Thai Journal of Mathematics (2003) 1: 119-130

On Property (k-NUC) in Cesaro-Musielak-Orlicz Sequence Spaces

R. Wangkeeree

Abstract: In this paper we define a generalized Cesaro sequence space Ces_M , where $M=(M_k)$ is a Musielak-Orlicz function, and consider it equipped with the Luxemburg norm. We call this space the Cesaro Musielak-Orlicz sequence space. The main purpose of the paper is to show that if $M \in \delta_2 \cap \delta_2^*$ and satisfies condition (*) then Ces_M is k- nearly uniform convex (k-NUC) for $k \geq 2$.

Keywords: k-nearly uniform convex, Cesaro Musielak-Orlicz sequence space, Luxemburg norm.

2000 Mathematics Subject Classification: 46A45, 46B20,46B46

1 Introduction

The Cesaro sequence space ces_p $(1 were introduced by J.S.Shue [19]. They are useful for theory of matrix operators. Y. A. Cui [3] showed that <math>ces_p$ (1 is <math>k - NUC for any $k \ge 2$.

In this paper, we define a new sequence space, Ces_M , which is a generalization of the space ces_p , by using a Musielak-Orlicz function, and we call the space Ces_M . Cesaro-Musielak-Orlicz sequence space. We show that if $M \in \delta_2 \cap \delta^*$ and M satisfies the condition (*), then Ces_M is k-NUC, so it has Banach-Sake property.

We now introduce the basic notations and defitions. In the following, let \mathbb{R} be the real line and \mathbb{N} the set of natural numbers. Let $(X, \|.\|)$ be a real Banach space, and let B(X) (resp. S(X)) be the closed unit ball (resp. the unit sphere) of X. Clarkson [2] introduced the concept of uniform convexity. The norm $\|.\|$ is called *uniformly convex* (write (**UC**)) if for each $\epsilon > 0$ there is $\delta > 0$ such that for $x, y \in S(X)$ inequality $\|x - y\| > \epsilon$ implies

$$\|\frac{1}{2}(x+y)\| < 1 - \delta$$

For any $x \notin B(X)$, the drop determined by x is the set

$$D(x,B(X))=\operatorname{conv}(\{x\}\cup B(X)).$$

120 R. Wangkeeree

Rolewicz in [17], basing on Danes drop theorem [5], introduced the notion of drop property for Banach spaces.

A Banach space X has the *drop property* (write (**D**)) if for every closed set C disjoint with B(X) there exists an element $x \in C$ such that

$$D(x, B(X)) \cap C = \{x\}.$$

A Banach space X is said to have the Kadac-Klee property (or property (\mathbf{H})) if every weakly convergent sequence on the unit sphere is convergent in norm.

In [18] Rolewicz proved that if the Banach space X has the drop property, then X is reflexive. Montesinos [14] extended this result by showing that X has the drop property if and only if X is reflexive and X has the property (\mathbf{H}).

Recall that a sequence $\{x_n\} \subset X$ is said to be ϵ -separated sequence for some $\epsilon > 0$ if

$$sep(x_n) = \inf\{\|x_n - x_m\| : n \neq m\} > \epsilon.$$

A Banach space X is said to be *nearly uniformly convex* (write (**NUC**)) if for every $\epsilon > 0$ there exists $\delta \in (0,1)$ such that for every sequence $(x_n) \subseteq B(X)$ with $sep(x_n) > \epsilon$, we have

$$conv(x_n) \cap ((1 - \delta)B(X)) \neq \emptyset$$
.

Huff [7] proved that every (NUC) Banach space is reflexive and it has property (H)

Kutzarova [9] has defined k-nearly uniformly convex Banach spaces. Let $k \geq 2$ be an integer . A Banach space X is said to be k-nearly uniformly convex (write k-NUC) if for any $\epsilon > 0$ there exists $\delta > 0$ such that for any sequence $(x_n) \subset B(X)$ with $sep(x_n) \geq \epsilon$ there are $n_1, n_2, ..., n_k \in \mathbb{N}$ such that

$$\left\| \frac{x_{n_1} + x_{n_2} + x_{n_3} + \dots + x_{n_k}}{k} \right\| < 1 - \delta.$$

Clearly k - NUC Banach spaces are NUC but the opposite implication does not hold in general (see [9]).

