Mathematical Modeling of Fiber Reinforced Structures by Homogenization

Somsak Orankitjaroen ${ }^{1}$, Nuttawat Sontichai ${ }^{22}$, Christian Licht ${ }^{3}$, Amnuay Kananthai ${ }^{4}$

Abstract

We present another proof of a study of Bellieud and Bouchitté that we expect to be more suitable to treat more general geometrical and physical cases. We consider the homogenization of the quasi-linear elliptic problem $$
\begin{array}{rlrlrl} -\operatorname{div} \sigma_{\varepsilon}=f, & \sigma_{\varepsilon} & =a_{\varepsilon}\left|\nabla u_{\varepsilon}\right|^{p-2} \nabla u_{\varepsilon} & & \text { on } \Omega \\ u_{\varepsilon} & =u_{0} & & \text { on } \Gamma_{0} \\ \sigma_{\varepsilon} \cdot n & =g & & \text { on } \Gamma_{1} \end{array}
$$ where Ω is a bounded cylindrical open subset of \mathbb{R}^{3} and $1<p<+\infty$. The fibers occupy a set of thin parallel cylinders periodically distributed in Ω. The conductivity coefficient a_{ε} is ε-periodic and takes very high values in the fibers.

Keywords : Variational convergence, Homogenization

1 Introduction

Let $p \in(1,+\infty)$, we consider the homogenization of the elliptic problem

$$
\begin{array}{rlrl}
-\operatorname{div} \sigma_{\varepsilon}=f, & \sigma_{\varepsilon} & =a_{\varepsilon}\left|\nabla u_{\varepsilon}\right|^{p-2} \nabla u_{\varepsilon} & \\
\text { on } \Omega \tag{1.1}\\
u_{\varepsilon} & =u_{0} & & \text { on } \Gamma_{0} \\
\sigma_{\varepsilon} \cdot n & =g & & \text { on } \Gamma_{1}
\end{array}
$$

where $\Omega:=\omega \times(0, L)$ with $L>0$ and ω is a bounded domain of \mathbb{R}^{2} with smooth boundary and containing the origin of coordinates. The homogenization study of (1.1) consists in examining the behavior of the sequence of the solution $\left(u_{\varepsilon}\right)$ as ε tends to zero. The conductivity coefficient a_{ε} is ε-periodic and satisfies a uniform lower bound, Γ_{0} is an open subset of $\partial \Omega$ with Hausdorff measure $H^{2}\left(\Gamma_{0}\right)$ strictly positive, $\Gamma_{1}=\partial \Omega \backslash \Gamma_{0}$, and n is the unit exterior normal on $\partial \Omega$. The boundary data u_{0} is Lipschitz, while $(f, g) \in L^{p^{\prime}}(\Omega) \times L^{p^{\prime}}\left(\Gamma_{1}\right), p^{\prime}=p /(p-1)$.

[^0]The problem (1.1) is related to the minimization problem

$$
\left(\mathcal{P}_{\varepsilon}\right) \quad \min \left\{F_{\varepsilon}(w)-L(w): w \in W_{\Gamma_{0}}^{1, p}(\Omega)\right\}
$$

where

$$
\begin{align*}
W_{\Gamma_{0}}^{1, p}(\Omega) & :=\left\{w \in W^{1, p}(\Omega): w=u_{0} \text { on } \Gamma_{0}\right\}, \\
F_{\varepsilon}(w) & :=\int_{\Omega} a_{\varepsilon} \phi_{p}(\nabla w) d x, \\
\phi_{p}(\xi) & :=\frac{1}{p}|\xi|^{p}, \forall \xi \in \mathbb{R}^{n}, n=1,2,3, \\
L(w) & :=\int_{\Omega} f w d x+\int_{\Gamma_{1}} g w d H^{2} . \tag{1.2}
\end{align*}
$$

We are interested in the asymptotic behavior of $\left(\mathcal{P}_{\varepsilon}\right)$ as $\varepsilon \rightarrow 0$. We present another proof of a study of Bellieud and Bouchitté [2] that we expect to be more suitable to treat more general geometrical and physical cases.

The bases of the cylindrical domain Ω are denoted by $\omega_{0}=\omega \times\{0\}$ and $\omega_{L}=$ $\omega \times\{L\}$. For each ε, we consider a periodic distribution of cells $\left(Y_{\varepsilon}^{i}\right)_{i \in I_{\varepsilon}}$ such that $Y_{\varepsilon}^{i}:=\left(\varepsilon i_{1}, \varepsilon i_{2}\right)+(-\varepsilon / 2, \varepsilon / 2)^{2}$, and $I_{\varepsilon}:=\left\{i \in \mathbb{Z}^{2}: Y_{\varepsilon}^{i} \subset \omega\right\}$. Let $\left(D_{r_{\varepsilon}}^{i}\right)_{i \in I_{\varepsilon}}$ be the family of disks of \mathbb{R}^{2} centered at $\hat{x}_{\varepsilon}^{i}:=\left(\varepsilon i_{1}, \varepsilon i_{2}\right)$ of radius $r_{\varepsilon} \ll \varepsilon, T_{\varepsilon}^{i}:=D_{r_{\varepsilon}}^{i} \times(0, L)$ and $T_{\varepsilon}:=\cup_{i \in I_{\varepsilon}} T_{\varepsilon}^{i}$. The set of thin parallel cylinders T_{ε} represents the fibers (see Figure 1 and Figure 2). The conductivity coefficient a_{ε} is

$$
a_{\varepsilon}(x)= \begin{cases}1 & \text { if } x \in \Omega \backslash T_{\varepsilon} \\ \lambda_{\varepsilon} & \text { otherwise }\end{cases}
$$

We make the assumptions

$$
\begin{equation*}
r_{\varepsilon} \rightarrow 0, \quad \frac{r_{\varepsilon}}{\varepsilon} \rightarrow 0, \quad \lambda_{\varepsilon} \rightarrow+\infty, \quad k_{\varepsilon}:=\lambda_{\varepsilon} \frac{r_{\varepsilon}^{2}}{\varepsilon^{2}} \rightarrow k, k \geq 0 \quad \text { as } \varepsilon \rightarrow 0 \tag{1.3}
\end{equation*}
$$

