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Abstract : We present another proof of a study of Bellieud and Bouchitté that we
expect to be more suitable to treat more general geometrical and physical cases.
We consider the homogenization of the quasi-linear elliptic problem

− div σε = f, σε = aε |∇uε|p−2∇uε on Ω
uε = u0 on Γ0

σε · n = g on Γ1

where Ω is a bounded cylindrical open subset of R3 and 1 < p < +∞. The
fibers occupy a set of thin parallel cylinders periodically distributed in Ω. The
conductivity coefficient aε is ε-periodic and takes very high values in the fibers.
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1 Introduction

Let p ∈ (1, +∞), we consider the homogenization of the elliptic problem

− div σε = f, σε = aε |∇uε|p−2∇uε on Ω
uε = u0 on Γ0

σε · n = g on Γ1

(1.1)

where Ω := ω × (0, L) with L > 0 and ω is a bounded domain of R2 with smooth
boundary and containing the origin of coordinates. The homogenization study of
(1.1) consists in examining the behavior of the sequence of the solution (uε) as ε
tends to zero. The conductivity coefficient aε is ε-periodic and satisfies a uniform
lower bound, Γ0 is an open subset of ∂Ω with Hausdorff measure H2(Γ0) strictly
positive, Γ1 = ∂Ω\Γ0, and n is the unit exterior normal on ∂Ω. The boundary
data u0 is Lipschitz, while (f, g) ∈ Lp′(Ω)× Lp′(Γ1), p′ = p/(p− 1).
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The problem (1.1) is related to the minimization problem

(Pε) min
{

Fε(w)− L(w) : w ∈ W 1,p
Γ0

(Ω)
}

,

where

W 1,p
Γ0

(Ω) :=
{

w ∈ W 1,p(Ω) : w = u0 on Γ0

}
,

Fε(w) :=
∫

Ω

aεφp(∇w) dx,

φp(ξ) :=
1
p
|ξ|p, ∀ ξ ∈ Rn, n = 1, 2, 3,

L(w) :=
∫

Ω

fw dx +
∫

Γ1

gw dH2. (1.2)

We are interested in the asymptotic behavior of (Pε) as ε → 0. We present
another proof of a study of Bellieud and Bouchitté [2] that we expect to be more
suitable to treat more general geometrical and physical cases.

The bases of the cylindrical domain Ω are denoted by ω0 = ω×{0} and ωL =
ω×{L}. For each ε, we consider a periodic distribution of cells (Y i

ε )i∈Iε such that
Y i

ε := (εi1, εi2)+(−ε/2, ε/2)2, and Iε :=
{
i ∈ Z2 : Y i

ε ⊂ ω
}

. Let (Di
rε

)i∈Iε be the
family of disks of R2 centered at x̂i

ε := (εi1, εi2) of radius rε ¿ ε, T i
ε := Di

rε
×(0, L)

and Tε := ∪i∈IεT
i
ε . The set of thin parallel cylinders Tε represents the fibers (see

Figure 1 and Figure 2). The conductivity coefficient aε is

aε(x) =
{

1 if x ∈ Ω\Tε,
λε otherwise.

We make the assumptions

rε → 0,
rε

ε
→ 0, λε → +∞, kε := λε

r2
ε

ε2
→ k, k ≥ 0 as ε → 0. (1.3)

In [2], it was shown that the asymptotic limit of (Pε) is

min
{
Φ(u, v)− L(u) : (u, v) ∈ (Lp(Ω))2

}
,

where

Φ(u, v) =





∫
Ω

φp(∇u) dx + kπ
p

∫
Ω

∣∣∣ ∂v
∂x3

∣∣∣
p

dx + 2πγ
p

∫
Ω
|v − u|p dx,

if

{
(u, v) ∈ W 1,p

Γ0
(Ω)× Lp(ω,W 1,p(0, L)),

v = u0 on Γ0 ∩ (ω0 ∪ ωL),
+∞ otherwise,

(1.4)

and

[0, +∞] 3 γ =





lim
ε→0

ε−2| log rε|−1 if p = 2,

lim
ε→0

∣∣∣ 2−p
p−1

∣∣∣
p−1

r2−p
ε ε−2 if p 6= 2.

