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1. INTRODUCTION AND PRELIMINARIES

Fractional calculus generalizes the integration and differentiation of integer order to
arbitrary order is being studied for past 300 years. The growing interest of researchers
in this field has led to solve the real-world issues in type of fractional differential equa-
tions due to their non-local behavior and these equations are well suited to describe
various phenomenon in the field of physics and engineering. Also fractional derivatives
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are capable to model various processes mathematically which exhibit the memory and
hereditary properties. A number of researchers [1-21] have also investigated the struc-
ture, implementations and various directions of extensions of the fractional integration
and differentiation in detail.

In 1903, Mittag-Leffler (M-L) [22] defined a function in term of a power series:

oo

ZTL
E = — >0,z C). 1.1
(0= @y €>0:€0 (11)
Wiman [23] has also given a two-index generalization of this function as:
E . 1.2
. ZF§n+T (€>0,7>0,z€C) (1.2)

In particular, the functions (1.1) and (1.2) are entire functions of order p = 1/£ and type
o =1, (see, for example ([24], P. 118)).

Prabhakar [25] presents the generalizing series representation (1.2) as
z):iLﬁ & 1,6 € C,R(E) >0,R(7) >0). (1.3)
—T(En+7)nl
This is an entire function of order [R(7)]™" ([25], p. 7) and (g) denotes the well-known

Pochhammer’s symbol that is defined (see, ([26], p.2 and p.5)) a;

RGN n=0is€C\{0)
On =T “1cl+Dlc+m-1), c=neNceC.

By means of the generalizing (1.3) series representation Kilbas et al. [27] defined an
extension as:

Zn

E(&67) 2] = Ec[(§1,71) 5 ooy (€ Tm) 5 Zmn, (1.4)

Ifr;eR(1;#0),& €C(j=1,...,m) and z = C, then it is proved by Kilbas et al. [27]
that:

1) If 3™ 75 > 0, then the above extended Wright function is an entire function
g=1"J g

of z.
(2) If Z;n 17 > 0 and either |z| < Z;n L7 or 2 = Z;n L™, Z;n 1 R(E) >
R(s) + m/2, then the series in Y - % f:, is absolutely convergent.

In addition, Formula (1.4) gives the Mellin-Barnes integral formulation for the extensive
M-L function E[(&,7),,;2]. A full H-function account is available in the Mathai and
Saxena [28] Kilbas and Saigo [29] and monographs.

Further, generalized multi-index M-L function are well-defined and studied by Saxena

and Nishimoto [30] in the following manner:

z n

all& 2] = (g“TJ Z H =1 (€Jn+7'3) n!’ (15)
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m
(&,75,6,¢,2€ C,R(1;) >0(j =1,2,...,m); %(Z &) > max{0, R (¢) — 1}).
j=1
Readers may refer to the recent research work [31-40] and the references cited therein
for a detailed account of the various properties, extended version and implementations of
this function.

Motivated by the established potential for application of these M-L function, we extend
the generalized multi-index M-L function Eq. (1.5) by means of the extended beta function
B, (z,y) and investigate other physical properties, including integral representation and
differentiation laws, Mellin Transform and Beta Transform with their various special
cases, Relations between the proposed function with Laguerre polynomials and Whittaker
functions. Furthermore, certain relationships between the proposed function and the
fractional derivatives and integrals of Riemann-Liouville (R-L) are investigated. Several
specific cases of our main outcomes are also considered.

2. A CLASS OF EXTENDED MULTI-INDEX M-L TYPE FUNCTION

For the present investigation, we extent the generalized multi-index M-L function E(ggq ) [2]
in the following way:
Eeopa(€7): (0] = EEV? (2:p)
— c n
_ Z c +ng,c—5) () gn 2 21)

B(s,c—¢) H?:IF(fjn+Tj)H’

where §;,7;,6,¢,2€ C,p>0,R(c) >R(s) >0,R (1) >0(j =1,2,..,m); R (Z;n:l §j> >
max {0,% (¢) — 1}, which will be called as extended multi-index M-L type functions
(EMMLF). The Bp (x,y) is an extended beta function shown as follows in [41, 42]:

B, (z,y) = /01 A=Y emmadt (R(z) > 0,R(y) > 0,R(p) >0). (2.2)

If p = 0, the function B, (x,y) reduces into the classical beta function. Specific special
cases of this function are listed below as:

(1) When p = 0, the EMMLF reduces into the one that has been considered by
Saxena and Nishimo defined in Eq. (1.5) (see [30]).