In [2], it was shown that the asymptotic limit of $\left(\mathcal{P}_{\varepsilon}\right)$ is

$$
\min \left\{\Phi(u, v)-L(u):(u, v) \in\left(L^{p}(\Omega)\right)^{2}\right\}
$$

where

$$
\Phi(u, v)=\left\{\begin{array}{l}
\int_{\Omega} \phi_{p}(\nabla u) d x+\frac{k \pi}{p} \int_{\Omega}\left|\frac{\partial v}{\partial x_{3}}\right|^{p} d x+\frac{2 \pi \gamma}{p} \int_{\Omega}|v-u|^{p} d x \tag{1.4}\\
\quad \text { if }\left\{\begin{array}{l}
(u, v) \in W_{\Gamma_{0}}^{1, p}(\Omega) \times L^{p}\left(\omega, W^{1, p}(0, L)\right) \\
v=u_{0} \text { on } \Gamma_{0} \cap\left(\omega_{0} \cup \omega_{L}\right)
\end{array}\right. \\
+\infty \quad \text { otherwise },
\end{array}\right.
$$

and

$$
[0,+\infty] \ni \gamma= \begin{cases}\lim _{\varepsilon \rightarrow 0} \varepsilon^{-2}\left|\log r_{\varepsilon}\right|^{-1} & \text { if } p=2 \tag{1.5}\\ \lim _{\varepsilon \rightarrow 0}\left|\frac{2-p}{p-1}\right|^{p-1} r_{\varepsilon}^{2-p} \varepsilon^{-2} & \text { if } p \neq 2\end{cases}
$$

Figure 1: the domain $\Omega=\omega \times(0, L)$ occupied by a composite material

Figure 2: the circular cross section of the fiber, $Y_{\varepsilon}^{i} \subset \omega$

Here, the boundary data u_{0} is assumed to be Lipschitz in order to ensure that the infimum value of problem $\left(\mathcal{P}_{\varepsilon}\right)$ remains finite as $\varepsilon \rightarrow 0$. In case $k=+\infty$, we add further assumption

$$
\begin{equation*}
k_{\varepsilon} r_{\varepsilon} \rightarrow 0, \quad \text { as } \varepsilon \rightarrow 0 \tag{1.6}
\end{equation*}
$$

The conditions

$$
\begin{equation*}
k>0 \quad \text { and } \quad\left\{\gamma>0 \quad \text { or } \quad \omega_{0} \subset \Gamma_{0} \quad \text { or } \quad \omega_{L} \subset \Gamma_{0}\right\} \tag{1.7}
\end{equation*}
$$

guarantee that the functional Φ is coercive in $W^{1, p}(\Omega) \times L^{p}\left(\omega, W^{1, p}(0, L)\right.$.
We are concerned with the extension of this result to more general cross sections of the fibers and more general energy density than ϕ_{p}. The aim of this paper is therefore to provide another proof that we expect to be more suitable to treat such general cases. The steps of the proof in [2] are to successively establish:
(i) a compactness property of the sequence $\left(u_{\varepsilon}\right)$ such that $F_{\varepsilon}\left(u_{\varepsilon}\right)<C$,
(ii) a lower bound inequality of the sequence $\left(F_{\varepsilon}\left(u_{\varepsilon}\right)\right)$,
(iii) an upper bound inequality of the sequence $\left(F_{\varepsilon}\left(u_{\varepsilon}\right)\right)$.

Here we replace the steps (ii) and (iii) by
(ii') an upper equality of the sequence $\left(F_{\varepsilon}\left(u_{\varepsilon}\right)\right)$,
(iii') a lower bound inequality of the sequence $\left(F_{\varepsilon}\left(u_{\varepsilon}\right)\right)$ which essentially uses a subdiffenrential inequality.

2 An Alternative Strategy

It consists, under (1.3), (1.5), (1.6) and (1.7), in proving the following three propositions. In the sequel, the symbols $\rightarrow, \rightharpoonup$ and $\stackrel{*}{\rightharpoonup}$ stand for the strong convergence, the weak convergence and the weak star convergence, respectively. As usual, the letter C denotes various constants and for all $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ in $\mathbb{R}^{3}, \hat{\xi}$ stands for $\left(\xi_{1}, \xi_{2}\right)$.
Proposition 2.1 (compactness property). Let $\left(u_{\varepsilon}\right)$ be a sequence such that $\sup F_{\varepsilon}\left(u_{\varepsilon}\right)$ is finite. Then $\left(u_{\varepsilon}\right)$ is strongly relatively compact in $L^{p}(\Omega)$ and $\left(v_{\varepsilon}\right)$, given by $v_{\varepsilon}:=\frac{|\Omega|}{\left|T_{\varepsilon}\right|} 1_{T_{\varepsilon}} u_{\varepsilon}$, is bounded in $L^{1}(\Omega)$ and, up to a subsequence, $\left(v_{\varepsilon}\right)$ weakly* converges in the space of bounded measures $\mathcal{M}_{b}(\Omega)$ to an element v of $L^{p}(\Omega)$.

Proposition 2.2 (upper bound equality). For all (u, v) in $\left(L^{p}(\Omega)\right)^{2}$, such that $\Phi(u, v)<+\infty$, there exists a sequence $\left(u_{\varepsilon}\right)$ such that $u_{\varepsilon} \rightarrow u$ in $L^{p}(\Omega), v_{\varepsilon} \xrightarrow{*} v$ in $\mathcal{M}_{b}(\Omega)$ and

$$
\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(u_{\varepsilon}\right)=\Phi(u, v)
$$

Proposition 2.3 (lower bound inequality). For all u in $L^{p}(\Omega)$ and for all sequences $\left(u_{\varepsilon}\right)$ such that $u_{\varepsilon} \rightarrow u$ in $L^{p}(\Omega), v_{\varepsilon} \stackrel{*}{\rightharpoonup} v$ in $\mathcal{M}_{b}(\Omega)$, one has:

$$
\liminf _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(u_{\varepsilon}\right) \geq \Phi(u, v)
$$

The proofs of these propositions are presented in the following sections.

2.1 Proof of Proposition 2.1

Compactness property was already proved in [2].

