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Abstract In the last few years, the recurrence relations of classical orthogonal polynomials are useful

in the studying of chain sequences and some properties of Mass-Spring system. In this work, we discuss

chain sequences of Laguerre and Romanovski-Laguerre type finite class of classical orthogonal polynomials

(COPs). We also introduce the application of chain sequences for discussing some properties of Mass-

Spring system.
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1. Introduction

The theory of classical orthogonal polynomials plays important role in the discussing
of continued fractions associated with moments problems and chain sequences using the
three term recurrence relations. These continued fractions and chain sequences are very
useful in further study of many important properties of classical orthogonal polynomials
(COPs). The classification of the birth-death process is also discussed with the help
of chain sequences [1–11]. The orthogonal polynomials are also useful in observing of
asymptotical behaviour and some operators which are given in [12, 13].
We consider the three-terms recurrence relations for classical orthogonal polynomials{

φn+1(x) = (Anx+Bn)φn(x)− Cnφn−1(x), n ≥ 1, and
φ0(x) = 1, φ1(x) = A0x+B0,

(1.1)

where A0 6= 0 and AnCn 6= 0 for n ≥ 1. Define Pn(x) = φn(x)/(A0A1A2 . . . An−1).
Hence (1.1) becomes a sequences of monic polynomials {Pn(x)}∞n=0 satisfying three-terms
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recurrence relations,{
Pn(x) = (x− cn)Pn−1(x)− λnPn−2(x), n > 1, and
P0(x) = 1, P1(x) = x− c1

(1.2)

where the coefficients are real [3, 4, 14–16].
It is well known that when λn > 0 for all n > 1, the zeros of Pn(x) are real, distinct and
between each pair of consecutive zeros of Pn+1(x) there is precisely one zeros of Pn(x).
Moreover, there exits a positive Borel measure ψ on R such that,∫ b

a

Pn(x)Pm(x)ψ(dx) = knδnm (1.3)

with kn > 0. When λn > 0 for all n > 1 we shell refer to {Pn(x)} as an orthogonal
polynomials sequence (OPS).
In general, λn 6= 0 for all n > 1, we shell refer to Pn(x) as a generalized orthogonal poly-
nomials sequence (GOPS). We can be said in general about the polynomials of a GOPS
but for the existence of a finite signed Borel measure ψ on R such that (1.3) holds with
kn 6= 0. However, as shown in [7, 17], there exits a class of GOPSs which, in general, are
not OPSs but have properties resembling those of OPSs as far as zeros are concerned.
This class is denoted by ℘ and defined as follows.

Definition 1.1. Let {Pn(x)} be a GOPS satisfying (1.2). Then {Pn(x)} ∈ ℘ if cn 6= 0
for all n > 1 and the sequences {αn}∞n=1 defined by

αn ≡
λn+1

cncn+1
(1.4)

constitutes a chain sequences. That is, there exits a parameter sequence {gn}∞n=0 of
{αn}∞n=1 satisfying 0 ≤ g0 < 1 and 0 < gn < 1, n ≥ 1, such that αn = gn(1−gn−1), n ≥ 1
and the continued fraction expansion

1

1 −
(1− g0)g1x

1 −
(1− g1)g2x

1 −
(1− g2)g3x

1 − . . . ., (1.5)

is also called g-fraction or g-sequence [4, 11, 18–20].

The elements of a GOPS in ℘ will be called chain sequences polynomials. Of course, if
cn > 0 for all n ≥ 1 or cn < 0 for all n ≥ 1, hence λn > 0 for all n > 1, then {Pn(x)} ∈ ℘
constitute an OPS and we are on familiar grounds. And hence the λn, differ in sign. The
following was proved in [7, 17].
Chihara [4] has shown that their true interval of orthogonality lies in (0,∞) if, and only
if, there exits a real sequences {δn} such that,{

δ1 = 0, δn > 0 for n > 1
δ2nδ2n+1 = λn+1 and δ2n + δ2n−1 = cn for n ≥ 1.

(1.6)

According to Law [21], some recurrence polynomials families emerge naturally in the
analysis of certain physical systems, such as the chain of harmonic oscillators represented
in Figure 1.

