced by J.S.Shue
[19]. They are useful for theory of matrix operators. Y. A. Cui [3] showed that
cesp (1 <p<oo)isk— NUC for any k > 2.

In this paper, we define a new sequence space, Cesys, which is a generalization
of the space cesp, by using a Musielak-Orlicz function, and we call the space
Cespr, Cesaro-Musielak-Orlicz sequence space. We show that if M € 62 N §* and
M satisfies the condition (x), then Cesas is k — NUC . so it has Banach-Sake
property.

We now introduce the basic notations and defitions. Tn the following, let R
be the real line and N the set of natural numbers. Let (X, ]|.||) be a real Banach
space, and let B(X) (resp. S(X)) be the closed unit ball (resp. the unit sphere)
of X. Clarkson [2] introduced the concept of uniform convexity. The norm ||.|| is
called uniformly convex (write (UC)) if for each e > 0 there is § > 0 such that for
z,y € S(X) inequality ||z — y|| > € implies

1
Iyt <15

For any x € B(X), the drop determined by x is the set

D(z, B(X)) = conv({z} U B(X)).
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Rolewicz in [17], basing on Danes drop theorem [5], introduced the notion of drop
property for Banach spaces.

A Banach space X has the drop property (write (D)) if for every closed set
disjoint with B(X) there exists an element x € ' such that

D(z,B(X))NC = {z}.

A Banach space X is said to have the Kadac-Klee property (or property (H)) if
every weakly convergent sequence on the unit sphere is convergent in norm.

In [18] Rolewicz proved that if the Banach space X has the drop property,
then X is reflexive. Montesinos [14] extended this result by showing that X has
the drop property if and only if X is reflexive and X has the property (H).

Recall that a sequence {x,} C X is said to be e—separated sequence for some
e>0if

sep(xy) = inf{||z, — x|l : n £ m} > e

A Banach space X is said to be nearly uniformly convez ( write (NUC) ) if
for every € > 0 there exists § € (0,1) such that for every sequence (z,,) C B(X)
with sep(z,) > €, we have

conv(z,) N (1 — 8§ B(X)) # 0.

Huff [7] proved that every (NUC) Banach space is reflexive and it has property
(H)

Kutzarova [9] has defined k-nearly uniformly convex Banach spaces. Let k > 2
be an integer . A Banach space X is said to be k — nearly uniformly convex
(write k — NUC ) if for any € > 0 there exists § > 0 such that for any sequence
(xn,) C B(X) with sep(z,) > € there are n1,na,...,n; € N such that

Tny +:I:TLQ +:I:n3 ++mnk H < 1 _5‘

I %

Clearly k — NUUC Banach spaces are NUC but the opposite implication does
not hold in general (see [9]).

Fan and Glicksberg [6] have introduced fully k-convex Banach spaces. A Ba-
nach spaces X is said to be fully k — rotund (write kR) if for every sequence
() C B(X), ||Zn, + &Tny + . + T, || @ k& as ny,m2,...,ng — oo implies that
() is convergent.

It is well known that UC = kR = (k + 1)R, and kR spaces are reflexive and
rotund, and it is easy to see that k — NUC = kR.

Let X be a real vector space. A functional g : X — [0, 00] is called a modular
it it satisfies the conditions

(i) o(z) =0if and only if z = 0;
(i) o(ax) = o(x) for all scalar « with |a| =1 ;

(iil) o(az + By) < o(x) + o(y), for all z,y € X and all @, 8 > 0 with o+ 8 = 1.
The modular p is called convez if
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(iv) olax+By) < ap(x)+Bo(y), forall z,y € X and all o, 8 > 0 with a+ 8 = 1.

If p is a modular in X, we define
X, = X: I Ax) =10
o=1q{z € Jim o(Azx) }

and XJ ={x € X :p(Az) < oo for some A >0 }.

It is clear that X, C X]. If g is a convex modular, for z € X, we define

|zl = inf{A > 0: o (g) <1} (1.1)
It is known that if g is a convex modular on X, then X, = X} and ||.|| is a norm
on X, for which it is a Banach space. The norm ||.|| defined as in (1.1) is called

the Luxemburg norm.
The following known results gave some relationships hetween the modular g
and the Luxemburg norm ||.[| on X,.

Theorem 1.1  Let ¢ be a convex modular on X and let x € X, and (z,) a
sequence in X,. Then ||z, —z| = 0 as n —= oc if and only if o(A\(z, —2)) = 0 as
n — oo for every A > 0.