Fan and Glicksberg [6] have introduced fully k-convex Banach spaces. A Banach spaces X is said to be $fully\ k-rotund$ (write kR) if for every sequence $(x_n) \subset B(X), \quad ||x_{n_1}+x_{n_2}+...+x_{n_k}|| \to k \quad \text{as} \ n_1,n_2,...,n_k \to \infty$ implies that (x_n) is convergent.

It is well known that $UC \Rightarrow kR \Rightarrow (k+1)R$, and kR spaces are reflexive and rotund, and it is easy to see that $k-NUC \Rightarrow kR$.

Let X be a real vector space. A functional $\varrho: X \to [0, \infty]$ is called a modular if it satisfies the conditions

- (i) $\rho(x) = 0$ if and only if x = 0:
- (ii) $\varrho(\alpha x) = \varrho(x)$ for all scalar α with $|\alpha| = 1$;
- (iii) $\varrho(\alpha x + \beta y) \le \varrho(x) + \varrho(y)$, for all $x, y \in X$ and all $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$. The modular ϱ is called *convex* if

(iv) $\varrho(\alpha x + \beta y) \le \alpha \varrho(x) + \beta \varrho(y)$, for all $x, y \in X$ and all $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$. If ρ is a modular in X, we define

$$X_{\varrho} = \{x \in X : \lim_{\lambda \to 0^+} \varrho(\lambda x) = 0 \}$$

and
$$X_{\rho}^* = \{x \in X : \varrho(\lambda x) < \infty \text{ for some } \lambda > 0 \}.$$

It is clear that $X_{\varrho} \subseteq X_{\varrho}^*$. If ϱ is a convex modular, for $x \in X_{\varrho}$ we define

$$||x|| = \inf\{\lambda > 0: \ \varrho\left(\frac{x}{\lambda}\right) \le 1 \ \} \tag{1.1}$$

It is known that if ϱ is a convex modular on X, then $X_{\varrho} = X_{\varrho}^*$ and $\|.\|$ is a norm on X_{ϱ} for which it is a Banach space. The norm $\|.\|$ defined as in (1.1) is called

The following known results gave some relationships between the modular ρ and the Luxemburg norm $\|.\|$ on X_{ϱ} .

Theorem 1.1 Let ϱ be a convex modular on X and let $x \in X_{\varrho}$ and (x_n) a sequence in X_{ϱ} . Then $||x_n - x|| \to 0$ as $n \to \infty$ if and only if $\varrho(\lambda(x_n - x)) \to 0$ as $n \to \infty$ for every $\lambda > 0$.

Let l^0 be the space of all real sequences. For $1 \le p < \infty$, the Cesaro sequence space $(ces_p$, for short) is defined by $ces_p = \{x \in l^0: \sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^n |x(i)|)^p < \infty \}$ equipped with the norm

$$ces_p = \{x \in l^0 : \sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^n |x(i)|)^p < \infty\}$$

$$||x|| = (\sum_{n=1}^{\infty} (\frac{1}{n} \sum_{i=1}^{n} |x(i)|)^p)^{\frac{1}{p}}$$

This space was introduced by Shue [19]. It is useful in the theory of Matrix operator and others (see [10] and [11]). Some geometric properties of the Cesaro sequence space ces_n were studied by many authors.

A map $\phi: \mathbb{R} \to [0, \infty]$ is said to be an *Orlicz function* if ϕ vanishes only at 0, and ϕ is even and convex.

A sequence $M = (M_k)$ of Orlicz functions is called a Musielak-Orlicz function. In addition, a Musielak-Orlicz function $N = (N_k)$ is called a complementary function of a Musielak-Orlicz function M if

$$N_k(v) = \sup\{|v|u - M_k(u) : u \ge 0\}, \quad k = 1, 2, \dots$$

For a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space l_M and its subspace h_M are defined as follows:

$$l_M := \{ x \in l^0 : I_M(cx) < \infty \text{ for some } c > 0 \},$$

$$h_M := \{ x \in \ell^0 : I_M(cx) < \infty \text{ for all } c > 0 \}.$$

where I_M is a convex modular defined by

$$I_M(x) = \sum_{k=1}^{\infty} M_k(x(k)), \quad x = (x(k)) \in l_M.$$

We consider ℓ_M equipped with the Luxemburg norm

$$||x|| = \inf\{k > 0 : I_M(\frac{x}{k}) \le 1\}$$

or equipped with the Orlicz norm

$$||x||^0 = \inf\{\frac{1}{k}(1 + I_M(kx)) : k > 0\}.$$

To simplify notation, we put $l_M := (l_M, ||.||)$ and $l_M^0 := (l_M, ||.||^0)$. Both of them are Banach spaces (see [1] and [16]).