In the absence of externally applied forces, the equations of motion are as follows,{
m0ẍ0 = −(k0 + k1)x0 + k1x1,
mnẍn = knxn−1 − (kn + kn+1)xn + kn+1xn+1, n ≥ 1,

(1.7)



Note on Chain Sequences of Laguerre and Romanovski-Laguerre Type Polynomials 1305

Figure 1. A half-infinite frictionless chain of spring and mass with near-
est neighbor coupling.

where the masses mn and spring constants kn satisfy

k0 > 0,
kn > 0 for n ≥ 1,
mn > 0 for n ≥ 0.

(1.8)

Solutions of the equations (1.7) can be expressed in a closed form (1.8) using the secular
polynomials associated with the system.

Further, if any polynomials system (1.1) are changed into the form (1.2), then they are
secular polynomials associated with some spring-mass system (1.7) if, and only if, there
exist sequences {kn} and {mn}, satisfying (1.8), such that,

cn+1 = − (kn + kn+1)

mn
, n ≥ 0,

λn+1 =
k2n

mnmn−1
, n ≥ 1.

(1.9)

Note that here orthogonality is understood that orthogonality with respect to a distribu-
tion having an infinite spectrum [4] and the true interval of orthogonality of an orthogonal
polynomial family {Pn(x)} means, as usual [4], the smallest interval which contains all
zeros of all Pn(x).
To find the relation between (1.6) and (1.8) with (1.9), the following procedure is devised

(1) Let k0 = 0 and let m0 be an arbitrary positive constant.
(2) For i ≥ 1, let ki = δ2imi−1, then mi = ki/kδ2i+1

. Then (1.8) is surely satisfied.
Furthermore,

(3) if n ≥ 1, then
kn−1 + kn
mn−1

= δ2n−1 + δ2n = −cn and
k2n

mnmn−1
= λn+1 and hence

(1.9) are satisfied by {kn} and {mn}.
For the converse, assume that {kn} and {mn} satisfy (1.8) and assume the conditions
(1.9) holds for the coefficients cn+1 and λn+1 of (1.2). Then for k0 equal to zero or not,
simply define the {δn} by δ1 = 0 and for i ≥ 1, let δ2i = ki/mi−1 and δ2i+1 = ki/mi.
Hence, for n ≥ 1, δ2nδ2n+1 = λn+1 and this leads to the theorem.

Theorem 1.2. [21] Let the polynomials pn(x) satisfy a recurrence relation (1.2) in which
λn+1 for n ≥ 1. Then their true interval of orthogonality lies in (0,∞) if, and only if,
there exits a spring-mass system {kn} and {mn}, satisfying (1.8), for which (1.9) holds.



1306 Thai J. Math. Vol. 20 (2022) /P. Malik and N. Rao

Lemma 1.3. [22] The continued fraction

l(x) =
1

1 +
(1− r1)r2x

1 +
(1− r2)r3x

1 + . . .

(1.10)

where rn ∈ [0, 1], n = 1, 2, . . . with ri = αi+1, i ≥ 1, converges uniformly for x ∈ [0,∞)
and satisfies

0 ≤ l(x) < 1. (1.11)

In next two sections, we find the chain sequences of Laguerre and Romanovski-Laguerre
finite class of classical orthogonal polynomials (COPs) and introduce the application
of chain sequences for Laguerre and Romanovski-Laguerre finite class of COPs which
are shown in theorem [2.3] and [3.3] respectively. We also investigate some sequences
for both Laguerre and Romanovski-Laguerre finite class of COPs which are satisfying
the conditions of the mass-spring system. In last theorem [3.5], the bound of zeros for
Romanovski-Laguerre finite class of COPs are also introduced.

2. Laguerre Polynomials

First, we consider well-known generalized Laguerre polynomials related to probability
density function w1(x) = xαe−x;α > −1 of Gamma distribution [23] and their orthogo-
nality interval is infinite [0,∞) [3, 4, 9, 15], now the three-terms recurrence relations for
monic generalized Laguerre polynomials [4, 9], that is (1.2) becomes in this form,

Pn(x) = (x− (2n+ α− 1))Pn−1 − (n− 1)(n− 1 + α)Pn−2(x), n > 1,
P0(x) = 1 and P1(x) = x− (1 + α).

(2.1)

Theorem 2.1. A sequences αn =

{
n

(α+ 2n+ 1)

(
1− n− 1

(α+ 2n− 1)

)}∞
n=1

is called a

chain sequence if there exits a sequence gn =

{
n

(α+ 2n+ 1)

}∞
n=0

such that, 0 ≤ g0 < 1,

and 0 < gn < 1, n ≥ 1 for α > −1.