(2) If we set m = 1 and p = 0 with R(7) > 0; R(§) > max{0,R(q) — 1}, the
EMMLF reduces in to generalized M-L function which has been considered by
Srivastava and Tomovski ([413], p. 200, Eq. (1.13))

o~ (g 2"

Eeql& )izl =E [l = z::o TEn+r)n (2.3)

when ¢ = 1, we obtain as special case of Eq. (2.3) which is defined in Eq. (1.4).
(3) The special case of (2.1), when ¢,¢ =1 and p = 0 yields the M-L function due
to Al-Bassam and Luchko [44]

El,l |:(£J7 Tj)m. ’Z} (fgaTJ)m Z H] 1 €jn + Tj) (24)
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(fjﬂ'j,z c (C,%(Tj) > 0,%(6]) > 0(] = 1,27...7m)).

Next, if we set m = 2 in Eq. (2.4) provides another type of generalization of M-L
function due to Djrbashyan [24].

(4) When ¢,¢ = 1, p = 0 and & is substituted by é (j=1,2,...,m), then Eq.
(2.1) reduces to the multi-index M-L function defined by Kiryakova [45]

-Ejl.,1 l:(]‘/EJ? Tj)m ) Z] E(l /8575) m (25)

Z H; 1 ((n/fj) +75)

(&, 15,2€ C;R(15) >0,R (&) >0(i =1,2,...,m)).

(5) If we put ¢ = ¢ =m =1 with min {R (£),R (1)}, then (2.1) reduces in to the
generalized M-L function considered by Wiman [23] defined in Eq. (1.2) and also
¢=7=q=m=1 found in Eq. (1.1).

3. BASIC PROPERTIES OF E(( iq) (z;p)

In this section, we acquire some basic properties, including integral representation, inte-
gral and differentiation properties of the extended multi-index M-L functions.

Theorem 3.1. The extended multi-index M-L function can be represented as:

1
(<7C)§q . _ # c—1 . c—c—1 o f .q q
Egim.. (Z,P)B(g,c_g)/ot (L=t e Bl (t1z)dt (3.1)

wherep > 0,R (¢) > 0,R(s) >0,R(r;) >0(j =1,2,...,m); (E 1§])>max{0,§}%(q)
1}.
Proof. Using Eq. (2.2) in Eq. (2.1), we obtain

E((;Ci?q (z:p) Z{/ g (1t)6§1et<1—t>dt}

()ng 2"

% B(s,c—=) L, T (gn+m)n!

Changing the order of summation and integration, and after simplification of above equa-
tion, we get

& (57)
>~ rl _ n 3.2
D Dl IR St B T 42
B(s,c—x) 00 Hj=1r(fjn+7—j)n
Using Eq. (1.5) in Eq. (3.2), we obtain the desired result Eq. (3.1). L]

Corollary 3.2. Taking t = in Theorem 3.1, we get

1+T

; 1 < sl paen? (r)?z
E(QC)#I . — / fEc,q d ) 33
(&.m),, (53P) B(oe—9Jy @t+r°" Emm \@+r)? )" (3:3)
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Corollary 3.3. Consider t = sin® 6 in Theorem 3.1, we obtain

. 2 3 _ o —p
ES (2p) = 7/ sin 0)% " (cos 0)* " ez ()
(€573) (5P) B(s,c—<) Jo (sinf)™ " (cost) P\ sinZ0cos? 0
(3.4)
c, 2
X E(Ejﬁ])m (zsin®?0) df.