2.2 Proof of Proposition 2.2

Our sole contribution is to prove that we can replace inequality by equality, for that we use the same approximation u_{ε}^{\prime} of u as in [2]

$$
u_{\varepsilon}^{\prime}=\left(1-\theta_{\varepsilon}\right) u+\theta_{\varepsilon} w_{\varepsilon} .
$$

The function θ_{ε} is first defined on the closure of $\omega_{\varepsilon}:=\cup_{i \in I_{\varepsilon}} Y_{\varepsilon}^{i}$ as a $(-\varepsilon / 2, \varepsilon / 2)^{2}$ periodic continuous function which satisfies $0 \leq \theta_{\varepsilon} \leq 1, \theta_{\varepsilon}=1$ on $D_{\varepsilon}:=$ $\cup_{i \in I_{\varepsilon}} D_{r_{\varepsilon}}^{i}, \theta_{\varepsilon}=0$ on $\bar{\omega}_{\varepsilon} \backslash \cup_{i \in I_{\varepsilon}} D_{R_{\varepsilon}}^{i}$, where $D_{R_{\varepsilon}}^{i}$ is the disk of \mathbb{R}^{2} centered at $\hat{x}_{\varepsilon}^{i}$ of radius R_{ε} such that $r_{\varepsilon} \ll R_{\varepsilon} \ll \varepsilon$. Next θ_{ε} is assumed to vanish on $\bar{\omega} \backslash \omega_{\varepsilon}$ and

$$
w_{\varepsilon}\left(\hat{x}, x_{3}\right)=\sum_{i \in I_{\varepsilon}}\left(\frac{1}{\left|D_{r_{\varepsilon}}^{i}\right|} \int_{D_{r_{\varepsilon}}^{i}} v\left(\hat{y}, x_{3}\right) d \hat{y}\right) 1_{Y_{\varepsilon}^{i}}(\hat{x}) .
$$

The approximation u_{ε}^{\prime} does not satisfy the boundary condition on $\Gamma_{0} \cap\left(\omega_{0} \cup \omega_{L}\right)$ so that, as in [2], we introduce a sharper approximation

$$
u_{\varepsilon}^{\#}:=u \varphi_{\varepsilon}+u_{\varepsilon}^{\prime}\left(1-\varphi_{\varepsilon}\right)
$$

Here φ_{ε} is a $C^{\infty}(\bar{\Omega})$ function which satisfies $\varphi_{\varepsilon}=1$ on $\Gamma_{0}, \varphi_{\varepsilon}=0$ on $\bar{\Omega} \backslash \Sigma_{\varepsilon}$, $\left|\nabla \varphi_{\varepsilon}\right| \leq C / r_{\varepsilon}$ on $\bar{\Omega}$ where $\Sigma_{\varepsilon}:=\left\{x \in \Omega: \operatorname{dist}\left(x, \Gamma_{0}\right)<r_{\varepsilon}\right\}$. We assume that u and v are Lipschitz on $\bar{\Omega}$ and there exists $L>0$ such that

$$
\begin{equation*}
\left|\frac{\partial v}{\partial x_{3}}\left(\hat{x}^{\prime}, x_{3}\right)-\frac{\partial v}{\partial x_{3}}\left(\hat{x}^{\prime \prime}, x_{3}\right)\right|<L\left|\hat{x}^{\prime}-\hat{x}^{\prime \prime}\right| \quad \forall\left(\hat{x}^{\prime}, x_{3}\right),\left(\hat{x}^{\prime \prime}, x_{3}\right) \in \bar{\Omega} . \tag{2.1}
\end{equation*}
$$

Letting Ψ be any continuous function on $\bar{\Omega}$ such that $0 \leq \Psi \leq 1$, we introduce $F_{\varepsilon}^{\Psi}, \Phi^{\Psi}$ defined by similar formulae as the ones of F_{ε} and Φ but with $\Psi d x$ in place of $d x$. We will prove the lemma:

Lemma 2.4.

$$
\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}^{\Psi}\left(u_{\varepsilon}^{\prime}\right)=\Phi^{\Psi}(u, v)
$$

If Lemma 2.4 is proved, then, by a classical approximation process, we can deduce

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}\left(u_{\varepsilon}^{\prime}\right)=\Phi(u, v) \tag{2.2}
\end{equation*}
$$

Finally, we complete the proof of (2.2) for any (u, v) such that $\Phi(u, v)<+\infty$ by approximation and diagonalization arguments.

Proof of Lemma 2.4. We split $F_{\varepsilon}^{\Psi}\left(u_{\varepsilon}^{\prime}\right)$ in three parts

$$
\begin{equation*}
F_{\varepsilon}^{\Psi}\left(u_{\varepsilon}^{\prime}\right)=F_{\varepsilon}^{\Psi 1}\left(u_{\varepsilon}^{\prime}\right)+F_{\varepsilon}^{\Psi 2}\left(u_{\varepsilon}^{\prime}\right)+F_{\varepsilon}^{\Psi 3}\left(u_{\varepsilon}^{\prime}\right) . \tag{2.3}
\end{equation*}
$$

First, we consider

$$
F_{\varepsilon}^{\Psi 1}\left(u_{\varepsilon}^{\prime}\right):=\int_{\Omega \backslash B_{\varepsilon} \cup T_{\varepsilon}} \phi_{p}\left(\nabla u_{\varepsilon}^{\prime}\right) \Psi d x=\int_{\Omega \backslash B_{\varepsilon} \cup T_{\varepsilon}} \phi_{p}(\nabla u) \Psi d x,
$$

where $B_{\varepsilon}:=\cup_{i \in \varepsilon I_{\varepsilon}} D_{R_{\varepsilon}}^{i} \backslash \overline{D_{r_{\varepsilon}}^{i}} \times(0, L)$. Hence, the assumption $R_{\varepsilon} \ll \varepsilon$ yields $\lim _{\varepsilon \rightarrow 0}\left|B_{\varepsilon} \cup T_{\varepsilon}\right|=0$ and, consequently,

$$
\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}^{\Psi 1}\left(u_{\varepsilon}^{\prime}\right)=\int_{\Omega} \phi_{p}(\nabla u) \Psi d x
$$

Next, we pay attention to

$$
F_{\varepsilon}^{\Psi 2}\left(u_{\varepsilon}^{\prime}\right):=\int_{B_{\varepsilon}} \phi_{p}\left(\nabla u_{\varepsilon}^{\prime}\right) \Psi d x
$$