Proof. From (1.2) and (2.1), then we get

cn = 2n+ α− 1 and λn = (n− 1)(n− 1 + α).

Now using the definition of chain sequence and (1.4),

αn =
n(n+ α)

(2n+ α− 1)(2n+ α+ 1)
for n = 1, 2, . . . . (2.2)

we know that α1 = g1, so we take n = 1 then we can get, α1 = g1 =
1

3 + α
. For

n = 2, α2 =
2(α+ 2)

(α+ 3)(α+ 3)
and g2 =

2

(α+ 5)
. By applying induction method, αn−1 =

gn−1(1− gn−2), we can get gn =
n

(α+ 2n+ 1)
and here g0 = 0.

Now we have to prove 0 < gn < 1. It is obvious that,

0 < gn for n ≥ 1 and α > −1. (2.3)
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Again we know that α > −1, that is,

α+ 2n+ 1 > 2n⇒ 1

α+ 2n+ 1
<

1

2n
⇒ n

α+ 2n+ 1
<

1

2
⇒ gn <

1

2
. (2.4)

Hence we can prove from (2.3) and (2.4) that, 0 < gn < 1.

Lemma 2.2. The sequence {δn} for the generalized Laguerre polynomials are given by

δ2n = n+ α, δ2n+1 = n, n = 1, 2, . . . .

Proof. From the three-terms recurrence relation for generalized Laguerre polynomials
(2.1), and the procedure given in (1.6), then we can get the result follows from direct
computation.

Theorem 2.3. Let f(x) ∈W with corresponding parameters {αn}∞n=1. Then we have,

A1(x) ≤ f(x) ≤ B1(x) 0 < x < +∞.

A1(x) =
(α+ 3)(1 + x)

(1 + x)α+ (3x+ 2)
, and B1(x) =

(α+ 3 + x)

(α+ 3)

f(x) =
(α+ 3)2(α+ 5) + 2(α+ 2)2xl(x)

(α+ 3)2(α+ 5) + (α+ 3)(α+ 5)x+ 2(α+ 2)2xl(x)
.

l(x) is defined in Lemma 1.3.

Proof. Let {αn}∞n=1 be a chain sequence for generalized Laguerre polynomials. which is
given by (2.2) and then the inequality (1.11) implies

1 +
2(α+ 2)2

(α+ 3)2(α+ 5)
xl(x) ∈

[
1, 1 +

(α+ 2)

(α+ 3)x

]
(α+ 3)2(α+ 5) + 2(α+ 2)2xl(x)

(α+ 3)2(α+ 5)
∈
[
1,

(1 + x)α+ (3x+ 2)

(α+ 3)

]
.

where we have used the fact that
2(α+ 2)

(α+ 3)(α+ 5)
∈ [0, 1]. one can verify that,

1 +
(α+ 3)(α+ 5)x

(α+ 3)2(α+ 5) + 2(α+ 2)2xl(x)
∈
[
1 +

x

(1 + x)α+ (3x+ 2)
, 1 +

x

(α+ 3)

]
(α+ 3)(α+ 5)(α+ 3 + x) + 2(α+ 2)2xl(x)

(α+ 3)2(α+ 5) + 2(α+ 2)2xl(x)
∈
[

(1 + x)(α+ 3)

(1 + x)α+ (3x+ 2)
,

(α+ 3) + x

(α+ 3)

]
.

and further

1

(α+ 3)2(α+ 5) + 2(α+ 2)2xl(x)

(α+ 3)(α+ 5)(α+ 3 + x) + 2(α+ 2)2xl(x)

∈
[

(1 + x)(α+ 3)

(1 + x)α+ (3x+ 2)
,

(α+ 3) + x

(α+ 3)

]
.

(α+ 3)2(α+ 5) + 2(α+ 2)2xl(x)

(α+ 3)(α+ 5)(α+ 3 + x) + 2(α+ 2)2xl(x)
∈
[

(1 + x)(α+ 3)

(1 + x)α+ (3x+ 2)
,

(α+ 3) + x

(α+ 3)

]
.

The proof is done.
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Theorem 2.4. The mass mn and spring constants kn satisfy the mass-spring system

(1.7) and (1.8). where mn =
(1 + α)n

n!
m0 and kn =

(1 + α)n
(n− 1)!

for m0 = 1 is a positive

constant.