Proof. See [13, Theorem 1.3]. O

Let {° be the space of all real sequences. For 1 < p < o0, the Cesaro sequence
space (ces, , for short) is defined by
cesp = {w €19 300, (5 X0, ()P < o0}
equipped with the norm

o0 1 T .
hell = (323 D)
n=1 i=1
This space was introduced by Shue [19]. It is useful in the theory of Matrix
operator and others (see [10] and [11]). Some geometric properties of the Cesaro
sequence space ces, were studied by many authors.

A map ¢ : R = [0, 00] is said to be an Orlicz function if ¢ vanishes only at 0,
and ¢ is even and convex.

A sequence M = (M) of Orlicz functions is called a Musielak-Orlicz func-
tion. Tn addition, a Musielak-Orlicz function N = (Ny,) is called a complementary
function of a Musielak-Orlicz function M if

Ni(v) =supf{|lvju — Mp(u) :w >0}, k=1,2,..

For a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space
Ipr and its subspace hps are defined as follows:

Iar = {x €1°: Is(ex) < oo for some ¢ > 0},
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hag = {x € £ : Ins(cx) < oo forall ¢>01},

where Iy is a convex modular defined by
Ing(z) =Y Mi(x(k), == (a(k)) € ln.
k=1

We consider ¢ equipped with the Luzemburg norm,
. z
Joll = inf{k > 0+ T (5) < 1}
or equipped with the Orlicz norm
0_ el
lz]|” = 1nf{%(l + In(kx)) - k> 0}

To simplify notation, we put Iar := (Iar, ||.|]) and 8, := (Iar,]].]|%). Both of them
are Banach spaces (see [1] and [16]).

Let M = (Mj},) be the Musielak-Orlicz function. The Cesdro-Musielak-Orlicz
sequence space is defined by

Cesnr :={x €1°: pp(ez) < oo for some ¢ > 0},

where pys is a convex modular defined by par(z) = 300, Mi(% Zle lz(i)]).
We consider Cesys equipped with the Luxemburg norm
x

llol] = inf{A > 0 par(3) < 1}

under with it is a Banach space. We define the subspace SCesps of Cesps by
SCesy:={x €1°: ppr(cx) < oo for all ¢ > 0}.

We say that a Musielak-Orlicz function M satisfies the 83-condition (we will write
M € 8y for short) if there exist constants K > 2 ug > 0 and a sequence (c) of
positive numbers such that 22021 ¢ < 00 and the inequality

Mk(QU,) < KMk(U,) + ¢

hold for every k € N and u € R satisfying My (u) < uo.

If M € 4dy and N € 4y, then we write M € 43 N §5. It is known that £y = Ay
if and only if M € é2 (see [16]). Moreover, we say that a Musielak-Orlicz function
M satisfies the (x)-condition if for any e € (0,1), there exists 4 > 0 such that
Mp((1 4+ 6)u) <1 whenever My (u) <1—eforall k€ Nand u € R
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2 Main Results

We start with a basic property of pas.

Proposition 2.1For any x € Cesyr, we have
(1) if llz|| <1, then pa(z) < |lz||, and

(2) if llzll > 1, then pa(z) > ||zl-

Proof. (1) If x = 0, then the inequality holds. Let z # 0. By the definition of
||.l], there is a sequence (e,,) such that €, | [|z]| such that pas(=) < 1. This implies

pM(”j—”) < 1. Since pps is convex, we have py(z) < ||x||pM(ﬁ) < |lz||-

(2) Let ||z|| > 1. Then for ¢ € (0, ”Tllglgﬁl), we have (1 —¢€)||z|| > 1. By convexity
of par, we have 1 < pu(7=5my) < (fj”e;m, so that (1 — €)||z|| < pa(z). By
taking € — 0, we have pp(x) > ||z]|. O

The following result is directly obtained from Proposition 2.1(1).

Corollary 2.21If (z,) is a sequence in Cesy such that x, — 0 as n — oo, then
pmzy) = 0 as n — 0.

Proposition 2.3 If a Musielak-Orlicz function M = (My) € &2, then SCesy =
Cespr.

1
Proof. If x € Cespy, then the sequence a = (a(k)), defined by a(k) = z Zle |z(7)]

for all k € N, is in £3;. By M € 05 we have that £3y = har. This implies that
prm(Az) = Ips(Aa) < o0 YA > 0, hence © € SCesyy. O

Proposition 2.4 If the Musielak-Orlicz function M = (My) € 6, then
(1) llzll =1 < pu(z) =1,

(2) for every € > 0, there exists a & > 0 such that ||z|| < 1 — § whenever
pu(z) <1—e.

Proof. (1) Assume that pyr(x) = 1. By definition of ||.||, we have that ||z| < 1.
If ||z|| < 1, then we have by Proposition 2.1(1) that pp(z) < ||z|| < 1, which
contradicts our assumption. Therefore ||z|| = 1.

