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study the split equality variational inequality problem, and the split equality equilibrium problem. the

results presented in the article are new and generalize of some recent corresponding results.
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1. Introduction

Let H1 and H2 be two real Hilbert spaces, C and Q be nonempty closed convex subsets
of H1 and H2, respectively. The split feasibility problem (SFP) is finding a point q ∈ H1

satisfies:

q ∈ C and Aq ∈ Q (1.1)

where A : H1 → H2 is a bounded linear operator. In 1994, Censor and Elfving [1]
introduce the split feasibilty problem in finite dimensional Hilbert spaces for modelling
inverse problems in medical image reconstruction.

If C and Q are the sets of fixed points of two nonlinear mappings, the split common
fixed point problem (SCFP) for mapping S and T is to find a point q ∈ H1 satisfies:

q ∈ C := F (S) and Aq ∈ Q := F (T ) (1.2)
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where F (S) and F (T ) are the sets of fixed point of S and T , respectively.
In 2013, Moudafi [2] introduced the following split equality feasibility problem (SEFP).

Let H1, H2 and H3 be real Hilbert spaces, C and Q be nonempty closed convex subsets of
H1 and H2, A : H1 → H3 and B : H2 → H3 be two bounded linear operators respectively.
The split equality feasibility problem (SEFP) is to find

x ∈ C, y ∈ Q such that Ax = By. (1.3)

After that he introduced new split equality fixed point problem (SEFPP). Let H1, H2

and H3 be real Hilbert spaces, S : H1 → H1 and T : H2 → H2 be two nonlinear mappings
with C := F (S) and Q := F (T ) are nonempty, A : H1 → H3 and B : H2 → H3 be two
bounded linear operators. The split equality fixed point problem for S and T is to find

a point x ∈ C and y ∈ Q such that Ax = By, (1.4)

which allows asymmetric and partial relation between the variable x and y. It is used
for instance in decomposition method for PDE’s, application in game theory and in in-
tensity modulated radiation therapy (IMRT) [3–5]. Recently, many authors study about
convergence theorem of the split equality problem and other in [6–11].

For solving (1.4), Moudafi[12] introduced an algorithm:

xn+1 = U(xn − γnA∗(Axn −Byn)),

yn1 = T (yn + γnB
∗(Axn+1 −Byn)) (1.5)

and proved the convergence of the sequence which generated by this algorithm for firmly
quasi-nonexpansive operators U and T , where γn ∈ (ε,min { 1

λA
, 1
λB
}) is a non-decreasing

sequence and λA, λB are spectral radii of A∗A and B∗B, respectively.
Recently, Shehu et al. [13] proved strong convergence theorem for solving split equality

fixed point problem which does not involve the prior knowledge of operator norms by using
algorithm: Let u, x1 ∈ H1 and v, y1 ∈ H2,

un = xn − γA∗(Axn −Byn)

vn = yn + γB∗(Axn −Byn) (1.6)

xn+1 = (1− αn − βn)un + αnSun + βnu

yn+1 = (1− αn − βn)vn + αnTvn + βnv

where S and T are quasi-nonexpansive mappings on H1 and H2, respectively. In 2016, Ma
and Wang [8] proved the weak and strong convergence theorem for finding a solution of
a spilt equality common fixed point of asymptotically nonexpansive semigroup in Banach
space by following algorithm:

zn ∈ J3(Axn −Byn)

un = S(tn)(xn − γJ−11 A∗zn)

vn = T (tn)(yn + γJ−12 B∗zn) (1.7)

xn+1 = βnun + (1− βn)(xn − γJ−11 A∗zn)

yn+1 = βnvn + (1− βn)(yn + γJ−12 B∗zn)

In 2019, Saelee et al. [14] proved the weak and strong convergence theorem of iterative
scheme (1.7) for spilt equality common fixed point of asymptotically quasi-nonexpansive
semigroup in Banach space. In this paper, we introduce new iterative method to ap-
proximate a solution of the split equality common fixed point problems of asymptotically
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quasi-nonexpansive semigroups in Hilbert, motivated by [14] and [13] and establish weak
convergence theorem and strong converge theorem with suitable condition and some ap-
plication in split equality variational inequality problem and split equality equilibrium
problem.

2. Preliminaries

Throughout of this section, Let H be a real Hilbert spaces.
A mapping T : C → C is said to be quasi-nonexpansive if F (T ) 6= 0 such that

‖Tx− q‖ = ‖x− q‖ ∀(x, q) ∈ H × F (T )

A mapping T : C → C is said to be asymptotically quasi-nonexpansive if F (T ) 6= 0
and there exists a nonnegative real sequence {lk} with lk → 0 such that for each k ≥ 1,∥∥T kx− q∥∥2 = ‖x− q‖2 + lk ‖x− q‖2 ∀(x, q) ∈ H × F (T )

Definition 2.1. [15] A one-parameter family F = {T (t) : t ≥ 0} of H into itself is called
a Lipschitzian semigroup on H if it satisfies the following conditions:

(i) T (0)x = x for all x ∈ H,
(ii) T (s+ t) = T (s)T (t) for all s, t ≥ 0,
(iii) for each x ∈ H, the mapping t 7→ T (t)x is continuous,
(iv) for each t > 0, there exists a bounded measurable function L(t) : [0,∞)→ [0,∞)

such that

||T (t)x− T (t)y|| ≤ L(t)||x− y|| for all x, y ∈ H.