Proof. According to Theorem 1.2 and lemma 2.2, then we get,

kn
mn−1

= (n+ α) (2.5)

kn
mn

= n. (2.6)

From (2.5) and (2.6),

mn =
(n+ α)

n
mn−1. (2.7)

For n = 0, 1, 2, . . .. where m−1 = 1. we can get m1,m2,m3 in terms of m0. where

m0 is an arbitrary positive constant. m1 = (1 + α)m0, m2 =
(1 + α)(2 + α)

2!
m0, m3 =

(1 + α)(2 + α)(3 + α)

3!
m0. By applying the induction method and take m0 = 1 is positive

constant for α > −1. Then we can get mn in the form,

mn =
(1 + α)(2 + α) . . . (n+ α)

n!
.

In close form,

mn =
(1 + α)n

n!
. (2.8)

From (2.6) and (2.8), we can easily get kn,

kn =
(1 + α)n
(n− 1)!

. (2.9)

Here mass mn and spring constants kn are satisfying the mass-spring system (1.7) and
(1.8) for m0 = 1 is positive constants.

3. Romanovski-Laguerre type Polynoials

Now we consider the less-known Romanovski-Laguerre type finite class of classical
orthogonal polynomials related to probability density function w2(x, p) = x−pe−

1
x ; p >

2n+1 of inverse Gamma distribution [1, 2, 24, 25]. We further note that, even though we
call as finite, due to the fact that this is finitely orthogonal for every n ∈ Z+, and their
orthogonality interval is quite infinite [0,∞) and changing the linear variable does not
change the main interval of orthogonality [24, 26, 27]. Now the three-terms recurrence
relations for Romanovski-Laguerre finite class of classical orthogonal polynomials is given
by,

Nn+1(x) =

(
(p− 2n− 2)(p− 2n− 1)

(p− n− 1)
x (3.1)

− p(p− 2n− 1)

(p− n− 1)(p− 2n)

)
Nn(x)− n(p− 2n− 2)

(p− n− 1)(p− 2n)
Nn−1(x). (3.2)
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Now we can easily change (3.1) into the form (1.2). That is, the three-terms recurrence
relations for monic Romanovski-Laguerre finite class of classical orthogonal polynomials
is given as follows.

Nn(x) = (x− cn)Nn−1(x)− λnNn−2(x), n > 1 and

N1(x) = 1 and N1(x) = x− c1. (3.3)

Where

cn =
p

(p− 2n)(p− 2n+ 2)
and λn =

(n− 1)(p− n+ 1)

(p− 2n+ 1)(p− 2n+ 2)2(p− 2n+ 3)
.

(3.4)

Theorem 3.1. A sequences αn =

{
n(p− 2n− 2)

p(p− 2n− 1)

(
1− (n− 1)(p− 2n)

p(p− 2n+ 1)

)}∞
n=1

is called

a chain sequence if there exits a sequence gn =

{
n(p− 2n− 2)

p(p− 2n− 1)

}∞
n=0

such that, 0 ≤ g0 <

1, and 0 < gn < 1, n ≥ 1 for p > 2n+ 2.

Proof. From (3.3) and (3.4)

cn =
p

(p− 2n)(p− 2n+ 2)
and λn =

(n− 1)(p− n+ 1)

(p− 2n+ 1)(p− 2n+ 2)2(p− 2n+ 3)
.

Now using (1.4) then we get,

αn =

n(p− n)

(p− 2n)2(p− 2n− 1)(p− 2n+ 1)
p

(p− 2n+ 2)(p− 2n)

p

(p− 2n− 2)(p− 2n)

αn =
n(p− n)(p− 2n+ 2)(p− 2n− 2)

p2(p− 2n− 1)(p− 2n+ 1)
for n = 1, 2, . . . . (3.5)

we know that α1 = g1, so we take n = 1 then we can get, α1 = g1 =
(p− 4)

p(p− 3)
. For n = 2,

α2 =
2(p− 2)2(p− 6)

p2(p− 3)(p− 5)
. By applying induction method, αn−1 = gn−1(1− gn−2), then we

can get gn =
n(p− 2n− 1)

p(p− 2n− 1)
and here g0 = 0.