Writing

$$
\begin{equation*}
z_{\varepsilon}:=(v-u) \widehat{\nabla} \theta_{\varepsilon} \tag{2.4}
\end{equation*}
$$

we obtain

$$
\nabla u_{\varepsilon}^{\prime}=z_{\varepsilon}+\left(w_{\varepsilon}-v\right) \nabla \theta_{\varepsilon}+\left(1-\theta_{\varepsilon}\right) \nabla u+\theta_{\varepsilon} \nabla w_{\varepsilon}
$$

Let us show

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{B_{\varepsilon}}\left(\phi_{p}\left(\nabla u_{\varepsilon}^{\prime}\right)-\phi_{p}\left(z_{\varepsilon}\right)\right) \Psi d x=0 \tag{2.5}
\end{equation*}
$$

The function ϕ_{p}, being convex and positively homogeneous of degree p, satisfies

$$
\begin{equation*}
\forall \xi, \eta \in \mathbb{R}^{n}, n=1,2,3, \quad\left|\phi_{p}(\xi)-\phi_{p}(\eta)\right| \leq C|\xi-\eta|\left(|\xi|^{p-1}+|\eta|^{p-1}\right) . \tag{2.6}
\end{equation*}
$$

Therefore, Hölder inequality yields
$\left|\int_{B_{\varepsilon}}\left(\phi_{p}\left(\nabla u_{\varepsilon}^{\prime}\right)-\phi_{p}\left(z_{\varepsilon}\right)\right) \Psi d x\right| \leq C\left(\int_{B_{\varepsilon}}\left|\nabla u_{\varepsilon}^{\prime}-z_{\varepsilon}\right|^{p} d x\right)^{\frac{1}{p}}\left(\int_{B_{\varepsilon}}\left|\nabla u_{\varepsilon}^{\prime}\right|^{p} d x+\int_{B_{\varepsilon}}\left|z_{\varepsilon}\right|^{p} d x\right)^{\frac{1}{p^{\prime}}}$.
The smoothness of (u, v) implies

$$
\left.\begin{array}{l}
u_{\varepsilon}^{\prime}=u \text { on } \Omega \backslash\left(B_{\varepsilon} \cup T_{\varepsilon}\right), \quad\left|u_{\varepsilon}^{\prime}\right| \leq C \text { on } \Omega, \quad\left|\nabla w_{\varepsilon}\right| \leq C \text { on } B_{\varepsilon}, \tag{2.7}\\
u_{\varepsilon}^{\prime}=w_{\varepsilon} \text { on } T_{\varepsilon}, \quad\left|w_{\varepsilon}-v\right| \leq C R_{\varepsilon} \text { on } B_{\varepsilon},
\end{array}\right\}
$$

so that

$$
\begin{gathered}
\int_{B_{\varepsilon}}\left|\nabla u_{\varepsilon}^{\prime}\right|^{p} d x+\int_{B_{\varepsilon}}\left|z_{\varepsilon}\right|^{p} d x \leq C \varepsilon^{-2} \int_{D\left(r_{\varepsilon}, R_{\varepsilon}\right)} \phi_{p}\left(\hat{\nabla} \theta_{\varepsilon}\right) d \hat{x}, \\
\int_{B_{\varepsilon}}\left|\nabla u_{\varepsilon}^{\prime}-z_{\varepsilon}\right|^{p} d x \leq C R_{\varepsilon}^{p} \varepsilon^{-2} \int_{D\left(r_{\varepsilon}, R_{\varepsilon}\right)} \phi_{p}\left(\hat{\nabla} \theta_{\varepsilon}\right) d \hat{x},
\end{gathered}
$$

where $D\left(r_{\varepsilon}, R_{\varepsilon}\right)=\left\{\hat{x} \in \mathbb{R}^{2}: r_{\varepsilon}<|\hat{x}|<R_{\varepsilon}\right\}$. Hence, if we choose θ_{ε} such that

$$
\begin{equation*}
\exists M>0 ; \quad \varepsilon^{-2} \int_{D\left(r_{\varepsilon}, R_{\varepsilon}\right)} \phi_{p}\left(\hat{\nabla} \theta_{\varepsilon}\right) d \hat{x} \leq M \quad \forall \varepsilon>0 \tag{2.8}
\end{equation*}
$$

then (2.5) is true. We finally have

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} F_{\varepsilon}^{\Psi 2}\left(u_{\varepsilon}^{\prime}\right) \\
= & \lim _{\varepsilon \rightarrow 0} \int_{B_{\varepsilon}} \phi_{p}\left(z_{\varepsilon}\right) \Psi d x \\
= & \lim _{\varepsilon \rightarrow 0} \int_{B_{\varepsilon}}|v-u|^{p} \phi_{p}\left(\widehat{\nabla} \theta_{\varepsilon}\right) \Psi d x \\
= & \left.\lim _{\varepsilon \rightarrow 0} \int_{D\left(r_{\varepsilon}, R_{\varepsilon}\right)} \phi_{p}\left(\widehat{\nabla} \theta_{\varepsilon}\right) d \hat{x} \int_{0}^{L} \sum_{i \in I_{\varepsilon}}|v-u|^{p}\left(\hat{y}_{\varepsilon}^{i}, x_{3}\right) \Psi\left(\hat{y}_{\varepsilon}^{i}, x_{3}\right) d x_{3} \quad \text { (with } \hat{y}_{\varepsilon}^{i} \in Y_{\varepsilon}^{i}\right) \\
= & \lim _{\varepsilon \rightarrow 0} \varepsilon^{-2} \int_{D\left(r_{\varepsilon}, R_{\varepsilon}\right)} \phi_{p}\left(\widehat{\nabla} \theta_{\varepsilon}\right) d \hat{x} \int_{0}^{L} \sum_{i \in I_{\varepsilon}}\left|Y_{\varepsilon}^{i} \| v-u\right|^{p}\left(\hat{y_{\varepsilon}} i\right. \\
i & \left.x_{3}\right) \Psi\left(\hat{y}_{\varepsilon}^{i}, x_{3}\right) d x_{3} .
\end{aligned}
$$