Let $M = (M_k)$ be the Musielak-Orlicz function. The Cesàro-Musielak-Orlicz sequence space is defined by

$$Ces_M := \{x \in l^0 : \rho_M(cx) < \infty \text{ for some } c > 0\},$$

where ρ_M is a convex modular defined by $\rho_M(x) = \sum_{k=1}^{\infty} M_k(\frac{1}{k} \sum_{i=1}^k |x(i)|)$. We consider Ces_M equipped with the Luxemburg norm

$$||x|| = \inf\{\lambda > 0 : \rho_M(\frac{x}{\lambda}) \le 1\}$$

under with it is a Banach space. We define the subspace $SCes_M$ of Ces_M by

$$SCes_M := \{x \in l^0 : \rho_M(cx) < \infty \text{ for all } c > 0\}.$$

We say that a Musielak-Orlicz function M satisfies the δ_2 -condition (we will write $M \in \delta_2$ for short) if there exist constants $K \geq 2, u_0 > 0$ and a sequence (c_k) of positive numbers such that $\sum_{k=1}^{\infty} c_k < \infty$ and the inequality

$$M_k(2u) \le KM_k(u) + c_k$$

hold for every $k \in \mathbb{N}$ and $u \in \mathbb{R}$ satisfying $M_k(u) \leq u_0$.

If $M \in \delta_2$ and $N \in \delta_2$, then we write $M \in \delta_2 \cap \delta_2^*$. It is known that $\ell_M = h_M$ if and only if $M \in \delta_2$ (see [16]). Moreover, we say that a Musielak-Orlicz function M satisfies the (*)-condition if for any $\epsilon \in (0,1)$, there exists $\delta > 0$ such that $M_k((1+\delta)u) \leq 1$ whenever $M_k(u) \leq 1 - \epsilon$ for all $k \in \mathbb{N}$ and $u \in \mathbb{R}$.

2 Main Results

We start with a basic property of ρ_M .

Proposition 2.1For any $x \in Ces_M$, we have

- (1) if $||x|| \le 1$, then $\rho_M(x) \le ||x||$, and
- (2) if ||x|| > 1, then $\rho_M(x) \ge ||x||$.

Proof. (1) If x = 0, then the inequality holds. Let $x \neq 0$. By the definition of $\|.\|$, there is a sequence (ϵ_n) such that $\epsilon_n \downarrow \|x\|$ such that $\rho_M(\frac{x}{\epsilon_n}) \leq 1$. This implies $\rho_M(\frac{x}{\|x\|}) \leq 1$. Since ρ_M is convex, we have $\rho_M(x) \leq \|x\|\rho_M(\frac{x}{\|x\|}) \leq \|x\|$.

(2) Let ||x|| > 1. Then for $\epsilon \in (0, \frac{||x||-1}{||x||})$, we have $(1-\epsilon)||x|| > 1$. By convexity of ρ_M , we have $1 < \rho_M(\frac{x}{(1-\epsilon)||x||}) \le \frac{\rho_M(x)}{(1-\epsilon)||x||}$, so that $(1-\epsilon)||x|| < \rho_M(x)$. By taking $\epsilon \to 0$, we have $\rho_M(x) \ge ||x||$.

The following result is directly obtained from Proposition 2.1(1).

Corollary 2.2 If (x_n) is a sequence in Ces_M such that $x_n \to 0$ as $n \to \infty$, then $\rho_M(x_n) \to 0$ as $n \to \infty$.

Proposition 2.3 If a Musielak-Orlicz function $M = (M_k) \in \delta_2$, then $SCes_M = Ces_M$.

Proof. If $x \in Ces_M$, then the sequence a = (a(k)), defined by $a(k) = \frac{1}{k} \sum_{i=1}^k |x(i)|$ for all $k \in \mathbb{N}$, is in ℓ_M . By $M \in \delta_2$ we have that $\ell_M = h_M$. This implies that $\rho_M(\lambda x) = I_M(\lambda a) < \infty \ \forall \lambda > 0$, hence $x \in SCes_M$.