A semigroup is called quasi-nonexpansive semigroup if F (F) 6= ∅ and it satisfies (i)-(iii)
above and ‖T (t)x− q‖ ≥ ‖x− q‖ ∀x ∈ C, q ∈ F (F), t ≥ 0

A semigroup is called asymptotically quasi-nonexpansive semigroup if F (F) 6= ∅ and
there exists a sequence {L(t)}t>0 with L(t) ≥ 1, L(t) is nonincreasing in t and lim

t→∞
L(t) =

1 satisfies (i)-(iii) above and ||Tn(t)x−Tn(t)q|| ≤ L(t)||x−q|| ∀x, y ∈ C, q ∈ F (F), n ≥ 1.
If F satisfies (i)-(iii) and

lim
t→∞

sup
x∈D
||T (t)x− T (s)T (t)x|| = 0 for all s > 0 and bounded D ⊆ C.

then F is called uniformly asymptotically regular on C.
We denote the set of all common fixed point of F that is,

F (F) := {x ∈ H : T (t)x = x, 0 ≤ t <∞} =
⋂
t≥0

F (T (t)).

Let T : C → C be a mapping with F (T ) 6= ∅. Then T is said to be demiclosed at
zero if for any {xn} ⊂ C with xn converges weakly to x and ‖xn − Txn‖ → 0, x = Tx.
A mapping T : C → C is said to be semi-compact, if for any sequence {xn} ∈ C such
that ‖xn − Txn‖ → 0 as n→∞, there exists subsequence {xnj

} of {xn} such that {xnj
}

converges strongly to x∗ ∈ C. A Banach space E is said to satisfy Opial’s property if for
any sequence {xn} ∈ E, xn ⇀ x, for any y ∈ E with y 6= x, we have

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

Lemma 2.2. Let H be a real Hilbert space. Then the following identities are obtained:

2〈x, y〉 = ‖x‖2 + ‖y‖2 − ‖x− y‖2 = ‖x+ y‖2 − ‖y‖2 − ‖x‖2 .
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Lemma 2.3. [16] Let {an}, {bn} and {δn} be nonnegative real number sequences such
that

an+1 ≤ (1 + bn)an + δn, ∀n ≥ 1,

where

∞∑
n=1

bn <∞ and

∞∑
n=1

δn <∞. Then lim
n→∞

an exists.

3. Main Results

Theorem 3.1. Let H1, H2 and H3 be real Hilbert spaces, {S(t) : t ≥ 0} and {T (t) :
t ≥ 0} be two uniformly asymptotically regular family of self-mapping quasi-nonexpansive

semigroup of H1 and H2 with C :=
⋂
t≥0

F (S(t)) 6= ∅ and Q :=
⋂
t≥0

F (T (t)) 6= ∅, A : H1 →

H3 and B : H2 → H3 be two bounded linear operators. Assume that S − I, T − I are
demiclosed at 0 and S, T are uniformly L-Lipschitzian. For any x0, u ∈ H1 and y0, v ∈ H2,
the sequence {(xn, yn)} is generated by

un = S(tn)(xn − γnA∗(Axn −Byn))

vn = T (tn)(yn + γnB
∗(Axn −Byn)) (3.1)

xn+1 = βnun + (1− βn − αn)(xn − γnA∗(Axn −Byn)) + αnu

yn+1 = βnvn + (1− βn − αn)(yn + γnB
∗(Axn −Byn)) + αnv

for all n ∈ N ∪ {0} where {tn} and {γn} are two sequence of positive real numbers, {βn}
is a sequence in (0, 1) and {αn} is a sequence in (0, 1− a) for some a > 0 satisfying

(1) lim
n→∞

tn =∞,

(2) lim
n→∞

αn = 0 and

∞∑
n=1

αn <∞ ,

(3) L(t) = max{L(1)(t), L(2)(t)} and
∞∑
n=1

(L(tn)− 1) <∞,

(4) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

(5) βn + αn < 1,

(6) for small enough ε > 0, γn ∈
(
ε,

2 ‖Axn −Byn‖2

‖A∗(Axn −Byn)‖2 + ‖B∗(Axn −Byn)‖2
− ε
)
.