Now we have to prove 0 < gn < 1. we can write gn in this form,

n(p− 2n− 1)

p(p− 2n− 1)
=
n

p

(
1− 1

(p− 2n− 1)

)
According to our condition p > 2n+ 2, we can easily prove

n

p

(
1− 1

(p− 2n− 1)

)
> 0⇒ gn > 0. (3.6)

Again use the condition p > 2n+ 2,

n

p
<

1

2
. (3.7)
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Now, (
p− 2n− 2

p− 2n− 1

)
=

(
1 +

1

p− 2n− 2

)−1
.

we know that p > 2n+ 2, then we can say,(
1 +

1

p− 2n− 2

)−1
< 1⇒

(
1 +

1

p− 2n− 2

)
> 1. (3.8)

After using (3.7), (3.8)

gn =
n(p− 2n− 1)

p(p− 2n− 1)
=
n

p

(
1 +

1

p− 2n− 2

)−1
<

1

2
. (3.9)

From (3.6) and (3.9), hence 0 < gn < 1.

Lemma 3.2. If p > 2n+ 2, then the sequence {δn} for Romanovski-Laguerre finite class
of classical orthogonal polynomials are given by

δ2n =
(p− n)

(p− 2n)(p− 2n+ 1)
, δ2n+1 =

n

(p− 2n− 1)(p− 2n)
, n = 1, 2, . . . .

Proof. From the three-terms recurrence relation for Romanovski-Laguerre finite class of
classical orthogonal polynomials (3.3) and (3.4),

cn =
p

(p− 2n)(p− 2n+ 2)
and λn =

(n− 1)(p− n+ 1)

(p− 2n+ 1)(p− 2n+ 2)2(p− 2n+ 3)
.

We take n = 1 and get c1 = δ2 =
1

(p− 2)
and after that δ3 =

1

(p− 2)(p− 3)
.

For n = 2, c2 = δ4 + δ3,

p

(p− 2)(p− 4)
= δ4 +

1

(p− 2)(p− 3)
⇒ δ4 =

(p− 2)

(p− 3)(p− 4)
.

and

δ4δ5 =
2(p− 2)

(p− 3)(p− 4)2(p− 5)
⇒ δ5 =

2

(p− 4)(p− 5)
.

For n = 3 and using the relation
p

(p− 4)(p− 6)
= δ6 + δ5 and

3(p− 3)

(p− 5)(p− 6)2(p− 7)
=

δ6δ7, we can get

δ6 =
(p− 3)

(p− 5)(p− 6)
and δ7 =

3

(p− 6)(p− 7)
.

For n = 4,

δ8 =
(p− 4)

(p− 7)(p− 8)
and δ9 =

4

(p− 7)(p− 8)
.

After applying the induction method, finally we get the result follows from direct com-
putation.
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Theorem 3.3. Let f(x) ∈W with corresponding parameters {αn}∞n=1. Then we have,

A1(x) ≤ f(x) ≤ B1(x) 0 < x < +∞.

Where

A1(x) =
p(p− 3)(1 + x)

p(p− 3) + (p− 2)2x
, and B1(x) =

p(p− 3) + (p− 4)x

p(p− 3)

f(x) =
p3(p− 3)2(p− 5) + 2(p− 2)2(p− 6)xl(x)

p2(p− 3)(p− 5)(p2 − 2p− 4) + 2(p− 2)4(p− 6)xl(x)
.

l(x) is defined in Lemma 1.3 and {αn}∞n=1 is given by (3.5) for n = 1, 2, . . ..

Proof. We can apply same procedure whatever we used in proof of Theorem 2.3.

Theorem 3.4. If p > 2n+1, the mass mn and spring constants kn satisfy the mass-spring

system (1.7) and (1.8). where mn=
(−1)n(1− p)n(p− 2n− 1)

n!
and kn=

(−1)n(1− p)n
(n− 1)!(p− 2n)

.

Proof. According to Theorem 1.2 and lemma 3.2, then we get,

kn
mn−1

=
(p− n)

(p− 2n)(p− 2n+ 1)
(3.10)

kn
mn

=
n

(p− 2n− 1)(p− 2n)
. (3.11)

From (3.10) and (3.11),

mn =
(p− n)(p− 2n− 1)

n(p− 2n+ 1)
mn−1. (3.12)

For n = 0, 1, 2, . . .. where m−1 = 1. we can get m1,m2,m3 in terms of m0. m1 = (p −

3)m0, m2 =
(p− 2)(p− 5)

2!
m0, m3 =

(p− 2)(p− 3)(p− 7)

3!
m0. After using the induction

method,

mn =
(p− 1)(p− 2)(p− 3) . . . (p− n)(p− 2n− 1)

n!
m0.