Proposition 2.4 If the Musielak-Orlicz function $M = (M_k) \in \delta_2$, then

- (1) $||x|| = 1 \Leftrightarrow \rho_M(x) = 1$,
- (2) for every $\epsilon > 0$, there exists a $\delta > 0$ such that $||x|| < 1 \delta$ whenever $\rho_M(x) < 1 \epsilon$.

Proof. (1) Assume that $\rho_M(x) = 1$. By definition of $\|.\|$, we have that $\|x\| \le 1$. If $\|x\| < 1$, then we have by Proposition 2.1(1) that $\rho_M(x) \le \|x\| < 1$, which contradicts our assumption. Therefore $\|x\| = 1$.

Conversely, assume that ||x|| = 1. By Proposition 2.1(1), $\rho_M(x) \le 1$. Suppose that $\rho_M(x) < 1$. By Proposition 2.3, we have $\rho_M(cx) < \infty$ for all c > 1. Since the function $t \mapsto \rho_M(tx)$ is continuous, there exists c > 1 such that $\rho_M(cx) = 1$. By using the same proof as in the first part, we have that ||cx|| = 1, so c = 1, which is a contradiction.

(2) Suppose that (2) is not true. Then there exists a $\epsilon_0 > 0$ and $x_n \in Ces_M$ such that $\rho_M(x_n) < 1 - \epsilon_0$ and $\frac{1}{2} \le ||x_n||$ and $||x_n|| \to 1$. Let $L = \sup_n \{\rho_M(2x_n)\}$. Then $L < \infty$ since $M \in \delta_2$. Let $a_n = \frac{1}{||x_n||} - 1$, we have $a_n \le 1$ and $a_n \to 0$. Then

$$\begin{split} 1 &= \rho_M(\frac{x_n}{||x_n||}) \\ &= \rho_M(2a_nx_n + (1-a_n)x_n) \\ &\leq a_n\rho_M(2x_n) + (1-a_n)\rho_M(x_n) \\ &\leq a_nL + (1-\epsilon_0). \end{split}$$

This implies $1 \leq \lim_{n \to \infty} (a_n L + (1 - \epsilon_0)) = 1 - \epsilon_0$, which is a contradiction. Hence (2) is satisfied.

Proposition 2.5 If the Musielak-Orlicz function $M = (M_k)$ satisfies condition (*) and $M \in \delta_2$, then

(1) for every $\epsilon > 0$ and c > 0, there exists a $\delta > 0$ such that for any $x, y \in Ces_M$, we have

$$|\rho_M(x+y) - \rho_M(x)| < \epsilon$$

whenever $\rho_M(x) \leq c$ and $\rho_M(y) \leq \delta$ and

(2) for every $\epsilon > 0$, there exists $\delta > 0$ such that $||x|| > 1 + \delta$ whenever $\rho_M(x) > 1 + \epsilon$.

Proof. (1) Let $\epsilon > 0$ and c > 0. By [4, Lemma 8], there exists a $\delta > 0$ such that for any $a, b \in l_M$, we have

$$|I_M(a+b) - I_M(a)| < \epsilon \tag{2.1}$$

whenever $I_M(a) \leq c$ and $I_M(b) \leq \delta$. For each $i \in \mathbb{N}$, let

$$s(i) = \begin{cases} \operatorname{sgn}(x(i) + y(i)) & \text{if } x(i) + y(i) \neq 0, \\ 1 & \text{if } x(i) + y(i) \neq 0. \end{cases}$$

Then we have

$$\rho_M(x+y) = \sum_{k=1}^{\infty} M_k(\frac{1}{k} \sum_{i=1}^k |x(i) + y(i)|)$$

$$= \sum_{k=1}^{\infty} M_k(\frac{1}{k} \sum_{i=1}^k s(i)x(i) + \frac{1}{k} \sum_{i=1}^k s(i)y(i)). \tag{2.2}$$

Let $a(k) = \frac{1}{k} \sum_{i=1}^k s(i) x(i)$ and $b(k) = \frac{1}{k} \sum_{i=1}^k s(i) y(i)$ for all $k \in \mathbb{N}$. Then $a = (a(k)) \in l_M$ and $b = (b(k)) \in l_M$, and from (2.2), we have

$$\rho_M(x+y) = I_M(a+b), I_M(a) \le \rho_M(x) \text{ and } I_M(b) \le \rho_M(y).$$