If Ω = {(x∗, y∗) ∈ H1 ×H2 : Ax∗ = By∗, x∗ ∈ C, y∗ ∈ Q} 6= ∅, then
(I) the sequence {(xn, yn)} converges weakly to a solution (x∗, y∗) ∈ Ω of (1.4).
(II) In addition, if there exists at least one t such that S(t) ∈ {S(t) : t ≥ 0} and

T (t) ∈ {T (t) : t ≥ 0} are semi-compact, then the sequence {(xn, yn)} converges
strongly to a solution (x∗, y∗) ∈ Ω of (1.4).

Proof. For the proof, we divide into four steps.
Step 1 We first show that for (x, y) ∈ Ω, lim

n→∞
Γn+1(x, y) exists

Setting en = xn − γnA∗(Axn − Byn) and wn = yn + γnB
∗(Axn − Byn). Let (x, y) ∈ Ω,
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by convexity of ‖·‖ we have

‖xn+1 − x‖2 = ‖(1− βn − αn)en + βnun + αnu− x‖2

= ‖(1− βn − αn)(en − x) + βn(un − x) + αn(u− x)‖2

≤ (1− βn − αn) ‖en − x‖2 + βn ‖un − x‖2 + αn ‖u− x‖2

≤ (1− βn − αn) ‖en − x‖2 + βnL
2(tn) ‖en − x‖2 + αn ‖u− x‖2

= (1− αn − βn(1− L2(tn)) ‖en − x‖2 + αn ‖u− x‖2 (3.2)

Further, from Lemma 2.2, we have

‖en − x‖2 = ‖xn − γnA∗(Axn −Byn)− x‖2

= ‖(xn − x)− γnA∗(Axn −Byn)‖2

= ‖xn − x‖2 + γ2n ‖A∗(Axn −Byn)‖2 − 2γn〈xn − x,A∗(Axn −Byn)〉

= ‖xn − x‖2 + γ2n ‖A∗(Axn −Byn)‖2 − 2γn〈Axn −Ax,Axn −Byn〉

= ‖xn − x‖2 + γ2n ‖A∗(Axn −Byn)‖2 − γn ‖Axn −Ax‖2 (3.3)

− γn ‖Axn −Byn‖2 + γn ‖Byn −Ax‖2 .

Similarly, we have

‖yn+1 − y‖2 ≤ (1− αn − βn(1− L2(tn)) ‖wn − y‖2 + αn ‖v − y‖2 (3.4)

and

‖wn − y‖2 = ‖yn − y‖2 + γ2n ‖B∗(Axn −Byn)‖2 − γn ‖Byn −By‖2

− γn ‖Axn −Byn‖2 + γn ‖Axn −By‖2 . (3.5)

By (3.3), (3.5), assumption of γn and Ax = By, we have

‖en − x‖2 + ‖wn − y‖2 = ‖xn − x‖2 + ‖yn − y‖2 − γn[2 ‖Axn −Byn‖2

− γn(‖A∗(Axn −Byn)‖2 + ‖B∗(Axn −Byn)‖2]

≤ ‖xn − x‖2 + ‖yn − y‖2 . (3.6)

Adding (3.2), (3.4) and (3.6) we have

‖xn+1 − x‖2 + ‖yn+1 − y‖2 ≤ (1− αn − βn(1− L2(tn))(‖en − x‖2 + ‖wn − y‖2)

+ αn(‖u− x‖2 + ‖v − y‖2)

≤ (1− αn − βn(1− L2(tn))(‖xn − x‖2 + ‖yn − y‖2)

+ αn(‖u− x‖2 + ‖v − y‖2). (3.7)

Let Γn(x, y) = ‖xn − x‖2+‖yn − y‖2 and Γ(x, y) = ‖u− x‖2+‖v − y‖2, we can rewrite
(3.7) into

Γn+1(x, y) ≤ (1− αn − βn(1− L2(tn)))Γn(x, y) + αnΓ(x, y)

≤ (1 + βn(L2(tn)− 1))Γn(x, y) + αnΓ(x, y). (3.8)

By Lemma 2.3 and

∞∑
n=1

(L2(tn)− 1) <∞ and L(tn)→ 1, lim
n→∞

Γn(x, y) exists.



1292 Thai J. Math. Vol. 20 (2022) /S. Saelee et al.

Step 2 We prove that lim
n→∞

‖Axn −Byn‖ = 0, lim
n→∞

‖xn − un‖ = 0 and lim
n→∞

‖yn − vn‖
= 0. Adding (3.2), (3.3), (3.4) and (3.5) and Ax = By, we obtain

Γn+1(x, y) ≤ (1− αn + βn(L2(tn)− 1)){Γn(x, y)− γn[2 ‖Axn −Byn‖2

− γn(‖A∗(Axn −Byn)‖2 + ‖B∗(Axn −Byn)‖2)]}+ αnΓ(x, y)
(3.9)

From (3.9) we have

(1− αn + βn(L2(tn)− 1))γn[2 ‖Axn −Byn‖2 − γn(‖A∗(Axn −Byn)‖2

+ ‖B∗(Axn −Byn)‖2)]