Observe that $\lim _{\varepsilon \rightarrow 0} \int_{0}^{L} \sum_{i \in I_{\varepsilon}}\left|Y_{\varepsilon}^{i} \||v-u|^{p}\left(\hat{y}_{\varepsilon}^{i}, x_{3}\right) \Psi\left(\hat{y}_{\varepsilon}^{i}, x_{3}\right) d x_{3}=\int_{\Omega}\right| v-\left.u\right|^{p} \Psi d x$.
To get the lowest upper bound in Proposition [2.2, it is clear that θ_{ε} has to be the solution of the capacitary problem

$$
\left(\mathcal{P}_{\varepsilon}^{\text {cap }}\right) \quad \min \left\{\int_{D\left(r_{\varepsilon}, R_{\varepsilon}\right)} \phi_{p}(\widehat{\nabla} \varphi) d \hat{x}: \begin{array}{l}
\varphi \in W^{1, p}\left(D\left(r_{\varepsilon}, R_{\varepsilon}\right)\right), \\
\varphi(\hat{x})=1 \text { on }|\hat{x}|=r_{\varepsilon}, \\
\varphi(\hat{x})=0 \text { on }|\hat{x}|=R_{\varepsilon} .
\end{array}\right\}
$$

As observed in [2], we have

$$
\theta_{\varepsilon}= \begin{cases}\frac{\log R_{\varepsilon}-\log |\hat{x}|}{\log R_{\varepsilon}-\log r_{\varepsilon}} & \text { if } p=2, \\ \frac{R_{\varepsilon}-\left.\hat{\hat{x}}\right|^{s}}{R_{\varepsilon}^{s}-r_{\varepsilon}^{s}} & \text { if } p \neq 2 \quad\left(s=\frac{p-2}{p-1}\right)\end{cases}
$$

and

$$
\int_{D\left(r_{\varepsilon}, R_{\varepsilon}\right)} \phi_{p}\left(\widehat{\nabla} \theta_{\varepsilon}\right) d \hat{x}=\frac{2 \pi}{p} \Gamma_{p}\left(r_{\varepsilon}, R_{\varepsilon}\right)
$$

where $\Gamma_{p}\left(r_{\varepsilon}, R_{\varepsilon}\right):= \begin{cases}\frac{1}{\log R_{\varepsilon}-\log r_{\varepsilon}} & \text { if } p=2, \\ \left(\frac{s}{R_{\varepsilon}^{s}-r_{\varepsilon}^{s}}\right)^{p-1} & \text { if } p \neq 2 \quad\left(s=\frac{p-2}{p-1}\right) .\end{cases}$
Note that

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon^{-2} \Gamma_{p}\left(r_{\varepsilon}, R_{\varepsilon}\right)=\gamma
$$

If $\gamma<+\infty$, then (2.8) is satisfied and

$$
\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}^{\Psi 2}\left(u_{\varepsilon}^{\prime}\right)=\frac{2 \pi \gamma}{p} \int_{\Omega}|v-u|^{p} \Psi d x
$$

When $\gamma=+\infty$, it suffices to prove that $\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}^{\Psi 2}\left(u_{\varepsilon}^{\prime}\right)=0$. Due to (2.7), the result is a consequence of $F_{\varepsilon}^{\Psi 2}\left(u_{\varepsilon}^{\prime}\right) \leq C R_{\varepsilon}^{p} \varepsilon^{-2} \Gamma_{p}\left(r_{\varepsilon}, R_{\varepsilon}\right)$, which tends to zero.

Now, we consider the remaining part

$$
F_{\varepsilon}^{\Psi 3}\left(u_{\varepsilon}^{\prime}\right):=\int_{T_{\varepsilon}} \lambda_{\varepsilon} \phi_{p}\left(\nabla w_{\varepsilon}\right) \Psi d x
$$

Recalling the assumption (2.1) on v and using the local Lipschitz property (2.6), we deduce

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}^{\Psi 3}\left(u_{\varepsilon}^{\prime}\right) & =\lim _{\varepsilon \rightarrow 0} \frac{1}{\left|T_{\varepsilon}\right|} \int_{T_{\varepsilon}} \lambda_{\varepsilon} \phi_{p}\left(\frac{\partial v}{\partial x_{3}}\right) \Psi d x \\
& =\frac{k \pi}{p} \int_{\Omega}\left|\frac{\partial v}{\partial x_{3}}\right|^{p} \Psi d x
\end{aligned}
$$

as shown in [2].
Now, we will prove the upper bound equality by using the sharper approximation $\left(u_{\varepsilon}^{\#}\right)$. We start with

$$
\begin{equation*}
F_{\varepsilon}\left(u_{\varepsilon}^{\#}\right)=\int_{\Sigma_{\varepsilon}} a_{\varepsilon} \phi_{p}\left(\nabla u_{\varepsilon}^{\#}\right) d x+\int_{\Omega \backslash \Sigma_{\varepsilon}} a_{\varepsilon} \phi_{p}\left(\nabla u_{\varepsilon}^{\prime}\right) d x . \tag{2.9}
\end{equation*}
$$

Conditions (2.7) imply $\left|u_{\varepsilon}^{\prime}-u\right| \leq C\left(r_{\varepsilon} 1_{T_{\varepsilon}}+R_{\varepsilon} 1_{B_{\varepsilon}}\right)$. Hence

$$
\int_{\Sigma_{\varepsilon}} a_{\varepsilon} \phi_{p}\left(\nabla u_{\varepsilon}^{\#}\right) d x \leq C\left(\left|\Sigma_{\varepsilon}\right|+\int_{\Sigma_{\varepsilon}} a_{\varepsilon}(x)\left|\nabla u_{\varepsilon}^{\prime}\right|^{p} d x+\lambda_{\varepsilon}\left|T_{\varepsilon} \cap \Sigma_{\varepsilon}\right|+\left(\frac{R_{\varepsilon}}{r_{\varepsilon}}\right)^{p}\left|\Sigma_{\varepsilon}\right|\right) .
$$

Lemma 2.4 implies that for every $\Psi \in C^{0}(\bar{\Omega},[0,1])$, such that $\Psi=1$ on a small neighborhood of $\Gamma_{0} \cap\left(\omega_{0} \cup \omega_{L}\right)$,

$$
\begin{aligned}
\limsup _{\varepsilon \rightarrow 0} \int_{\Sigma_{\varepsilon}} a_{\varepsilon} \phi_{p}\left(\nabla u_{\varepsilon}^{\#}\right) d x & \leq \limsup _{\varepsilon \rightarrow 0} \int_{\Omega} a_{\varepsilon} \phi_{p}\left(\nabla u_{\varepsilon}^{\prime}\right) \Psi d x \\
& =\int_{\Omega}\left(\phi_{p}(\nabla u)+\frac{k \pi}{p}\left|\frac{\partial v}{\partial x_{3}}\right|^{p}+\frac{2 \pi \gamma}{p}|v-u|^{p}\right) \Psi d x
\end{aligned}
$$