Let $x, y \in Ces_M$ be such that $\rho_M(x) \leq c$ and $\rho_M(y) \leq \delta$. Then $I_M(a) \leq c$ and $I_M(b) \leq \delta$. By (2.1), we have $\rho_M(x+y) - \rho_M(x) \leq I_M(a+b) - I_M(a) < \epsilon$, that is

$$\rho_M(x+y) < \rho_M(x) + \epsilon. \tag{2.3}$$

Next, we shall show that

$$\rho_M(x) < \rho_M(x+y) + \epsilon. \tag{2.4}$$

For each $i \in \mathbb{N}$, let

$$s(i) = egin{cases} sgn(x(i)) & & ext{if} & x(i)
eq 0, \ 1 & & ext{if} & x(i) = 0. \end{cases}$$

Then

$$\begin{split} \rho_M(x) &= \rho_M((x+y) + (-y)) \\ &= \sum_{k=1}^\infty M_k \left(\frac{1}{k} \sum_{i=1}^k |(x(i) + y(i)) + (-y(i))| \right) \\ &= \sum_{k=1}^\infty M_k \left(\frac{1}{k} \sum_{i=1}^k s(i)(x(i) + y(i)) + \frac{1}{k} \sum_{i=1}^k s(i)(-y(i)) \right). \end{split}$$

Let $a(k)=\frac{1}{k}\sum_{i=1}^k s(i)(x(i)+y(i))$ and $b(k)=\frac{1}{k}\sum_{i=1}^k s(i)(-y(i))$ for all $k\in\mathbb{N}$. It is clear that $a=(a(k))\in l_M$ and $b=(b(k))\in l_M$, and $\rho_M(x)=I_M(a+b),I_M(a)\leq \rho_M(x+y)$ and $I_M(b)\leq \rho_M(y)$. Hence we have $I_M(a+b)\leq c$ and $I_M(-b)\leq \delta$. By (2.3), we have

$$|I_M(a+b) - I_M(a)| = |I_M(a) - I_M(a+b)|$$
(2.5)

$$= |I_M((a+b) + (-b)) - I_M(a+b)| < \epsilon.$$
 (2.6)

This implies that $\rho_M(x) - \rho_M(x+y) \leq I_M(a+b) - I_M(a) < \epsilon$, hence $\rho_M(x) < \rho_M(x+y) + \epsilon$, so (2.4) holds. Therefore (1) is obtained by (2.3) and (2.4).

(2) Let $\epsilon > 0$ be given. By (1), there exists $\delta \in (0,1)$ such that

$$\rho_M(u) \le 1, \rho_M(v) \le \delta \Rightarrow \rho_M(u+v) \le \rho_M(u) + \epsilon.$$
(2.7)

If $||x|| \leq 1 + \delta$, then $\rho_M(\frac{x}{1+\delta}) \leq 1$ and $\rho_M(\frac{\delta x}{1+\delta}) \leq \delta \rho_M(\frac{x}{1+\delta}) \leq \delta$. By (2.5), we have $\rho_M(x) = \rho_M(\frac{x}{1+\delta} + \frac{\delta x}{1+\delta}) \leq \rho_M(\frac{x}{1+\delta}) + \epsilon \leq 1 + \epsilon$. Hence (2) is satisfied. \square

Proposition 2.6 If the Musielak-Orlicz function $M=(M_k)$ satisfies condition (*) and $M \in \delta_2$, then for any sequence $(x_n) \subset Ces_M$, $||x_n|| \to 1$ implies $\rho_M(x_n) \to 1$.

Proof. Suppose that $\rho_M(x_n) \not\to 1$ as $n \to \infty$. We may assume that there exits $\epsilon_0 > 0$ such that $|\rho_M(x_n) - 1| > \epsilon_0$ for all $n \in \mathbb{N}$. If $\rho_M(x_n) - 1 > \epsilon_0$, then $\rho_M(x_n) > 1 + \epsilon_0$, by Proposition 2.5(2), there exists $\delta > 0$ such that $||x_n|| > 1 + \delta$. If $\rho_M(x_n) - 1 < -\epsilon_0$, then $\rho_M(x_n) < 1 - \epsilon_0$, by Proposition 2.4(2), there exists a $\delta' > 0$ such that $||x_n|| < 1 - \delta'$. These imply that $||x_n|| \not\to 1$ as $n \to \infty$.

Proposition 2.7In Cesàro-Musielak-Orlicz sequence space. If a Musielak-Orlicz function $M = (M_k)$ satisfies condition (*) and $M \in \delta_2$, then the norm convergence and modular convergence coincide.