≤ (1− αn + βn(L2(tn)− 1))Γn(x, y)− Γn+1(x, y) + αnΓ(x, y). (3.10)

It follows from assumption of γn and αn, we get

lim
n→∞

(‖A∗(Axn −Byn)‖2 + ‖B∗(Axn −Byn)‖2) = 0. (3.11)

So we have

lim
n→∞

‖A∗(Axn −Byn)‖ = lim
n→∞

‖B∗(Axn −Byn)‖ = 0. (3.12)

Then we obtain

lim
n→∞

‖xn − en‖ = lim
n→∞

‖γnA∗(Axn −Byn)‖ = 0 and (3.13)

lim
n→∞

‖yn − wn‖ = lim
n→∞

‖−γnB∗(Axn −Byn)‖ = 0 (3.14)

Again by Lemma 2.2, we get

‖xn+1 − x‖2 = ‖(1− βn)(en − x) + βn(un − x) + αn(u− en)‖2

= ‖(1− βn)(en − x) + βn(un − x)‖2 + α2
n ‖u− en‖

2

+ 2αn〈u− en, (1− βn)(en − x) + βn(un − x)〉

≤ (1− βn) ‖en − x‖2 − βn ‖un − x‖2 + α2
n ‖u− en‖

2

+ 2αn〈u− en, (1− βn)(en − x) + βn(un − x)〉

= ‖en − x‖2 − βn(‖en − x‖2 − ‖un − x‖2) + α2
n ‖u− en‖

2

+ 2αn〈u− en, (1− βn)(en − x) + βn(un − x)〉

≤ ‖en − x‖2 − βn ‖un − en‖2 + α2
n ‖u− en‖

2

+ 2αn〈u− en, (1− βn)(en − x) + βn(un − x)〉 (3.15)

Similarly,

‖yn+1 − y‖2 = ‖(1− βn)(wn − y) + βn(vn − y) + αn(v − wn)‖2

≤ ‖wn − y‖2 − βn ‖vn − wn‖2 + α2
n ‖v − wn‖

2

+ 2αn〈v − wn, (1− βn)(wn − y) + βn(vn − y)〉 (3.16)
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From (3.15), (3.16) and (3.6), we get

Γn+1(x, y) ≤ Γn(x, y)− βn(‖un − en‖2 + ‖vn − wn‖2)

+ α2
n(‖u− en‖2 + ‖v − wn‖2)

+ 2αn[〈u− en, (1− βn)(en − x) + βn(un − x)〉
+ 〈v − wn, (1− βn)(wn − y) + βn(vn − y)〉] (3.17)

Since {en}, {wn}, {un} and {vn} are all bounded, there exists M > 0 such that

αn(‖u− en‖2 + ‖v − wn‖2) + 2αn[〈u− en, (1− βn)(en − x)

+ βn(un − x)〉+ 〈v − wn, (1− βn)(wn − y) + βn(vn − y)〉] ≤M

Thus, from (3.17), we obtain

βn(‖un − en‖2 + ‖vn − wn‖2) ≤ Γn(x, y)− Γn+1(x, y)− αnM → 0.

by condition (3), we get

‖un − en‖2 + ‖vn − wn‖2 → 0.

That is ‖un − en‖ → 0 and ‖vn − wn‖ → 0.
Hence

‖xn − un‖ ≤ ‖xn − en‖+ ‖en − un‖ → 0

‖yn − vn‖ ≤ ‖yn − wn‖+ ‖wn − vn‖ → 0.

That is lim
n→∞

‖xn − un‖ = 0 and lim
n→∞

‖yn − vn‖ = 0

Step 3 We prove that lim
n→∞

‖xn − S(t)xn‖ = 0 and lim
n→∞

‖yn − T (t)xn‖ = 0 for all

t ∈ [0,∞).

‖xn+1 − xn‖2 = ‖(1− βn − αn)en + βnun + αnu− xn‖2

= ‖(1− βn − αn)(en − xn) + βn(un − xn) + αn(u− xn)‖2

≤ (1− βn − αn) ‖en − xn‖2 + βn ‖un − xn‖2 + αn ‖u− xn‖2

So we obtain lim
n→∞

‖xn+1 − xn‖ = 0. Similarly, we get lim
n→∞

‖yn+1 − yn‖ = 0. Since

S(tn) and T (tn) are L-Lipschitzian, we can get

‖un − S(tn)xn‖2 = ‖S(tn)en − S(tn)xn‖2

≤ L2(tn) ‖en − xn‖2

= L2(tn)γ2n ‖A∗(Axn −Byn)‖2

and ‖vn − T (tn)yn‖2 ≤ L2(tn)γ2n ‖B∗(Axn −Byn)‖2. By 3.12, we obtain

lim
n→∞

‖un − S(tn)xn‖ = 0, lim
n→∞

‖vn − T (tn)yn‖ = 0 (3.18)

