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Abstract As we know, most of the metric spaces we face in analysis having natural order that with this

order become a lattice. In theorems related to the best proximity pair on metric spaces, it doesn’t use

this useful tools. In this article we have used this natural order, and we proved the theorems on existence

and uniqueness of the best proximity pair on Banach lattices.
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1. Introduction

The best proximity pair problem is one of the important topics that has been written
a lot of articles concerning it in recent years. It is very extensive field which has many
applications in mathematics and some other sciences. If A and B are two nonemplty
subsets in metric space X so,

d(A,B) = dist(A,B) = inf{d(x, y) : x ∈ A, y ∈ B} > 0

then the mapping T : A→ B having no fixed point, at that time, we are following points
like x0 ∈ A which d(x0, Tx0) = d(A,B).

The pair (x0, Tx0) is called a best proximity pair of T . Also x0 ∈ A is said to be a
best proximity point for T . The set of the best proximity points is shown by PT (A,B),
i.e.,

PT (A,B) = {x ∈ A : d(x, Tx) = dist(A,B)}.
A sequence {xn} ⊆ A is a T -minimizing sequence of A if limn→∞ d(xn, Txn) = d(A,B).

In some essays the best proximity pair theorem has been discussed in metric spaces, and
the problem has been solved considering the specific states of T and also the conditions
on A and B. (Like compactness or convexity of A). For instance, Eldred and veeramani
in [1] introduced cyclic contraction maps and discussed the best proximity problem for
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cyclic contraction map on uniformly convex Banach spaces. In [2] this problem examined
for relatively nonexpansive maps. Also proximinal pointwise contraction maps defined by
Anuradha and Veeramani in [3], they proved existence of best proximity point on a pair
of weakly compact convex subsets of a Banach space. New results can be find in [4], [5],
[6] and [7]. Kurc in [8] introduced dominated the best approximation problem in Banach
lattices and in [9] he and Hudzik extended the results in [8]. In other words they conected
the best approximation problem to the monotonicity problem. Some Authors in [10], [11]
and [12] modify some results in nearest and farthest point and monotonity problems.

In this article we discuss the best proximity pair for general mapping T : A → B.
Also by attention to order’s properties in Banach lattice, we consider A be a downwards
directed set.

One of an important conditions on A is convexity. However, convexity is sometimes a
very restrictive assumption, so there is a clear need to study the best proximity pair by
not necessarily convex sets. Downwards directed sets are nonconvex sets which play an
important role in some parts of mathematical.

2. Preliminaries

In this section we first introduce definitions and recall some basic results. If X is a
partially ordered vector space, then X is called a vector lattice space (or a Riesz space)
if x ∨ y := sup{x, y} and x ∧ y := inf{x, y} both exist in X (∀x, y ∈ X). For any vector
x in vector lattice space X define x+ := x ∨ 0, x− := x ∧ 0 and |x| := x ∨ (−x). The set
X+ = {x ∈ X : x ≥ 0} is called a positive cone of X, and its members are called the
positive elements of X. Recall that a norm ‖ · ‖ on a vector lattice space is said to be a
lattice norm whenever |x| ≤ |y| implies ‖x‖ ≤ ‖y‖. A vector lattice space equipped with
a lattice norm is known as a normed vector lattice space (or a normed Riesz space). If
normed vector lattice space is also norm complete (i.e., if every norm Cauchhy sequence
has a norm limit), then it is referred to as a Banach lattice. More details about Banach
lattices could be find in [13],[14] and [15]. Let (X,≤) be a Banach lattice with a lattice
norm ‖ · ‖. The norm ‖ · ‖ is said to be strictly monotone (X ∈ STM) if for all x, y ∈ X+,
the conditions x ≥ y, y 6= 0 and ‖x‖ = ‖y‖ implies x = y. We say that the norm is
uniformly monotone (X ∈ UM) if for any yn ≥ xn ≥ 0, limn→∞ ‖xn‖ = limn→∞ ‖yn‖
implies ‖yn − xn‖ → 0. As an example, Lp-spaces with 1 ≤ p < ∞ are UM spaces, but
the space L∞ is not even an STM space.

Definition 2.1. A nonempty subset W of a Banach lattice X is said to be downwards
directed set if for any two elements u and v in W , there exists an element w ∈ W such
that w ≤ u ∧ v.

For example, let f : X → R be an increasing function, then W = {x ∈ X : f(x) ≤ c}
is a downwards directed set for all c ∈ R.

Following if A and B are two nonempty subsets in Banach lattice X, the symbol A ≥ B
means a ≥ b for any a ∈ A and b ∈ B.