Conversely, assume that ||z|| = 1. By Proposition 2.1(1), pas(z) < 1. Suppose
that par(z) < 1. By Proposition 2.3, we have pas(cx) < oo for all ¢ > 1. Since the
function t — par(tz) is continuous, there exists ¢ > 1 such that pa(cz) = 1. By
using the same proof as in the first part, we have that ||cz|| = 1, so ¢ = 1, which
is a contradiction.



124 R. Wangkeeree

(2) Suppose that (2) is not true. Then there exists a g > 0 and z,, € Cesy
such that py(zn) < 1—€p and § < ||z,| and ||z,|| — 1. Let L = sup, {pm(2z,)}.
Then L < oo since M € 6o. Let a,, = ”zl—” — 1, we have a,, <1 and a,, — 0. Then

= pmQanz, + (1 —ap)zy,)
L anprr(22n) + (1 — an)pm (z7)
S anL + (1 — 60).

This implies 1 < lim (a,L + (1 —€¢)) = 1 — €, which is a contradiction. Hence
n—00
(2) is satisfied. O

Proposition 2.5 If the Musielak-Orlicz function M = (My,) satisfies condition
(x) and M € &y, then

(1) for everye > 0 andc > 0, there exists a § > 0 such that for any x,y € Cespy,
we have

lom(z +y) — pu(z)| <e
whenever py(x) < ¢ and py(y) < 8 and

(2) for every € > 0, there exists 6 > 0 such that ||z|| > 1+ 6 whenever pp(z) >
1+e.

Proof. (1) Let € > 0 and ¢ > 0. By [4, Lemma 8], there exists a § > 0 such that
for any a,b € [y, we have

[Ini(a+0) — Ing(a)| < e (2.1)

whenever Ips(a) < ¢ and Iy (b) < 4. For each ¢ € N, let

o) = {sgn(x(i) +y(@) i 2(i) +y(0) #0,
1 if 2(i) + y(i) # 0.

Then we have



On Property (k-NUC) in Cesaro-Musielak-Orlicz Sequence Spaces 125

Let a(k) = 1Y% s(i)z(i) and b(k) = L35 s(i)y(i) for all k¥ € N. Then
a = (a(k)) € lp and b=(b(k)) € Il , and from (2.2) , we have

pm(+y) = Inla+b),Iu(a) < pu(z) and In(b) < pu(y)-

Let z,y € Cesar be such that py(z) < ¢ and par(y) < 4. Then Ip(a) < ¢ and
In(b) < 6. By (2.1), we have py(x +y) — par(z) < Ip(a+b) — In(a) <, that is

puz +y) < pu(z) +e (2.3)
Next, we shall show that
pn(z) < prs(T +y) +e (2.4)

For each 7 € N, let

s(i) = {sgn(w(z)) it z(i) #£0,

Then

pu () = pu((z +y) + (-y))

o0 k

ZMk (% Z |(z (i) +y(3)) + (—W’))I)
1 k

ZMk F 2S00 +y() + D00

Let a(k) = £ 3% ()( (i) + y(9) and b(k) = L% s(i)(—y(i)) for all
k € N. It is clear that a = (a(k)) € {y and b = (b(k)) € Iy , and py(z) =
Inila+0), In(a) < py(z+y) and Ty (b) < par(y). Hence we have Ins(a+b) < ¢
and In(—b) < 4. By (2.3), we have

[In(a+b) — In(a)| = [In(a) — In(a +b)| (2.5)
=|Iy((a+b)+ (=b)) — Inf(a+b)| <e. (2.6)

This implies that pa(z) — par(z + y) < Inf(a + b) — Ing(a) < €, hence ppr(z) <
pu(z +y) + €, s0 (2.4) holds. Therefore (1) is obtained by (2.3) and (2.4).
(2) Let € > 0 be given. By (1), there exists § € (0, 1) such that

Mwl

i:l

pu(uw) < Lpu(v) <6 = pu(u+v) < pu(u) +e (2.7)

If ||lz|| < 144, then pp(755) <1 and pM(Hé) < dpm(is) < 6. By (2.5), we
have py (%) = pu (755 + 1‘%) < pu (i) + € < 1+e Hence (2) is satisfied. O

Proposition 2.6 If the Musielak-Orlicz function M = (My) satisfies condi-
tion (%) and M € da, then for any sequence (z,) C Cespy, ||zn|| = 1 implies
pa(zy) = 1.
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Proof. Suppose that ppr(z,) /A 1 as n = co. We may assume that there exits
eo > 0 such that |par(z,) — 1] > € for all n € N. If ppr(x,,) — 1 > e, then
pmxy) > 14 €y, by Proposition 2.5(2), there exists § > 0 such that ||z,]| > 1+ 4.
If ppr(xy) — 1 < —eq, then par(zy,) < 1 — €, by Proposition 2.4(2), there exists a
8" > 0 such that ||z,|| < 1 —&'. These imply that [|z,] & 1 as n — oo. O

Proposition 2.7In Cesdiro-Musielak-Orlicz sequence space. If a Musielak-Orlicz
Junction M = (My,) satisfies condition (%) and M € 62, then the norm convergence
and modular convergence coincide.