Corollary 3.4. Recurrence relation holds in the definition of (2.1) for j =1 as:
B (zp) = TEGD (210) + €2 B, (i) (3.5)

where p > 0,R (c) > 0, R () > 0,N () > 0; R (§) > max {0, R (¢) — 1}

Proof. Consider the definition of (2.1) for j = 1, and the right side of the Eq. (3.5), we

obtain

EEEL (ip) 4 6 B (i)

n

_ - B (§+nq,cf§) (C)n z
_TZ pB(gc—c) F({“n—l—qT—i—l)H

n=0
i = Bp (§+nQ7c_§) (C)qn i
+£Zdzz B(s,c—¢) T(n+7+1)n!

n=0

<+nq, —6) (O)gn (En+ 1) 27
_Z B(s,¢—%) (fn—kr—}—l)nf

= E((g 9 (2 p).

Theorem 3.5. For the extended multi-index M-L functions, we have the following higher
derivative formula:

s (s,¢)5q

B (530) = (0, (e a), o (e (0= 1)), Bl o0

q E(£j77'j+n£j)"" (Z,p) . (36)

Proof. Differentiating with respect to z in Eq. (2.1), we get

d 0); =B, (s+ng,c—¢ (g nz" 1
ZEGYS (=) :;) p;(g,c_g) )Hm_lr(gqumj) n
= Z (s+(n—1g+gc—<) (1) 2!
B(s,c—5) [ T (&Gn+m) (-1
(3.7)

we can write the Pochhammer symbols as

(C)q(n—1)+q = (C + q)q(n—l) (C)q . (38)
Now using Eq. (3.8) in Eq. (3.7), we obtain Eq. (3.9) as

d (g (s+a,cta)ig (.
dZE(gJ’TJ)m (Z p) ( ) E(&jﬂ'j"l‘fj)m (Z7p) . (39)
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Again differentiation with with respect to z in Eq. (3.9), we get

d? ; +2q,c42q);
TEBES (59) = (0 (e+a), B 250 (250) (3.10)
Continuing this procedure n times, we obtain the desired result Eq. (3.6). L]

Theorem 3.6. The following differentiation holds for the extended multi-index M-L func-
tions as

d" T1...Tm—1 1(5,6)5q b T —n—1 1(5,¢);q e
dzn {Z By, (A ;p)} =zt B (AStmp)
(3.11)

Proof. Replace z by A\z%¢ in Eq. (2.1) and take its product with z™7m~1 after that
taking differentiation with respect to z, we get

d _
s, )

_ Tm—QZ §+nq,c—<) (©)gn
(Se—=¢) TS T(En+m) n!

Further, taking differentiation with respect to z up to n times of above term, we obtain
our required result. [

)\nzéln...{mn

4. INTEGRAL TRANSFORM OF E((;Cij‘g (z;p)

Definition 4.1. The Mellin transform [40] of the function f (z) is defined as

M(f(2);5) = / SV (2)dz = £ (), (R(s) > 0), (4.1)
then inverse Mellin transform
—17 px* 1 Atrico * —s
FE =M @ =g [ @ (12)
where A > 0 .

In the following theorem, we provide Mellin transform of the extended multi-index M-L
functions in term of the Wright generalized hypergeometric function [47].

(c1,C1), (c2,Ca) oy (cp, Cp [ (c;,Cin) 2"
p¥q (2) = piq { (d1,D1), (dg, Dy), ..., (dy, D ; ] Z T (dy, Dyn) !’
(4.3)

where the coefficients C; (i = 1,2, ,...,p) and D; (j = 1,2,...,q) are positive real numbers
such that

q P
1+) D;=> Ci>0.
j=1 i=1
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Theorem 4.2. The Mellin transform of the extended multi-index M-L functions is given
by

(ceha (.. F(s)T'(s+c—¢) (¢,q),(r+5,q);
M{E(Ej,-rj)m (va)’s)} - F(q)f‘( 7§) 2'¢m+1 |: (Tj,gj)ln7(c+25,q>§ Z:| ’
(4.4)

where R(c) > 0,R(s) > O,R(<) > 0,R(r;) > 0(j = 1,2,...,m);a<e(z;ﬂ:15j) > max
{0,R(¢) —1},p > 0 and 2141 is the Wright generalized hypergeometric function.