Definition 2.2. Let A and B be nonempty subsets of a Banach lattice X. In this case
it is said that pair (A,B) having STM property if it is applied to the following property:

If x, x′ ∈ A and y ∈ B such that 0 ≤ x ≤ x′ and ‖x− y‖ = ‖x′− y‖ = dist(A,B), then
x = x′.
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Remark 2.3. It is obvious that in any STM space, if A ≥ B (or B ≥ A), then pair
(A,B) having STM property.

Definition 2.4. Let A and B be nonempty subsets of a Banach lattice X. In this case
it is said that pair (A,B) having UM property if it is applied to the following property:

If {xn} and {yn} are sequences in A and {yn} is a sequence in B such that 0 ≤ xn ≤ x′n
and limn→∞ ‖xn − yn‖ = limn→∞ ‖x′n − yn‖ = d(A,B), then limn→∞ ‖xn − x′n‖ → 0.

Remark 2.5. It is clear that in any UM space, if A ≥ B (or B ≥ A), then pair (A,B)
having UM property.

3. Main results

In this section we pay to examine the conditions for proving the existence and unique-
ness of the best proximity pair problem in Banach lattice, similar to the main result in
[1], (Theorem 3.10) which it has been proved in uniformly convex Banach spaces.

Theorem 3.1. Let X be a Banach lattice and pair (A,B) having STM property with
A ≥ B. If A is a downwards directed set then card(PT (A,B)) ≤ 1.

Proof. Suppose that there exist x, y ∈ A such that ‖x− Tx‖ = ‖y − Ty‖ = d(A,B) = d.
Since A is a downwards directed set, there exists w ∈ A auch that w ≤ x ∧ y. Thus
0 ≤ w − Tx ≤ (x− Tx) ∧ (y − Tx) and we have d ≤ ‖w − Tx‖ ≤ ‖x− Tx‖ = d.

Attention to pari (A,B) has STM property, we get w = x and by similarity it conclude
that w = y as a result card(PT (A,B)) ≤ 1.

Theorem 3.2. Let X be a Banach lattice and pair (A,B) having UM property with
A ≥ B. If A is a downwards directed set then any T -minimizing sequence of A is a
Cauchy sequence.

Proof. Let {un} ⊆ A be a T -minimizing sequence of A, i.e., limn→∞ ‖un − Tun‖ =
d(A,B) = d. We show that {un} is a Cauchy sequence. Otherwise, there are subsequences
{unk

} and {umk
} of {un} and ε > 0 such that ‖unk

− umk
‖ ≥ ε. By considering A is a

downwards directed set, there exists vk ∈ A such that vk ≤ unk
∧ umk

. Therefore

0 ≤ vk − Tunk
≤ (unk

− Tunk
) ∧ (umk

− Tunk
)

and we have d ≤ ‖vk − Tunk
‖ ≤ ‖unk

− Tunk
‖ → d as n→∞.

Attention to pair (A,B) has UM property we obtain, ‖vk − unk
‖ → 0 as k → ∞.

Likewise, we get ‖vk − umk
‖ → 0 as k →∞. Hence ‖unk

− umk
‖ → 0, a contradiction.

Definition 3.3 ([1]). Let A and B be nonempty subsets of a metric space X. A map
T : A ∪B → A ∪B is a cyclic contraction map if it satisfies:

(1) T (A) ⊆ B and T (B) ⊆ A
(2) For some k ∈ (0, 1) we have d(Tx, Ty) ≤ kd(x, y) + (1− k)dist(A,B)

Note that (2) implies that T satisfies d(Tx, Ty) ≤ d(x, y), for all x ∈ A, y ∈ B.

Proposition 3.4 ([1]). Let A and B be nonempty subsets of a metric space X. Suppose
T : A ∪B → A ∪B is a cyclic contraction map. Then starting with any x0 in A ∪B we
have d(xn, Txn)→ dist(A,B), where xn+1 = Txn, n = 0, 1, 2, . . ..

Theorem 3.5. Let X be a Banach lattice and pair (A,B) having UM property with
A ≥ B. If A is a closed downwards directed set and T : A ∪ B → A ∪ B is a cyclic
contraction map, then card(PT (A,B)) = 1.
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Proof. If pair (A,B) has UM property then pair (A,B) has STM property, so based on
Theorem 3.1, cardPT (A,B) ≤ 1.