Proof. From Corollary 2.2 and because $M \in \delta_2$, it suffices to prove that modular convergence implies norm convergence. To do this, let $\epsilon \in (0, \frac{1}{2})$, choose a positive integer K such that $\frac{1}{2K+1} < \epsilon \le \frac{1}{2K}$. By Proposition 2.5(1), there exists a $\delta \in (0, \frac{1}{2K+1})$ such that

$$\rho_M(u) \le 1, \rho_M(v) \le \delta \Rightarrow \rho_M(u+v) < \rho_M(u) + \epsilon. \tag{2.8}$$

If $\rho_M(x) < \delta$, by application of (2.6), we have $\rho_M(nx) < \rho_M(x) + n\epsilon$, for $n = 1, ..., 2^{K-1}$. In particular, $\rho_M(\frac{x}{4\epsilon}) \le \rho_M(2^{K-1}x) < \rho_M(x) + 2^{K-1}\epsilon < \frac{1}{2} + \frac{1}{2} = 1$. This implies $||x|| < 4\epsilon$.

Theorem 2.8 If the Musielak-Orlicz function $M = (M_i)$ satisfies (*) -condition and $M \in \delta_2 \cap \delta_2^*$, then Ces_M is k - NUC.

Proof. Let $\epsilon > 0$ be given and sequence $(x_n) \subseteq B(Ces_M)$ with $sep\{(x_n)\} > \epsilon$., By $M \in \delta_2$ there exists a $\delta > 0$ such that

$$\inf\{\rho_M(\frac{x_n-x_m}{2}): n\neq m\} \ge \delta$$

.Next, we will show that for any $j \in \mathbb{N}$ there exists $n_j \in \mathbb{N}$ such that

$$\sum_{i=i}^{\infty} M_i(\frac{1}{i} \sum_{l=1}^{i} |x_{n_j}(l)|) \ge \frac{\delta}{3}$$
 (2.9)

otherwise, there exists a $j_0 \in \mathbb{N}$ such that

$$\sum_{i=i_0}^{\infty} M_i(\frac{1}{i} \sum_{l=1}^{i} |x_{n_j}(l)|) < \frac{\delta}{3}$$

for any $j \in \mathbb{N}$. Put $y_n = (x_n(1), x_n(2), ..., x_n(j_0), 0, 0, ...)$ for $n \in \mathbb{N}$. Then there exists a subsequence $(y_{n_l}) \subset (y_n)$ such that

$$\rho_M(\frac{y_{n_l} - y_{n_j}}{2}) < \frac{\delta}{3}$$

for any $l \neq j$. Hence

$$\begin{split} \rho_{M}(\frac{x_{n_{l}}-x_{n_{j}}}{2}) &= \rho_{M}(\frac{\sum_{m=1}^{j_{0}}(x_{n_{l}}(m)-x_{n_{j}}(m))e_{m}}{2}) \\ &+ \rho_{M}(\frac{\sum_{m=j_{0}+1}^{j_{0}}(x_{n_{l}}(m)-x_{n_{j}}(m))e_{m}}{2}) \\ &\leq \rho_{M}(\frac{\sum_{m=1}^{j_{0}}(x_{n_{l}}(m)-x_{n_{j}}(m))e_{m}}{2}) \\ &+ \frac{1}{2}\sum_{i=j_{0}+1}^{\infty}M_{i}(\frac{1}{i}\sum_{m=1}^{i}|x_{n_{l}}(m)|) \\ &+ \frac{1}{2}\sum_{i=j_{0}+1}^{\infty}M_{i}(\frac{1}{i}\sum_{m=1}^{i}|x_{n_{j}}(m)|) \\ &= \rho_{M}(\frac{y_{n_{l}}-y_{n_{j}}}{2}) + \frac{1}{2}\sum_{i=j_{0}+1}^{\infty}M_{i}(\frac{1}{i}\sum_{m=1}^{i}|x_{n_{l}}(m)|) \\ &+ \frac{1}{2}\sum_{i=j_{0}+1}^{\infty}M_{i}(\frac{1}{i}\sum_{m=1}^{k}|x_{n_{j}}(m)|) \\ &< \frac{\delta}{3} + \frac{\delta}{6} + \frac{\delta}{6} = \frac{2\delta}{3} < \delta. \end{split}$$