Proof. From Corollary 2.2 and because M € ds, it suffices to prove that modular
convergence implies norm convergence. To do this, let € € (0, %), choose a positive
integer K such that sz < € < 5%. By Proposition 2.5(1), there exists a § €
(0, 525+ ) such that

pr(u) <1, pu(w) <6 = pu(u+v) < par(u) + e (2.8)
If par(z) < 6, by application of (2.6), we have py(nz) < pap(z) + ne, for n

1,..., 2571 Tn particular, ppr(£) < pu(257'z) < pu(z) +25 e < L+ L = 1.
This implies ||z|| < 4e. O

Theorem 2.8 If the Musielak-Orlicz function M = (M;) satisfies (x) -condition
and M € 6o N5, then Cesyr is k — NUC.

Proof. Let € > 0 be given and sequence (z,,) C B(Cesp) with sep{(x,)} > €.,
By M € 09 there exists a 6 > 0 such that

(s

2$m):n7ém}2(5

inf{pn
.Next, we will show that for any j € N there exists n; € N such that
N 5
SOMG Y fe, ) > 3 (29)
i=j =1 )

otherwise, there exists a jg € N such that

> MG Sl O <
=1

=jo

Lol o

for any j € N. Put y,, = (zn(1),2,(2),...,20(J0),0,0,...) for n € N. Then there
exists a subsequence (y,,) C (y,) such that

(ym - ynj
2

W

)<
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for any /| # j. Hence

+ pm( 2 )
Jo Zp, (M) — zy, (M))e,
LS b S e
5 ' iy T, (M)])
i=jo+1 m=1
Lyl y
5 2 i(5 2 |&n; (M)])
i=jo+1 m=1
ynz ynJ 1 ]_ ¢
= oS 4 5 Y Ml Y e (m))
i=jo+1 m=1
1 & 1
£330 MG Y fea, ()
i=jo+1 m=1
<0400 2
36 6 3

This contradiction show that (2.7) is correct. Since N € o, there exists 8 € (0, 1)
and a sequence (h;) in R* with "2, M;(h;) < oo such that

u 1—46
M2y < —2
(< =)
hold for every i € N and u satisfying M;(h;) < M;(u) < 1. Using M € 8 again,
there exists 4; > 0 such that

4

lpa(z +y) — pu(z)] < 19k
whenever pp(z) < 1and par(y) < 8. Take ny < ns < ... < ng_1 € N. Notice that

Lp, + Ty + oo +Tpy
k

pam( ) < o0

and ppr(xy,) < ocforl =1,2,..,k — 1. This exists a jo € N such that

o

Z Mz(% ZZ: lxm O+zp, D+ .o+ xpn,_, () ) <6, (2.10)

i=jo+1 =1
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& 1< 5
i=jo+1 I=1 )
> Mi(hy)
=jo+1

By (1) there exists a nx € N such that

L9
12k

i

> MG ) 2 2

i=jo+1 =1 )

W

Hence, by (2.8),(2.9),(2.10) and (2.11), we have

Lp, + Tpy + oo + Ty,

vz, ()

R. Wangkeeree

(2.11)

(2.12)

(2.13)

)

P -

)= YOt
i=1 =1

+ Z Mz(% Z |$n1 (l) + xng(l) + .+ 2, (l)

k

i=jo+1 =1

o6

)
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Since M € 05 and satisfies (x)-condition, by Proposition 2.4(2) there is v €

(0,1) such that
Tp, + Tpy + oo+ Ty,

|| .
Thus Cesy is (k — NUC).

|| <1—~.

Corollary 2.9 If the Musielak-Orlicz function M = (My) satisfies (x) -condition
and M € 65N o5, then

(1) Cesp has the Banach-saks property i.e. Cesyy is reflexive and it has weak
Banach-saks property.

(2) Cespy is NUC.

Since k — NUC = kR = R & Rfx and k — NUC = (NUC) = property (H)
& Rfx, where Rfx denotes for reflexive, by Theorem 2.8, the following results are
obtained.

Corollary 2.10 [3] For 1 < p < o0, the space cesp is k — NUC.
Corollary 2.11 For 1 < p < o0, the space ces, is kR and (NUC).

Corollary 2.12 For 1 < p < oo, the space ces, has the drop property.
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