Suppose x0 ∈ A and define xn+1 = Txn, n = 0, 1, 2, . . ., in this case based on Propo-
sition 3.4, {x2n} is a T -minimizing sequence in A. So based on Theorem 3.2, {x2n} is
convergence. Thus there exists x ∈ A such that limn→∞ x2n = x. Since

d(A,B) ≤ ‖x− Tx2n‖ ≤ ‖x− x2n‖+ ‖x2n − Tx2n‖ → d(A,B)

Therefore ‖x− Tx2n‖ → d(A,B).
Also,

‖x2n+2 − Tx‖ = ‖Tx2n+1 − Tx‖ ≤ ‖x2n+1 − x‖ = ‖Tx2n − x‖ → d(A,B).

i.e., ‖x2n+2 − Tx‖ → d(A,B).
Finally d(A,B) ≤ ‖x − Tx‖ ≤ ‖x − x2n‖ + ‖x2n − Tx‖ → d(A,B) as n → ∞, so

‖x− Tx‖ = d(A,B).

Example 3.6. Assume that A and B be points of X, and X = Mn(R) be the vector
space of n×n real matrices such that A ≤ B if and only if aij ≤ bij for i, j ∈ {1, 2, . . . , n}.
If ‖A‖ =

∑n
i,j=1 |aij | then (X, ‖·‖) is a Banach lattice. Let A =

{
(aij)

n
i,j=1 : 2 ≤ aij ≤ 3

}
and B =

{
(bij)

n
i,j=1 : −1 ≤ bij ≤ 0

}
and T : A∪B → A∪B defined by T ((aij)

n
ij=1) = (2−

aij)
n
ij=1, thus T is a cyclic contraction map and pair (A,B) has UM property. By Theorem

3.5, card(PT (A,B)) = 1. In fact if x0 = (2)ni,j=1, then ‖x0 − Tx0‖ = d(A,B) = 2n2.

It’s necessary to review A0 = {a ∈ A : d(a, y) = d(A,B) for some y ∈ B} and
B0 = {b ∈ B : d(x, b) = d(A,B) for some x ∈ A}. It is obvious that A0 6= ∅ if and only if
B0 6= ∅.

Theorem 3.7. Let X be a Banach lattice and pair (A,B) having UM property with
A ≥ B and T : A→ B be a continuous map. If A is a closed downwards directed set and
A0 6= ∅ such that T (A0) ⊆ B0, then card(PT (A,B)) = 1.

Proof. We start with any x0 ∈ A0. Since T (A0) ⊆ B0 so there exists x1 ∈ A0 such
that ‖x1 − Tx0‖ = d(A,B). Also T (x1) is in B0, it follows that there exists x2 ∈ A0

such that ‖x2 − T (x1)‖ = d(A,B). Inductively, we get ‖xn+1 − T (xn)‖ = d(A,B). By a
similar argument as proving Theorem 3.2, we can prove that {xn} ⊆ A is a convergence
sequence. Let xn → x ∈ A. By continuity of T , we have Txn → Tx and as a result
‖x − Tx‖ = d(A,B). On the other hand, pair (A,B) has UM property then pair(A,B)
has STM property, so by Theorem 3.1, card(PT (A,B)) ≤ 1. Thus card(PT (A,B)) = 1.

Definition 3.8 ([3]). Let A and B be nonempty subsets of a normed linear space X.
T : A∪B → A∪B is cyclic if T (A) ⊆ B and T (B) ⊆ A. Also T is relatively nonexpansive
if ‖Tx− Ty‖ ≤ ‖x− y‖, for any x ∈ A and y ∈ B.

Also T : A ∪ B → A ∪ B is called a cyclic relatively nonexpansive map if T is cyclic
and relatively nonexpansive.

Corollary 3.9. Let X be Banach lattice and pair(A,B) having UM property with A ≥ B.
Let T : A ∪ B → A ∪ B be a cyclic relatively nonexpansive and continuous map. If A is
a closed downwards directed set and A0 6= ∅, then card(PT (A,B)) = 1.

Proof. Let x0 ∈ A0, so there exists y0 ∈ B0 such that ‖x0 − y0‖ = d(A,B). Therefore
d(A,B) ≤ ‖Tx0 − Ty0‖ ≤ ‖x0 − y0‖ = d(A,B). It means that T (A0) ⊆ B0. By a similar
argument as proving Theorem 3.7, the proof is complete.
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Corollary 3.10. Let X be Banach lattice and pair(A,B) having UM property with A ≥ B
and A ∩ B 6= ∅. Let T : A ∪ B → A ∪ B be a cyclic relatively nonexpansive map. If A is
a closed downwards directed set and A0 6= ∅, then T has a unique fixed point.
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