So we can get

lim
n→∞

‖xn − S(tn)xn‖ = 0, lim
n→∞

‖yn − T (tn)yn‖ = 0 (3.19)

Since ‖xn − x‖2 ≤ Γn(x, y), ‖yn − y‖2 ≤ Γn(x, y) and lim
n→∞

Γn(x, y) exists, we know

that {xn} and {yn} are bounded. Therefore, there exist bounded subsets C1 ⊆ H1 and
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Q1 ⊆ H2 such that {xn} ⊆ C1 and {yn} ⊆ Q1. Since {S(t) : t ≥ 0} and {T (t) : t ≥ 0}
are uniformly asymptotically regular and lim

n→∞
tn =∞, for all t ≥ 0,

lim
n→∞

‖S(t)S(tn)xn − S(tn)xn‖ ≤ lim
n→∞

sup
x∈C1

‖S(t)S(tn)x− S(tn)x‖ = 0,

and

lim
n→∞

‖T (t)T (tn)yn − T (tn)yn‖ ≤ lim
n→∞

sup
x∈Q1

‖T (t)T (tn)y − T (tn)y‖ = 0

Since {S(t)x} is continuous on t for all x ∈ H1, {T (t)x} is continuous on t for all x ∈ H2

and

‖xn − S(t)xn‖ ≤ ‖xn − S(tn)xn‖+ ‖S(tn)xn − S(t)S(tn)xn‖
+ ‖S(t)S(tn)xn − S(t)xn‖ ,

‖yn − T (t)yn‖ ≤ ‖yn − T (tn)yn‖+ ‖T (tn)yn − T (t)T (tn)yn‖
+ ‖T (t)T (tn)xn − T (t)xn‖ , (3.20)

we obtain

lim
n→∞

‖xn − S(t)xn‖ = 0, lim
n→∞

‖yn − T (t)yn‖ = 0.

Step 4 We prove that (x∗, y∗) is the unique weak cluster point of {(xn, yn)}.
Since {(xn, yn)} ⊆ C1 × Q1, we may assume that (x∗, y∗) is a weak cluster point of
{(xn, yn)}. By assumption of demiclosedness of S − I and T − I, we have x∗ ∈ C =⋂
t≥0

F (S(t)), y∗ ∈ Q =
⋂
t≥0

F (T (t)). Since A and B are bounded linear operators, we

know that Ax∗ − By∗ is a weak cluster point of {Axn − Byn}. By the weakly lower
semi-continuous property of the norm and (3.12), we have

‖Ax∗ −By∗‖ ≤ lim inf
n→∞

‖Axn −Byn‖ = 0.

So Ax∗ = By∗. This implies (x∗, y∗) ∈ Ω. Now we prove that (x∗, y∗) is a unique weak
cluster point of {(xn, yn)}. Assume that there exists another subsequence {(xnk

, ynk
)} of

{(xn, yn)} such that {(xnk
, ynk

)} converges weakly to a point (p, q) with (p, q) 6= (x∗, y∗).
Similarly, we get (p, q) ∈ Γ. By Opial’s property of H1 ,

lim inf
i→∞

‖xni − p‖ < lim inf
i→∞

‖xni − x∗‖

= lim
n→∞

‖xn − x∗‖

= lim inf
k→∞

‖xnk
− x∗‖

< lim inf
k→∞

‖xnk
− p‖

= lim
n→∞

‖xn − p‖

= lim inf
i→∞

‖xni
− x∗‖

which is a contradiction. Similarly by Opial’s property of H2, we get

lim inf
i→∞

‖yni − q‖ < lim inf
i→∞

‖yni − q‖

This implies that (p, q) = (x∗, y∗). Then (I) holds.
Next, assume there exist S(t) ∈ {S(t) : t ≥ 0} and T (t) ∈ {T (t) : t ≥ 0} are semi-compact.
Then {(xn, yn)} is bounded, lim

n→∞
‖xn − S(t)xn‖ = 0 and lim

n→∞
‖yn − T (t)yn‖ = 0 for all
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t ≥ 0. So there exists a subsequence {(xnj , ynj )} of {(xn, yn)} such that {(xnj , ynj )}
converges strongly to (u∗, v∗). Since {(xn, yn)} converge weakly to (x∗, y∗), we get
(u∗, v∗) = (x∗, y∗).