Proof. Applied the Mellin transform of the extended multi-index M-L functions, we have

M{EEDS i)} = [ p T EES (p)dp. (4.5)
(E] Tj ) 0 (E]’Tj)m
Using equation (3.1) in right sided of equation (4.5), we get
M{EED, o))

1 - s—1 ' -1 c—s—1 it (
- ‘ AN N R Gl Dhol t1z) dt ¢ dp.
B (g’ c— g) /0 p {A ( ) € (£j77—j)m ( Z) P

Upon Interchanging the order of integration in Eq. (4.6), which is admittable due to the
conditions of the Theorem 4.2, we get

M{EEDS, i)

1 1 o0 —p (
= [ -t R td / s=letm—ndp b dt.
B(C,C—§) /0 ( ) (fgﬂ'])m ( Z) 0 P € P

Now letting u = t(%t) in Eq. (4.7), and applying the mathematical formula that I" (s) =

4.6)

A7)

00 g1
Jo utlre T du, we get

M{EETS, ()i
I (s)

1
= [ gstsel(p_g)emetel pea 92) dt.
B(c,c—c)/o (=1 € m,, (72)

Using Eq. (1.5), and interchanging the order of summation and integration which is
permitted for R (£;) > 0,R(7;) > 0,R(s) > 0,N(c) > R(s) > 0,R(c+s—¢) > 0, we
obtain

(4.8)

M {Efgl“) (2 p); 8)}
(Z)n /1 — s+c—¢—1
- gorstan=l (1 ¢ STt
S, c—¢) ZH (§JH+TJ) n! Jo ( )
Using the relation between Beta function and Gamma function, we obtain
M {Efé;?l;% (=:0): s>}

Z "F(§+s+qn)F(s+c—§)
(ce—¢) = IIL §Jn+TJ) I'(c+ 25+ qn) '

(4.9)
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After simplification, we obtain

M{Eéz;ﬂ;% v}

_Ti) 3+C—< Z (c+qn)T'(s+s+qn)2" (4.10)
)T (c—y9) H I'En+7)T(c+2s+qn)n
In view of Eq. (4.3), we arrived at our result Eq. (4.4). L]

Corollary 4.3. Taking s =1, Theorem 4.2, we get

e (. _ Ple—c+1) (¢,q),(r+1,q);
/0 E(gj,rjq)m (z;p) dp = T ()T (c— )2¢m+1 [ (Tj7£j);71’(c+2,q); z|. (4.11)

Corollary 4.4. Applying the inverse Mellin transform on reft and right side of equation
(4.4), we gain the important complex integral representation

—ico (4.12)
¢q),(s+5,q); | Z] s,

A—ioco
(s:e)sq 1
E M) — T N —
(€573) (2:p); 5) 2mil (§) T (e =) /A ; ()T (s +e—c)
(c,
(T 75])1 ,(C+2$,q 5

X 2¥m41 [

5. RELATIONS BETWEEN THE E((5 )) (z;p) WITH LAGUERRE POLYNO-
]a

MIAL AND WHITTAKER FUNCTION
In this part, we represent the extended multiindex M-L functions in terms of Laguerre
polynomials and Whittaker’s function.
Theorem 5.1. For R(c) > 0,R(s) > 0, R(r;) > 0(j =1,2,....,m); (Zj 1§J>
max{0, R (¢) — 1}, p > 0. The extended multiindex M-L functzons holds true:

o2p p($:0)ia (2:p) = Z (p) (c )qk 2
(&5 7'7) Z; § C—§ i OH §]n+7—j)k' (51)
xB(a+gk+c+1,c+b—c+1).
Proof. We begin by recalling the valuable identity which is used in [18] as:
lrtn) = o2 Z Ly (0) La ()t (1= )" (0<t<1). (5.2)
a,b=0
Applying equation (5.2) in equation (3.1), we get
(s:0) 1 b -
$:€)iq . — S— _ TS o2
E(Ej,Tj)m (zp) = B(s,c—¢) /0 T (1-1) €
o (5.3)

a b+1 1,
X > Ly La @)t (=) B (t92) dt,
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and using equation (1.5) in (5.3), we get

1
(s,¢)3q ch) — 1 s—1 (7 _ pe—s—1 _—2p
E(&jﬂ'j)m (zp) = B(s,c—<) /0 T (1-1) e

S a 1 tiz k
Xa,bZZOLb(p)L“(W - ZHJ . (@MTJ)( Lt
(5.4)