This contradiction show that (2.7) is correct. Since $N \in \delta_2$, there exists $\theta \in (0,1)$ and a sequence (h_i) in \mathbb{R}^+ with $\sum_{i=1}^{\infty} M_i(h_i) < \infty$ such that

$$M_i(\frac{u}{k}) \le \frac{1-\theta}{k} M_i(u)$$

hold for every $i \in \mathbb{N}$ and u satisfying $M_i(h_i) \leq M_i(u) \leq 1$. Using $M \in \delta_2$ again, there exists $\delta_1 > 0$ such that

$$|\rho_M(x+y) - \rho_M(x)| < \frac{\theta \delta}{12k}$$

whenever $\rho_M(x) \leq 1$ and $\rho_M(y) < \delta_1$. Take $n_1 < n_2 < ... < n_{k-1} \in \mathbb{N}$. Notice that

$$\rho_M(\frac{x_{n_1} + x_{n_2} + \dots + x_{n_{k-1}}}{k}) < \infty$$

and $\rho_M(x_{n_l}) < \infty$ for l = 1, 2, ..., k - 1. This exists a $j_0 \in \mathbb{N}$ such that

$$\sum_{i=j_0+1}^{\infty} M_i(\frac{1}{i} \sum_{l=1}^{i} |\frac{x_{n_1}(l) + x_{n_2}(l) + \dots + x_{n_{k-1}}(l)}{k}|) < \delta_1, \tag{2.10}$$

128 R. Wangkeeree

$$\sum_{i=j_{n}+1}^{\infty} M_{i}(\frac{1}{i} \sum_{l=1}^{i} |x_{n_{j}}(l)|) < \frac{\delta}{3}, (j=1,2,..,k-1)$$
(2.11)

$$\sum_{i=j_0+1}^{\infty} M_i(h_i) < \frac{\delta\theta}{12k}.$$
(2.12)

By (1) there exists a $n_k \in \mathbb{N}$ such that

$$\sum_{i=j_0+1}^{\infty} M_i(\frac{1}{i} \sum_{l=1}^{i} |x_{n_k}(l)|) \ge \frac{\delta}{3}.$$
 (2.13)

Hence, by (2.8),(2.9),(2.10) and (2.11), we have

$$\begin{split} \rho_{M}(\frac{x_{n_{1}}+x_{n_{2}}+\ldots+x_{n_{k}}}{k}) &= \sum_{i=1}^{j_{0}} M_{i}(\frac{1}{i}\sum_{l=1}^{i}|\frac{x_{n_{1}}(l)+x_{n_{2}}(l)+\ldots+x_{n_{k}}(l)}{k}|) \\ &+ \sum_{i=j_{0}+1}^{\infty} M_{i}(\frac{1}{i}\sum_{l=1}^{i}|\frac{x_{n_{1}}(l)+x_{n_{2}}(l)+\ldots+x_{n_{k}}(l)}{k}|) \\ &\leq \frac{1}{k}\sum_{j=1}^{k}\sum_{i=1}^{j_{0}} M_{i}(\frac{1}{i}\sum_{l=1}^{i}|x_{n_{j}}(l)|) \\ &\sum_{k=1}^{\infty} \sum_{i=1}^{k} \sum_{l=1}^{j_{0}} M_{i}(\frac{1}{i}\sum_{l=1}^{i}|x_{n_{j}}(l)|) &\delta\theta \end{split}$$

$$\begin{aligned}
& + \sum_{i=j_0+1}^{\infty} M_i (\frac{1}{i} \sum_{l=1}^{i} \left| \frac{x_{n_k}(l)}{k} \right|) + \frac{\delta \theta}{12k} \\
& \leq \frac{1}{k} \sum_{j=1}^{k} \sum_{i=1}^{j_0} M_i (\frac{1}{i} \sum_{l=1}^{i} \left| x_{n_j}(l) \right|) \\
& + \frac{1-\theta}{k} \sum_{i=j_0+1}^{\infty} M_i (\frac{1}{i} \sum_{l=1}^{i} \left| x_{n_k}(l) \right|) \\
& + \sum_{i=j_0+1}^{\infty} M_i(h_i) + \frac{\delta \theta}{12k} \\
& \leq \frac{1}{k} \sum_{j=1}^{k} \sum_{i=1}^{\infty} M_i (\frac{1}{i} \sum_{l=1}^{i} \left| x_{n_j}(l) \right|) \\
& - \frac{\theta}{k} \sum_{i=j_0+1}^{\infty} M_i (\frac{1}{i} \sum_{l=1}^{i} \left| x_{n_k}(l) \right|) + \frac{\delta \theta}{6k} \\
& \leq 1 - \frac{\delta \theta}{3k} + \frac{\delta \theta}{6k} = 1 - \frac{\delta \theta}{6k}.
\end{aligned}$$