Thus, by letting Ψ tend to zero, we deduce

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Sigma_{\varepsilon}} a_{\varepsilon} \phi_{p}\left(\nabla u_{\varepsilon}^{\#}\right) d x=\lim _{\varepsilon \rightarrow 0} \int_{\Sigma_{\varepsilon}} a_{\varepsilon} \phi_{p}\left(\nabla u_{\varepsilon}^{\prime}\right) d x=0
$$

and

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega \backslash \Sigma_{\varepsilon}} a_{\varepsilon} \phi_{p}\left(\nabla u_{\varepsilon}^{\prime}\right) d x & =\lim _{\varepsilon \rightarrow 0}\left(\int_{\Omega} a_{\varepsilon} \phi_{p}\left(\nabla u_{\varepsilon}^{\prime}\right) d x-\int_{\Sigma_{\varepsilon}} a_{\varepsilon} \phi_{p}\left(\nabla u_{\varepsilon}^{\prime}\right) d x\right) \\
& =\int_{\Omega} \phi_{p}(\nabla u)+\frac{k \pi}{p}\left|\frac{\partial v}{\partial x_{3}}\right|^{p}+\frac{2 \pi \gamma}{p}|v-u|^{p} d x
\end{aligned}
$$

which proves the result for (u, v) smooth. We complete the proof by a standard approximation of (u, v) and a diagonalization argument [1].

2.3 Proof of Proposition 2.3

It is enough to consider $\liminf _{\varepsilon} F_{\varepsilon}\left(u_{\varepsilon}\right)<+\infty$. Due to the compactness property, (u, v) is in $\left(L^{p}(\Omega)\right)^{2}$. We first consider the term $F_{\varepsilon}^{2}\left(u_{\varepsilon}\right)$. Let $\left(u_{\eta}, v_{\eta}\right)$ be Lipschitz on $\bar{\Omega}$ such that $\lim _{\eta \rightarrow 0}\left\|u_{\eta}-u\right\|_{L^{p}(\Omega)}+\left\|v_{\eta}-v\right\|_{L^{p}(\Omega)}=0$. We define $\left(v_{\eta}-u_{\eta}\right)_{\varepsilon}:=\sum_{i \in I_{\varepsilon}}\left(v_{\eta}-u_{\eta}\right)\left(\hat{x}_{\varepsilon}^{i}, x_{3}\right) 1_{Y_{\varepsilon}^{i}}$ and $z_{\eta \varepsilon}:=\left(v_{\eta}-u_{\eta}\right)_{\varepsilon} \widehat{\nabla} \theta_{\varepsilon}$. Because of the local Lipschitz property (2.6) of ϕ_{p} and $(u, v) \in\left(L^{p}(\Omega)\right)^{2}$, Hölder inequality implies

$$
\lim _{\varepsilon \rightarrow 0} \int_{B_{\varepsilon}} \phi_{p}\left(z_{\eta \varepsilon}\right)-\phi_{p}\left(z_{\varepsilon}\right) d x=0
$$

The proof of the upper bound equality allows us to write

$$
\lim _{\varepsilon \rightarrow 0} \phi_{p}\left(z_{\eta \varepsilon}\right)=\frac{2 \pi \gamma}{p} \int_{\Omega}\left|v_{\eta}-u_{\eta}\right|^{p} d x
$$

The convexity of ϕ_{p} and the fact that $\phi_{p}\left(\nabla u_{\varepsilon}\right) \geq \phi_{p}\left(\widehat{\nabla} u_{\varepsilon}\right)$ yield

$$
\begin{align*}
\liminf _{\varepsilon \rightarrow 0} F_{\varepsilon}^{2}\left(u_{\varepsilon}\right) \geq & \liminf _{\varepsilon \rightarrow 0} \int_{B_{\varepsilon}} \phi_{p}\left(\widehat{\nabla} u_{\varepsilon}\right) d x \\
\geq & \liminf _{\varepsilon \rightarrow 0} \int_{B_{\varepsilon}} \phi_{p}\left(z_{\eta \varepsilon}\right) d x \\
& +\liminf _{\varepsilon \rightarrow 0} \int_{B_{\varepsilon}} \phi_{p}^{\prime}\left(z_{\eta \varepsilon}\right) \cdot\left(\widehat{\nabla} u_{\varepsilon}-z_{\eta \varepsilon}\right) d x \tag{2.10}
\end{align*}
$$

The very definition of ϕ_{p} implies

$$
\begin{aligned}
\phi_{p}^{\prime}(\xi) & =|\xi|^{p-2} \xi & & \forall \xi \in \mathbb{R}^{n}, n=1,2,3, \\
\phi_{p}^{\prime}(t \xi) & =\phi_{p}^{\prime}(t) \phi_{p}^{\prime}(\xi) & & \forall(t, \xi) \in \mathbb{R} \times \mathbb{R}^{n}, n=1,2,3, \\
\phi_{p}^{\prime}(\xi) \cdot \xi & =p \phi_{p}(\xi) & & \forall \xi \in \mathbb{R}^{n}, n=1,2,3 .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{B_{\varepsilon}} \phi_{p}^{\prime}\left(z_{\eta \varepsilon}\right) \cdot z_{\eta \varepsilon} d x=2 \pi \gamma \int_{\Omega}\left|v_{\eta}-u_{\eta}\right|^{p} d x \tag{2.11}
\end{equation*}
$$