Upon interchanging the order of integration and summation, which provide under the
assumption of the theorem, we obtain

o) — (p) (€ 2" 1 et
E((;qu) (z;p) = Blee=o %: B gjk - :]’C) " / gatakts (1 _ 4o gy
(5.5)
Now using definition of Beta function
g _ i )()qukB(a+qk+§+l ctb—c+1).
& m)m — B(s,c—) abhe OHJ 1 §Jk+Tj)k' ,
(5.6)
After simplification, we found the desired result. [

Theorem 5.2. For the extended multi-index M-L functions, we have

L peng _Lle—ctl) = La(p) () 2F p(%;c—l)
G Blse =) ak= = ILZ T (&F + 7)) B! (5.7)

X W _1—a—qhtc—2¢ atqhtec (D)-
2 )

Proof. Allowing for the following equality e(t(;—pﬂ) — () e(F) and via the generating
function relating to the Laguerre polynomials, we obtain

efi=n = e(P(-P/0) (1 — ) Z L, (p)t?, (5.8)
a=0

Substituting Eq. (5.8) in to account in Eq. (3.1), we get

1
(s:0)3q co) 1 dta—1 (1 _ p\e=s—1 (=p) (=p/t) (1 _
B ry,, (20) = B(§,C—§)/O t (1= e eI (1 - 1)

c,q
x Z L E(&J’TJ) ( ) dt’

Interchanglng the order of summation and integration we obtain
(s:€) 7
$,¢)iq g
23
(éj’Tj)m( P)= B(s,c—¢) Z HJ 1 €Jk+TJ)k
1

(5.9)
~ / ta+qk+§71 (1 o t)C—C 6(*P/t)dt.
0
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Using the following integral representation [49]:

p—1

1
[ ot a— 0 e a = T T e F W () (R) > 0.0 () > 0),
0
in Eq. (5.9), we found the desired result. L]

6. FRACTIONAL CALCULUS APPROACH OF E((;Cqu) (z;p)

In this section, we derive a little useful EMMLF properties associated with the right-
sided Riemann-Liouville (R-L) fractional integral operator I, and the right sided R-L
fractional derivative operator D}L, defined for ¢ € C, (R () > 0), z > 0 (See, for details

[50, 51)):

@200 =57 | ot 61

and

14
(1) @) = (5) U0 @) (=R +1. (62)

where [R (¥)] is the integral part of R (). The above is a generalization of the R-L
fractional derivative operator (6.2) by implementing a right-hand R-L fractional derivative
operator fo of order 0 < ¥ < 1 and 0 < ¢ <1 of Hilfer [52]:

o o(1-9 d 1—0)(1-9
(0228) @) = (1077 2 ) (K708 o) (63)
The extension of Eq. (6.3) yields the R-L fractional derivative operator DY 4 when o = 0.

Theorem 6.1. Let 9, \,§;, 7, € C be such that R () > 0, p > 0 and the conditions
given in Eq. (2.1) is satisfied, for x > a, the following relation holds:

v, Hl (- @y B (A (z —a)¥ ;p) (z)
J1=

G+T1. T — ,C)5 1---&m .
=(z—a)’™ ! E((Zj,i,iﬁ)m Mz —a)** ;D). (6.4)

D TG-S ()\ (—a)¥: p) (z)
= (@—a)" T EE (A —a)t ot p). (6.5)

4,0 Ti—1 ,C);
DA TI G- EEYS (Az-a)¥ip) ¢ | (@
j=1

TLee T —09—1 5C); 1--Em.
=(x—a)" E((gj,qu—ﬁ)m Az — a)5mip) . (6.6)
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Proof. By virtue of the formulas Eq. (6.1) and Eq. (2.1), the term by term fractional
integration and use of the relation [51]:

T—1 I'(r) T—1
(12 =) (@) = Ty @m0 (MY ECRW) > 0R() > 0)

(6.7)
yield for x > a,

—

T E=am B (Ae—a¥im) o ] @)