Since $M \in \delta_2$ and satisfies (*)-condition, by Proposition 2.4(2) there is $\gamma \in (0,1)$ such that

$$\|\frac{x_{n_1} + x_{n_2} + \ldots + x_{n_k}}{k}\| < 1 - \gamma.$$

Thus Ces_M is (k - NUC).

Corollary 2.9 If the Musielak-Orlicz function $M = (M_k)$ satisfies (*) -condition and $M \in \delta_2 \cap \delta_2^*$, then

- (1) Ces_M has the Banach-saks property i.e. Ces_M is reflexive and it has weak Banach-saks property.
- (2) Ces_M is NUC.

Since $k - NUC \Rightarrow kR \Rightarrow R$ & Rfx and $k - NUC \Rightarrow (NUC) \Rightarrow$ property (H) & Rfx, where Rfx denotes for reflexive, by Theorem 2.8, the following results are obtained.

Corollary 2.10 [3] For $1 , the space <math>ces_p$ is k - NUC.

Corollary 2.11 For $1 , the space <math>ces_v$ is kR and (NUC).

Corollary 2.12 For $1 , the space <math>ces_p$ has the drop property.

Acknowledgements

The author would like to express my gratitude to my advisor, Assoc. Prof. Dr. Suthep suantai, for all his guidance and encouragement.

References

- [1] S.T. Chen, Geometry of Orlicz spaces, Dissertationes Math. 356, 1996.
- [2] J.A.Clarkson, Uniformly convex spaces, Trans. Amer. Math. 40(1936), 396-414.
- [3] Y. A. Cui, Handbook of metric Fixed Point Theory, Kluwer Academic Publishers, 2001.
- [4] Y. A. Cui On some geometric properties in Musielak-Orlicz sequence spaces, Lecture note in pure and applied Mathematics, Marcel Dekker, Inc., New York and Basel 213, 2000.
- [5] J. Danes, A geometric theorem useful in non-linear functional analysis, *Bull. Un. Math. Ital.* 6 (1972), 369-372.
- [6] K. Fan and I. Glicksburg, Fully convex normed linear spaces, *Proc. Nat. Acad. Sci. USA*, **41**(1955), 947-953.
- [7] R. Huff, Banach spaces which are nearly uniformly convex, *Rocky Mountain J. Math.* **10**(1985), 473-749.

130 R. Wangkeeree

[8] A.Kamińska, Uniform convexity of Musielak-Orlicz sequence spaces, Approx. Theory 47(1986), 302-322.

- [9] D. Kutzarova , k- β and k-nearly uniformly convex Banach spaces, J. Math. Anal. Appl. **162**(1991), 322-338.
- [10] P.Y.Lee, Cesaro sequence spaces, Math. Chronicle, New Zealand 13(1984), 29-45.
- [11] R.A. Lovaglia, Locally uniformly convex Banach spees, *Tran. Amer. Math. Soc.* **78**(1955), 225-238.
- [12] Y.Q. Lui, B.E. Wu and P.Y. Lee, Method of sequence spaces, Guangdong of Science and Technology Press(in Chinese), 1996.
- [13] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989.
- [14] V. Montesinos, Drop property equals reflexivity, Studia Math. 87(1987), 93-100.
- [15] R. E. Megginson, Introduction to Banach space Theory, Springer-Verlag, 1998.
- [16] J. Musielak, Orlicz spaces and modular spaces, Lecture Note in Mathematics, 1034, 1983.
- [17] S. Rolewicz, On drop property, Studia Math. 85(1987), 181-191.
- [18] S. Rolewicz, On Δ -uniform convexity and drop property , $Studia\ Math.\ 87(1987),\,619-624.$
- [19] J.S. Shue, Cesaro sequence spaces, Tamkang J.Math 1 (1970), 143-150.

(Received 3 July 2003)

Rabian Wangkeeree Department of Mathematics, Naresuan University, Thailand. Email: Rabianw@nu.ac.th rwangkeeree@yahoo.com