For the other term of (2.10), we have
$\int_{B_{\varepsilon}} \phi_{p}^{\prime}\left(z_{\eta \varepsilon}\right) \cdot \widehat{\nabla} u_{\varepsilon} d x=\sum_{i \in I_{\varepsilon}} \int_{0}^{L} \phi_{p}^{\prime}\left(v_{\eta}-u_{\eta}\right)\left(\hat{x}_{\varepsilon}^{i}, x_{3}\right) \int_{D^{i}\left(r_{\varepsilon}, R_{\varepsilon}\right)} \phi_{p}^{\prime}\left(\widehat{\nabla} \theta_{\varepsilon}\right) \cdot \widehat{\nabla} u_{\varepsilon} d \hat{x} d x_{3}$,
where $D^{i}\left(r_{\varepsilon}, R_{\varepsilon}\right)=D_{R_{\varepsilon}}^{i} \backslash \overline{D_{r_{\varepsilon}}^{i}}$. Let ν be the outer normal on $\partial D^{i}\left(r_{\varepsilon}, R_{\varepsilon}\right)$, the very definition of θ_{ε} as a solution of ($\mathcal{P}_{\varepsilon}^{\text {cap }}$) yields

$$
\begin{aligned}
\int_{D^{i}\left(r_{\varepsilon}, R_{\varepsilon}\right)} \phi_{p}^{\prime}\left(\widehat{\nabla} \theta_{\varepsilon}\right) & \cdot \hat{\nabla} u_{\varepsilon} d \hat{x}=\int_{\partial D^{i}\left(r_{\varepsilon}, R_{\varepsilon}\right)}\left(\phi_{p}^{\prime}\left(\widehat{\nabla} \theta_{\varepsilon}\right) \cdot \nu\right) u_{\varepsilon} d l \\
& =\int_{\partial D_{R_{\varepsilon}}^{i}}\left(\phi_{p}^{\prime}\left(\widehat{\nabla} \theta_{\varepsilon}\right) \cdot \nu\right) u_{\varepsilon} d l+\int_{\partial D_{r_{\varepsilon}}^{i}}\left(\phi_{p}^{\prime}\left(\widehat{\nabla} \theta_{\varepsilon}\right) \cdot \nu\right) u_{\varepsilon} d l \\
& =-\tilde{u}_{\varepsilon}^{i} \int_{\partial D_{r_{\varepsilon}}^{i}}\left(\phi_{p}^{\prime}\left(\widehat{\nabla} \theta_{\varepsilon}\right) \cdot \nu\right) d l+\tilde{v}_{\varepsilon}^{i} \int_{\partial D_{r_{\varepsilon}}^{i}}\left(\phi_{p}^{\prime}\left(\widehat{\nabla} \theta_{\varepsilon}\right) \cdot \nu\right) u_{\varepsilon} d l
\end{aligned}
$$

where $\tilde{u}_{\varepsilon}^{i}:=\frac{\int_{\partial D_{R_{\varepsilon}}^{i}}\left(\phi_{p}^{\prime}\left(\widehat{\nabla} \theta_{\varepsilon}\right) \cdot \nu\right) u_{\varepsilon} d l}{\int_{\partial D_{r_{\varepsilon}}^{i}}\left(\phi_{p}^{\prime}\left(\widehat{\nabla} \theta_{\varepsilon}\right) \cdot \nu\right) d l}=\frac{1}{2 \pi R_{\varepsilon}} \int_{\partial D_{R_{\varepsilon}}^{i}}\left(\phi_{p}^{\prime}\left(\widehat{\nabla} \theta_{\varepsilon}\right) \cdot \nu\right) u_{\varepsilon} d l, \tilde{u}_{\varepsilon}:=\sum_{i \in I_{\varepsilon}} \tilde{u}_{\varepsilon}^{i} 1_{Y_{\varepsilon}^{i}}$, $\tilde{v}_{\varepsilon}^{i}:=\frac{\int_{\partial D_{r_{\varepsilon}}^{i}}\left(\phi_{p}^{\prime}\left(\widehat{\nabla} \theta_{\varepsilon}\right) \cdot \nu\right) v_{\varepsilon} d l}{\int_{\partial D_{r_{\varepsilon}}^{i}}\left(\phi_{p}^{\prime}\left(\widehat{\nabla} \theta_{\varepsilon}\right) \cdot \nu\right) d l}=\frac{1}{2 \pi r_{\varepsilon}} \int_{\partial D_{r_{\varepsilon}}^{i}}\left(\phi_{p}^{\prime}\left(\widehat{\nabla} \theta_{\varepsilon}\right) \cdot \nu\right) v_{\varepsilon} d l, \tilde{v}_{\varepsilon}:=\sum_{i \in I_{\varepsilon}} \tilde{v}_{\varepsilon}^{i} 1_{Y_{\varepsilon}^{i}}$. Thus,

$$
\begin{aligned}
\int_{D^{i}\left(r_{\varepsilon}, R_{\varepsilon}\right)} \phi_{p}^{\prime}\left(\widehat{\nabla} \theta_{\varepsilon}\right) & \cdot \widehat{\nabla} u_{\varepsilon} d \hat{x}=\left(\tilde{v}_{\varepsilon}^{i}-\tilde{u}_{\varepsilon}^{i}\right) \int_{\partial D_{r_{\varepsilon}}^{i}}\left(\phi_{p}^{\prime}\left(\widehat{\nabla} \theta_{\varepsilon}\right) \cdot \nu\right) d l \\
& =\left(\tilde{v}_{\varepsilon}^{i}-\tilde{u}_{\varepsilon}^{i}\right) \int_{D^{i}\left(r_{\varepsilon}, R_{\varepsilon}\right)} \phi_{p}^{\prime}\left(\widehat{\nabla} \theta_{\varepsilon}\right) \cdot \widehat{\nabla} \theta_{\varepsilon} d \hat{x} \\
& =2 \pi \Gamma_{p}\left(r_{\varepsilon}, R_{\varepsilon}\right)\left(\tilde{v}_{\varepsilon}^{i}-\tilde{u}_{\varepsilon}^{i}\right),
\end{aligned}
$$

and

$$
\int_{B_{\varepsilon}} \phi_{p}^{\prime}\left(z_{\eta \varepsilon}\right) \cdot \hat{\nabla} u_{\varepsilon} d x=2 \pi \Gamma_{p}\left(r_{\varepsilon}, R_{\varepsilon}\right) \int_{\Omega} \phi_{p}^{\prime}\left(\left(v_{\eta}-u_{\eta}\right)_{\varepsilon}\right)\left(\tilde{v}_{\varepsilon}-\tilde{u}_{\varepsilon}\right) d x .
$$