1

J

_ [ = B, (s +ng,c—5) (c)qn N (2 — )Tt Tm (€ Em)n1
= <Ia+ {Z B(s,¢—%) H;"er(fjn_’_n) ] (z)

n=0

= (@—a)" T BN (Me = a)® et ). (6.8)

Subsequent, by Eq. (6.5) and Eq. (2.1), we find that

=1 p(s,e); i
DAL G=a " BEY (Ae—a)¥sp) ¢ | @)
j=1

d L B m o N
— <dx> ]ﬁ_'_ﬂ H (z — a) i1 E((g;y‘)r;q)m ()\ (z . a)fg ;p) (J?)
j=1
d\* 091 1(c,0);
= (d:p) ((m —a)7 T E(;frﬁpﬁ)m ()‘ (x—a)tsm ;P)) (). (6.9)

Applying Eq. (3.11), we are led to the desired result Eq. (6.5). Lastly, by Eq. (6.3) and
Eq. (2.1), we becomes

9,0
D,y

—-

R I CYCRLI R S I
1

j
B O LA R B PR Ct i SR A W
at —  B(sc—q) [[LTEn+m) n!

— i B, (s +ng,c—5) (©)gn o (DW {(Z - a)ﬁ"'mﬂ&mgm)nil}) (@).
)

B(s,c—s) I D(Gn+m)n \70F

n=0

Using the familiar relation of Srivastava and Tomovski [13]:
9,0 T—1 . r (T) T—09-—1
(Da+ {(z —a) }) ()=t =gy (= ) (6.11)

(>a;0<¥<;0<0 <1, R(r) >0).
In Eq. (6.10), we are led to the result Eq. (6.6). ]
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The classical 9 fractional R-L derivative is typically defined by
1 # _9—

DHI G = g | 07 r e ) <o), (612

I'(=9) Jo

where the path of integration is a line from 0 to z in the complex t¢-plane. For the case

L—1<RW) <L(£=1,2,..), it is defined below as

9 e
DEAf ()} = =D S (2)}

dz*

- c% {F(gl_ 5 /Oz (2=t F ) dt}.

Ozarslan and Ozergin [158] have established the extended R-L fractional derivative oper-
ator as follows:

1 # _9—1 —pz2
DI = gy [ -0 e (R0) <0.R () >0)
- 0
(6.13)
and for . — 1 <RW) <L(L=1,2,...),
' s
DYP{f(2)} = ng {r )}
d 1 : 91 e
= — —t -0 f(t)dt .
dzf{r(z—ﬁ)/o(z JoeT i }
If we set p = 0, then we obtain the classical R-L fractional derivative operator.
Theorem 6.2. Let p > 0,R (X)) > 0,R(§;) > 0,R(75) > 0.Then
c—1
A—c, A—1 c,q _ % _ (:0)5a .
D e {z B (zq)} = T B e NEGTS ) (6.14)

Proof. Replacing ¥ by A—c in the definition of the extended fractional derivative operator
(6.13), we get

Di\—c,p {ZX—IE(Céj’Tj)m (ZQ)}

— 1 T c=A=1 rcq q %

Zc—)\—l z N ¢ c—=A—1 e —p2?
_ - _ i q t(z—t)
- r(c—A)/o ! (1 z) By, ) erendt,

Substitute, u = t/z in above equation, we get
c—1

DAep l A1 B ol _ _~* ! A1 g c—A—1
# {Z G )}7F(c—/\) o (1 =)

- 2
x B ul29) e @) duy.
(€527 ) m ( )

Relating this result with equation (3.1), we obtain

c—1

_ _ z
Di\ c,p {ZA IEC,q

o () = Ty P e DEGS, ().

(5]‘ !Tj)m
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7. CONCLUDING REMARK AND DISCUSSION

The properties, integral transform, representation in terms of Laguerre polynomials,
Whittaker function and fractional calculus of the newly defined extended multi-index
M-L type functions are investigated here. Various special cases of the paper’s related
results may be analyzed by taking appropriate values of the relevant parameters. For
example, if we set m = 1 and ¢ = 1 in (2.1), we obtain the unswervingly result due to

Mittal et al. [53] and Ozarslan and Yilmaz [31] respectively. For several other special
cases, we refer to [25, 54, 55] and have left the findings to interested readers.
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