Corollary 3.2. Let H1, H2 and H3 be real Hilbert spaces, {S(t) : t ≥ 0} and {T (t) : t ≥ 0}
be two self-mapping quasi-nonexpansive semigroup of H1 and H2 with C :=

⋂
t≥0

F (S(t)) 6=

∅ and Q :=
⋂
t≥0

F (T (t)) 6= ∅, A : H1 → H3 and B : H2 → H3 be two bounded linear

operators. Assume that S − I, T − I are demiclosed at 0 and S, T are uniformly L-
Lipschitzian. For any x0, u ∈ H1 and y0, v ∈ H2, the sequence {(xn, yn)} is generated
by

un = S(tn)(xn − γnA∗(Axn −Byn))

vn = T (tn)(yn + γnB
∗(Axn −Byn)) (3.21)

xn+1 = βnun + (1− βn − αn)(xn − γnA∗(Axn −Byn)) + αnu

yn+1 = βnvn + (1− βn − αn)(yn + γnB
∗(Axn −Byn)) + αnv

for all n ∈ N ∪ {0} where {tn} and {γn} are two sequence of positive real numbers, {βn}
is a sequence in (0, 1) and {αn} is a sequence in (0, 1− a) for some a > 0 satisfying

(1) lim
n→∞

tn =∞,

(2) lim
n→∞

αn = 0 and

∞∑
n=1

αn =∞ ,

(3) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

(4) βn + αn < 1,

(5) γn ∈
(
ε,

2 ‖Axn −Byn‖2

‖A∗(Axn −Byn)‖2 + ‖B∗(Axn −Byn)‖2
− ε
)
for some ε > 0 .

If Ω = {(x∗, y∗) ∈ H1 ×H2 : Ax∗ = By∗, x∗ ∈ C, y∗ ∈ Q} 6= ∅, then

(I) the sequence {(xn, yn)} converges weakly to a solution (x∗, y∗) ∈ Ω of (1.4).
(II) In addition, if there exists at least one t such that S(t) ∈ {S(t) : t ≥ 0} and

T (t) ∈ {T (t) : t ≥ 0} are semi-compact, then the sequence {(xn, yn)} converges
strongly to a solution (x∗, y∗) ∈ Ω of (1.4).

In Theorem 3.1, taking B = I and H2 = H3, we obtain the following result for split
common fixed point problem (1.2).

Corollary 3.3. Let H1 and H2 be real Hilbert spaces, {S(t) : t ≥ 0} and {T (t) : t ≥ 0} be
two self-mapping quasi-nonexpansive semigroup of H1 and H2 with C :=

⋂
t≥0

F (S(t)) 6= ∅

and Q :=
⋂
t≥0

F (T (t)) 6= ∅ and A : H1 → H2 be a bounded linear operators. Assume

that S − I, T − I are demiclosed at 0 and S, T are uniformly L-Lipschitzian. For any
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x0, u ∈ H1 and y0, v ∈ H2, the sequence {(xn, yn)} is generated by

un = S(tn)(xn − γnA∗(Axn − yn))

vn = T (tn)(yn + γn(Axn − yn)) (3.22)

xn+1 = βnun + (1− βn − αn)(xn − γnA∗(Axn − yn)) + αnu

yn+1 = βnvn + (1− βn − αn)(yn + γn(Axn − yn)) + αnv

for all n ∈ N ∪ {0} where {tn} and {γn} are two sequence of positive real numbers, {βn}
is a sequence in (0, 1) and {αn} is a sequence in (0, 1− a) for some a > 0 satisfying

(1) lim
n→∞

tn =∞,

(2) lim
n→∞

αn = 0 and

∞∑
n=1

αn =∞ ,

(3) L(t) = max{L(1)(t), L(2)(t)} and
∞∑
n=1

(L(tn)− 1) <∞,

(4) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

(5) βn + αn < 1,

(6) γn ∈
(
ε,

2 ‖Axn − yn‖2

‖A∗(Axn − yn)‖2 + 1
− ε
)
for some ε > 0 .

If Ω = {q ∈ C,Aq ∈ Q} 6= ∅, then
(I) the sequence {(xn, yn)} converges weakly to a solution (x∗, y∗) ∈ Ω of (1.2).
(II) In addition, if there exists at least one t such that S(t) ∈ {S(t) : t ≥ 0} and

T (t) ∈ {T (t) : t ≥ 0} are semi-compact, then the sequence {(xn, yn)} converges
strongly to a solution (x∗, y∗) ∈ Ω of (1.2).

Corollary 3.4. Let H1, H2 and H3 be real Hilbert spaces, A : H1 → H3 and B : H2 →
H3 be two bounded linear operators. Let S : H1 → H1 and T : H2 → H2 be quasi-
nonexpansive mappings such that S − I, T − I are demiclosed at 0 and F (S) 6= ∅ and
F (T ) 6= ∅. For any x0, u ∈ H1 and y0, v ∈ H2, the sequence {(xn, yn)} is generated by

un = S(xn − γnA∗(Axn −Byn))

vn = T (yn + γnB
∗(Axn −Byn)) (3.23)

xn+1 = βnun + (1− βn − αn)(xn − γnA∗(Axn −Byn)) + αnu

yn+1 = βnvn + (1− βn − αn)(yn + γnB
∗(Axn −Byn)) + αnv

for all n ∈ N ∪ {0} where {tn} and {γn} are two sequence of positive real numbers, {βn}
is a sequence in (0, 1) and {αn} is a sequence in (0, 1− a) for some a > 0 satisfying

(1) lim
n→∞

αn = 0 and

∞∑
n=1

αn =∞ ,

(2) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

(3) βn + αn < 1,

(4) γn ∈
(
ε,

2 ‖Axn −Byn‖2

‖A∗(Axn −Byn)‖2 + ‖B∗(Axn −Byn)‖2
− ε
)
for some ε > 0 .