It was shown in [2] that $\left(\tilde{v}_{\varepsilon}-\tilde{u}_{\varepsilon}\right) \rightharpoonup(v-u)$ in $L^{p}(\Omega)$. On the other hand, $\left(v_{\eta}-u_{\eta}\right)$ being smooth and ϕ_{p}^{\prime} being continuous from $L^{p}(\Omega)$ to $L^{p^{\prime}}(\Omega)$, we have $\phi_{p}^{\prime}\left(\left(v_{\eta}-u_{\eta}\right)_{\varepsilon}\right) \rightarrow \phi_{p}^{\prime}\left(v_{\eta}-u_{\eta}\right)$ in $L^{p^{\prime}}(\Omega)$. Hence,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{B_{\varepsilon}} \phi_{p}^{\prime}\left(z_{\eta \varepsilon}\right) \cdot \hat{\nabla} u_{\varepsilon} d x=2 \pi \gamma \int_{\Omega} \phi_{p}^{\prime}\left(v_{\eta}-u_{\eta}\right)(v-u) d x \tag{2.12}
\end{equation*}
$$

Therefore, (2.10), (2.11) and (2.12) imply

$$
\begin{aligned}
\liminf _{\varepsilon \rightarrow 0} F_{\varepsilon}^{2}\left(u_{\varepsilon}\right) \geq & \frac{2 \pi \gamma}{p} \int_{\Omega}\left|v_{\eta}-u_{\eta}\right|^{p} d x \\
& +2 \pi \gamma\left[\int_{\Omega}\left|v_{\eta}-u_{\eta}\right|^{p} d x-\int_{\Omega} \phi_{p}^{\prime}\left(v_{\eta}-u_{\eta}\right)(v-u) d x\right]
\end{aligned}
$$

The expected lower bound for $F_{\varepsilon}^{2}\left(u_{\varepsilon}\right)$ is obtained by letting η tend to zero.
To complete the proof it suffices to use the arguments of [2] concerning the lower bounds for $F_{\varepsilon}^{1}\left(u_{\varepsilon}\right), F_{\varepsilon}^{3}\left(u_{\varepsilon}\right)$ and the fact that v belongs to $L^{p}\left(\omega, W^{1, p}(0, L)\right)$.

2.4 The Final Result

The following theorem, a convergence result for the minimizer of $\left(\mathcal{P}_{\varepsilon}\right)$, is a standard consequence of the previous three propositions.

Theorem 2.5. Let the assumptions (1.3) and (1.5) hold with $(k, \gamma) \in(0,+\infty)$. Then the unique solution \bar{u}_{ε} of $\left(\mathcal{P}_{\varepsilon}\right)$ converges weakly in $W^{1, p}(\Omega)$ to the unique solution \bar{u} of the problem

$$
\min \left\{\min \left\{\Phi(u, v)-L(u): v \in L^{p}(\Omega)\right\}: u \in L^{p}(\Omega)\right\}
$$

where Φ and L are defined by (1.4) and (1.2) respectively.
Proof. The proof of this theorem is the same as that in [2].

3 Conclusions and Remarks

The previous analysis can be easily extended to the case when ϕ_{p} is replaced by any strictly convex function which satisfies

$$
\begin{equation*}
\exists M>0, \exists r \in(1, p) ; \quad\left|W(\xi)-\phi_{p}(\xi)\right| \leq M|\xi|^{r} \quad \forall \xi \in \mathbb{R}^{3} \tag{3.1}
\end{equation*}
$$

the density function associated with $\Phi(u, v)$ becomes

$$
W(\nabla u)+2 \pi \gamma|v-u|^{p}+W\left(\frac{\partial v}{\partial x_{3}}\right) .
$$

Indeed, (3.1) and Hölder inequality imply

$$
\left|\int_{B_{\varepsilon}} W\left(\nabla u_{\varepsilon}\right) d x-\int_{B_{\varepsilon}} \phi_{p}\left(\nabla u_{\varepsilon}\right) d x\right| \leq M\left|B_{\varepsilon}\right|^{1-\frac{r}{p}} \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{p} d x
$$

while our arguments and those of [2] to derive the upper bound and lower bound respectively are valid when ϕ_{p} is replaced by any convex function satisfying a growth condition like

$$
\exists \alpha, \beta>0 ; \quad \alpha\left(|\xi|^{p}-1\right) \leq W(\xi) \leq \beta\left(1+|\xi|^{p}\right) \quad \forall \xi \in \mathbb{R}^{3}
$$

which is an obvious consequence of (3.1).
Eventually, the key arguments of our analysis are the identification of $\gamma, \theta_{\varepsilon}$ in terms of the solution of capacitary problems and the use of the p-positive homogeneity and convexity of ϕ_{p} and of the fact that $\phi_{p}(\xi) \geq \phi_{p}(\hat{\xi})$. Thus, it is easy to guess what could be $\Phi(u, v)$, when ϕ_{p} is replaced by any strictly convex function and when the cross sections of the fibers are smooth star-shaped domains of \mathbb{R}^{2}. We hope that our proposed strategy will be able to reduce and overcome the involved technical difficulties.

4 Acknowlagement

Somsak was supported by a research fund from Commission on Higher Education and the Thailand Research Fund (MRG5080422). Nuttawat was supported by a scholarship from The Ministry Staff Development Project of the Ministry of University Affairs.

References

[1] H. ATTOUCH, Variational Convergence for Functions and Operators, Pitman, 1984.
[2] M. BELLIEUD - G. BOUCHITTÉ, Homogenization of elliptic problems in a fiber reinforced structure. Non local effects, Ann. Scuola Norm. Sup. Pisa CI. Sci. XXVI(1998), 407-436.

Mathematical Modeling of Fiber Reinforced Structures by Homogenization ... 115

(Received 13 May 2008)
Somsak Orankitjaroen and Nuttawat Sontichai
Department of Mathematics,
Mahidol University, THAILAND.
e-mail: scsok@mahidol.ac.th, aoon_mu@hotmail.com
Christian Licht
Mécanique et Génie Civil Université,
Montpellier II, France.
e-mail :licht@lmgc.univ-montp2.fr
Amnuay Kananthai
Department of Mathematics, Chiang Mai University, THAILAND.
e-mail : malamnka@science.cmu.ac.th

[^0]: ${ }^{2}$ Corresponding author: aoon_mu@hotmail.com
 ${ }^{0}$ Copyright (C) 2003-2008 by the Thai J. Math. All rights reserved.