We take m0 = (p− 1) is an arbitrary positive constant for p > 2n+ 1. Then we can get
mn in the close form,

mn =
(−1)n(1− p)n(p− 2n− 1)

n!
. (3.13)

From (3.11) and (3.13), we can easily get kn,

kn =
(−1)n(1− p)n

(n− 1)!(p− 2n)
. (3.14)

Here mass mn and spring constants kn are satisfying the mass-spring system (1.7) and
(1.8) for m0 = (p− 1) is positive constants.

Theorem 3.5. Let {αn}N−1n=1 be a chain sequence, and set

B = max {xn : 0 < n < N} and A = min {yn : 0 < n < N}, (3.15)
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where xn, yn and xn > yn are the roots of the equation,(
x− p

(p− 2n)(p− 2n− 2)

)(
x− p

(p− 2n)(p− 2n+ 2)

)
αn

=
n(p− n)

p(p− 2n)2(p− 2n− 1)(p− 2n− 2)
. (3.16)

that is,

xn =
p

(p− 2n)2 − 4
+

√
p2

(p− 2n)2 − 4
+

na(p− n)

(p− 2n)2((p− 2n)2 − 1)
(3.17)

And

yn =
p

(p− 2n)2 − 4
−

√
p2

(p− 2n)2 − 4
+

na(p− n)

(p− 2n)2((p− 2n)2 − 1)
(3.18)

Then the zeros of NN (x) lie in (A,B).

Proof. We can change (3.1) into an another from,

xNp
n(x) =

(p− n− 1)

(p− 2n− 2)(p− 2n)
N

(p)
n+1(x) +

p

(p− 2n− 2)(p− 2n)
N (p)
n (x)

+
n

p(p− 2n− 1)(p− 2n)
N

(p)
n−1(x). (3.19)

From equation (3.19), µn =
(p− n− 1)

(p− 2n− 2)(p− 2n)
, νn =

p

(p− 2n− 2)(p− 2n)
and ξn =

n

p(p− 2n− 1)(p− 2n)
. From [[20], Theorem 2], we can get a quadratic equation,

(x− νn)(x− νn−1)αn = ξnµn−1. (3.20)

Choose αn =
1

a
is a constant.

a = 4 cos2
(

π

N + 1

)
+ ε, for some ε > 0. (3.21)

Now (3.20) becomes as follows,(
x− p

(p− 2n)(p− 2n− 2)

)(
x− p

(p− 2n)(p− 2n+ 2)

)
1

a

=
n(p− n)

p(p− 2n)2(p− 2n− 1)(p− 2n− 2)
.

x2− 2p

(p− 2n+ 2)(p− 2n− 2)
x

+
p3(p− 2n− 1)− na(p− n)(p− 2n+ 2)

p(p− 2n)2(p− 2n− 1)(p− 2n− 2)(p− 2n+ 2)
= 0. (3.22)
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Let xn and yn are the roots of (3.22), thus

xn =
p

(p− 2n)2 − 4

+

√
p2

((p− 2n)2 − 4)2
−
(
p3(p− 2n− 1)− na(p− n)(p− 2n+ 2)

p(p− 2n)2(p− 2n− 1)((p− 2n)2 − 4)

)
(3.23)

yn =
p

(p− 2n)2 − 4

−

√
p2

((p− 2n)2 − 4)2
−
(
p3(p− 2n− 1)− na(p− n)(p− 2n+ 2)

p(p− 2n)2(p− 2n− 1)((p− 2n)2 − 4)

)
(3.24)

Is is clear that xn increase with n, hence

B =

√
p2

((p− 2N + 2)2 − 4)2
−
(
p3(p− 2N + 1)− a(N − 1)(p−N + 1)(p− 2N)

p(p− 2N + 2)2(p− 2N + 1)((p− 2N + 2)2 − 4)

)
+

p

(p− 2N + 2)2 − 4
(3.25)

4. Conclusion

In this work, we considered the Laguerre and Romanovski-Laguerre finite class of
classical orthogonal polynomials. The chain sequences are obtained for both polynomials
and discussed the application of chain sequences in real life problems through mass-spring
system. We also investigated the bound of zeros using chain sequences for Romanovski-
Laguerre finite class of classical orthogonal polynomials.
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