If Ω = {(x∗, y∗) ∈ H1 ×H2 : Ax∗ = By∗, x∗ ∈ C, y∗ ∈ Q} 6= ∅, then
(I) the sequence {(xn, yn)} converges weakly to a solution (x∗, y∗) ∈ Ω of (1.4).
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(II) In addition, S and T are semi-compact, then the sequence {(xn, yn)} converges
strongly to a solution (x∗, y∗) ∈ Ω of (1.4).

4. Applications

4.1 Application to the split equality variational inequality problem
Assume that C and Q are nonempty and closed convex subsets of H1 and H2, respec-

tively. Let M : C → E1 be a mapping. Variational inequality problem (VIP) in a Hilbert
space is formulated as the problem of finding a point x∗ with property x∗ ∈ C such that

〈Mx∗, z − x∗〉 ≥ 0, ∀z ∈ C.

We will denote the solution set of VIP by V I(M,C).
A mapping M : C → E1 is said to be α-strongly monotone if for all x, y ∈ C,

〈Mx−My, x− y〉 ≥ α||x− y||2 for α > 0.

A mapping M : C → E1 is said to be β-inverse strongly monotone if for all x, y ∈ C

〈Mx−My, x− y〉 ≥ β||Mx−My||2 for β > 0.

The equilibrium problem (for short, EP) is to find x∗ ∈ C such that

F (x∗, y) ≥ 0, ∀y ∈ C.

The set of solutions of EP is denoted by EP (F ). Given a mapping T : C → C, let
F (x, y) = 〈Tx, y−x〉 for all x, y ∈ C. Then x∗ ∈ EP (F ) if and only if x∗ ∈ C is a solution
of the variational inequality 〈Tx, y − x〉 ≥ 0 for all y ∈ C, that is, x∗ is a solution of the
variational inequality. Setting F (x, y) = 〈Mx, y − x〉, it is easy to show that F satisfies
the following conditions (A1)–(A4) as M is a β-inverse strongly monotone mapping

(A1) F (x, x) = 0,∀x ∈ C,
(A2) F (x, y) + F (y, x) ≤ 0,∀x, y ∈ C,
(A3) For all x, y, z ∈ C, lim

t↓0
F (tz + (1− t)x, y) ≤ F (x, y),

(A4) For each x ∈ C, the function y 7→ F (x, y) is convex and lower semi-continuous.

Define the resolvent mapping Tr(x), r > 0 as

Tr(x) = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}.

It is well known that the resolvent mapping Tr(x) is firmly nonexpansive mapping and
hence quasi-nonexpansive mapping.

Let B1 : C → H1 and B2 : Q → H2 be two β-inverse-strongly monotone mappings,
where C and Q are nonempty and closed convex subsets of H1 and H2, respectively. The
split equality variational inequality problem is equivalent to find x∗ ∈ C, y∗ ∈ Q such that

〈B1(x∗), x− x∗〉 ≥ 0, ∀x ∈ C,

and

〈B2(y∗), y − y∗〉 ≥ 0, ∀y ∈ Q,

and such that

Ax∗ = By∗. (4.1)
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We will denote the solution set of split equality variational inequality problem by , that
is,

Ω = {(x∗, y∗) ∈ V I(B1, C)× V I(B2, Q) : Ax∗ = By∗}.
Setting F (x, y) = 〈B1x, y−x〉, and G(x, y) = 〈B2x, y−x〉, it is easy to show that F and

G satisfy the conditions (A1)–(A4) as Bi is a βi-inverse strongly accretive mapping for
i = 1, 2. For r > 0, x ∈ H1 and u ∈ H2, define mappings Tr : H1 → C and Sr : H2 → Q
as follows:

Tr(x) = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C},

and

Sr(u) = {z ∈ Q : G(z, v) +
1

r
〈v − z, z − u〉 ≥ 0, ∀v ∈ Q}.

We know that F (Tr) = V I(B1, C) 6= ∅, F (Sr) = V I(B2, Q) 6= ∅. Thus the split
equality variational inequality problem with respect to B1 and B2 is equivalent to the
following split equality fixed point problem: to find x∗ ∈ F (Tr), y

∗ ∈ F (Sr) such that
Ax∗ = By∗. Then it follows from Theorem 3.1 that the following result holds.

Theorem 4.1. Let H1, H2 and H3 be real Hilbert spaces, C and Q be nonempty closed
convex subsets of H1 and H2, respectively. Let Bi(i = 1, 2) is a βi-inverse strongly mono-
tone mappings and A : H1 → H3 and B : H2 → H3 be two bounded linear operators with
adjoint A∗ and B∗, respectively. Sr and Tr be resolvent operator of the equilibrium func-
tion F and G, respectively. For any x0, u ∈ H1 and y0, v ∈ H2, the sequence {(xn, yn)}
is generated by

un = Tr(xn − γnA∗(Axn −Byn))

vn = Sr(yn + γnB
∗(Axn −Byn))

xn+1 = βnun + (1− βn − αn)(xn − γnA∗(Axn −Byn)) + αnu

yn+1 = βnvn + (1− βn − αn)(yn + γnB
∗(Axn −Byn)) + αnv

for all n ∈ N ∪ {0} where {tn} and {γn} are two sequence of positive real numbers and
{βn} is a sequence in (0, 1) satisfying

(1) lim
n→∞

αn = 0 and

∞∑
n=1

αn =∞ ,

(2) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

(3) βn + αn < 1,

(4) γn ∈
(
ε,

2 ‖Axn −Byn‖2

‖A∗(Axn −Byn)‖2 + ‖B∗(Axn −Byn)‖2
− ε
)
for some ε > 0 .

If Ω = {(x∗, y∗) ∈ V I(B1, C)×V I(B2, Q) : Ax∗ = By∗} 6= ∅, then the sequence {(xn, yn)}
converges strongly to a solution (x∗, y∗) ∈ Ω of (4.1).

4.2 Application to the split equality equilibrium problem
Let H1, H2 and H3 be real Hilbert spaces and C,Q be nonempty closed and convex

subset of H1 and H2 respectively. Suppose that A : H1 → H3 and B : H2 → H3 are
bounded linear operators. Let F : C × C → R and G : Q × Q → R be bi-functions. A
split equality equilibrium problem is to find a point x∗ ∈ C, y∗ ∈ Q such that

F (x∗, z) ≥ 0, G(y∗, u) ≥ 0,∀z ∈ C, ∀u ∈ Q and Ax∗ = By∗ (4.2)
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We assume the following condition of F and G:

(A1) F (x, x) = 0,∀x ∈ C and G(x, x) = 0,∀x ∈ Q,
(A2) F (x, y) + F (y, x) ≤ 0,∀x, y ∈ C and G(x, y) +G(y, x) ≤ 0,∀x, y ∈ Q,
(A3) For all x, y, z ∈ C, lim

t↓0
F (tz+(1−t)x, y) ≤ F (x, y) and for all x, y, z ∈ Q, lim

t↓0
G(tz+

(1− t)x, y) ≤ G(x, y),
(A4) For each x ∈ C, the function y 7→ F (x, y) is convex and lower semi-continuous and

For each x ∈ Q, the function y 7→ F (x, y) is convex and lower semi-continuous.

Define the resolvent mappings TFr , r > 0 and TGs , s > 0 as

TFr (x) = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C},

and

TGs (u) = {z ∈ Q : G(z, v) +
1

s
〈v − z, z − u〉 ≥ 0, ∀v ∈ Q}.

It is well known that the resolvent mapping TFr and TGs are firmly nonexpansive mappings
and hence quasi-nonexpansive mappings. Moreover it is known that if x∗ and y∗ solves
problem (4.2), then x∗ ∈ F (TFr ) and y∗ ∈ F (TGs ).

Theorem 4.2. Let H1, H2 and H3 be real Hilbert spaces, C and Q be nonempty closed
convex subsets of H1 and H2, respectively. Let A : H1 → H3 and B : H2 → H3 be two
bounded linear operators with adjoint A∗ and B∗, respectively. TFr and TGs be resolvent
operator of the equilibrium function F and G, respectively. For any x0, u ∈ H1 and
y0, v ∈ H2, the sequence {(xn, yn)} is generated by

un = TFr (xn − γnA∗(Axn −Byn))

vn = TGs (yn + γnB
∗(Axn −Byn))

xn+1 = βnun + (1− βn − αn)(xn − γnA∗(Axn −Byn)) + αnu

yn+1 = βnvn + (1− βn − αn)(yn + γnB
∗(Axn −Byn)) + αnv

for all n ∈ N ∪ {0} where {tn} and {γn} are two sequence of positive real numbers and
{βn} is a sequence in (0, 1) satisfying

(1) lim
n→∞

αn = 0 and

∞∑
n=1

αn =∞ ,

(2) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

(3) βn + αn < 1,

(4) γn ∈
(
ε,

2 ‖Axn −Byn‖2

‖A∗(Axn −Byn)‖2 + ‖B∗(Axn −Byn)‖2
− ε
)
for some ε > 0 .

If Ω = {(x∗, y∗) ∈ C ×Q : F (x∗, z) ≥ 0, G(y∗, u) ≥ 0,∀z ∈ C,∀u ∈ Q and Ax∗ = By∗} 6=
∅, then the sequence {(xn, yn)} converges strongly to a solution (x∗, y∗) ∈ Ω of (4.2).
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