(1.5)
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Figure 1: the domain Ω = ω × (0, L) occupied by a composite material
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Figure 2: the circular cross section of the fiber, Y i
ε ⊂ ω

Here, the boundary data u0 is assumed to be Lipschitz in order to ensure that the
infimum value of problem (Pε) remains finite as ε → 0. In case k = +∞, we add
further assumption

kεrε → 0, as ε → 0. (1.6)

The conditions

k > 0 and { γ > 0 or ω0 ⊂ Γ0 or ωL ⊂ Γ0 } (1.7)

guarantee that the functional Φ is coercive in W 1,p(Ω)× Lp(ω, W 1,p(0, L).
We are concerned with the extension of this result to more general cross sec-

tions of the fibers and more general energy density than φp. The aim of this paper
is therefore to provide another proof that we expect to be more suitable to treat
such general cases. The steps of the proof in [2] are to successively establish:

(i) a compactness property of the sequence (uε) such that Fε(uε) < C,
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(ii) a lower bound inequality of the sequence (Fε(uε)),

(iii) an upper bound inequality of the sequence (Fε(uε)).

Here we replace the steps (ii) and (iii) by

(ii′) an upper equality of the sequence (Fε(uε)),

(iii′) a lower bound inequality of the sequence (Fε(uε)) which essentially uses a
subdiffenrential inequality.
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2 An Alternative Strategy

It consists, under (1.3), (1.5), (1.6) and (1.7), in proving the following three
propositions. In the sequel, the symbols →, ⇀ and ∗

⇀ stand for the strong con-
vergence, the weak convergence and the weak star convergence, respectively. As
usual, the letter C denotes various constants and for all ξ = (ξ1, ξ2, ξ3) in R3, ξ̂
stands for (ξ1, ξ2).

Proposition 2.1 (compactness property). Let (uε) be a sequence such that supFε(uε)
is finite. Then (uε) is strongly relatively compact in Lp(Ω) and (vε), given by
vε := |Ω|

|Tε|1Tε
uε, is bounded in L1(Ω) and, up to a subsequence, (vε) weakly* con-

verges in the space of bounded measures Mb(Ω) to an element v of Lp(Ω).

Proposition 2.2 (upper bound equality). For all (u, v) in (Lp(Ω))2, such that
Φ(u, v) < +∞, there exists a sequence (uε) such that uε → u in Lp(Ω), vε

∗
⇀ v in

Mb(Ω) and
lim
ε→0

Fε(uε) = Φ(u, v).

Proposition 2.3 (lower bound inequality). For all u in Lp(Ω) and for all se-
quences (uε) such that uε → u in Lp(Ω), vε

∗
⇀ v in Mb(Ω), one has:

lim inf
ε→0

Fε(uε) ≥ Φ(u, v).

The proofs of these propositions are presented in the following sections.

2.1 Proof of Proposition 2.1

Compactness property was already proved in [2].

2.2 Proof of Proposition 2.2

Our sole contribution is to prove that we can replace inequality by equality,
for that we use the same approximation u′ε of u as in [2]

u′ε = (1− θε)u + θεwε.

The function θε is first defined on the closure of ωε := ∪i∈IεY
i
ε as a (−ε/2, ε/2)2-

periodic continuous function which satisfies 0 ≤ θε ≤ 1, θε = 1 on Dε :=
∪i∈IεD

i
rε

, θε = 0 on ωε\ ∪i∈Iε Di
Rε

, where Di
Rε

is the disk of R2 centered at
x̂i

ε of radius Rε such that rε ¿ Rε ¿ ε. Next θε is assumed to vanish on ω\ωε and

wε(x̂, x3) =
∑

i∈Iε

(
1

|Di
rε
|
∫

Di
rε

v(ŷ, x3) dŷ

)
1Y i

ε
(x̂).

The approximation u′ε does not satisfy the boundary condition on Γ0 ∩ (ω0 ∪ ωL)
so that, as in [2], we introduce a sharper approximation

u#
ε := uϕε + u′ε(1− ϕε).
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Here ϕε is a C∞(Ω) function which satisfies ϕε = 1 on Γ0, ϕε = 0 on Ω\Σε,
|∇ϕε| ≤ C/rε on Ω where Σε := {x ∈ Ω : dist(x, Γ0) < rε} . We assume that u and
v are Lipschitz on Ω and there exists L > 0 such that

∣∣∣∣
∂v

∂x3
(x̂′, x3)− ∂v

∂x3
(x̂′′, x3)

∣∣∣∣ < L|x̂′ − x̂′′| ∀ (x̂′, x3), (x̂′′, x3) ∈ Ω. (2.1)

Letting Ψ be any continuous function on Ω such that 0 ≤ Ψ ≤ 1, we introduce
FΨ

ε , ΦΨ defined by similar formulae as the ones of Fε and Φ but with Ψ dx in
place of dx. We will prove the lemma:

Lemma 2.4.
lim
ε→0

FΨ
ε (u′ε) = ΦΨ(u, v).

If Lemma 2.4 is proved, then, by a classical approximation process, we can
deduce

lim
ε→0

Fε(u′ε) = Φ(u, v). (2.2)

Finally, we complete the proof of (2.2) for any (u, v) such that Φ(u, v) < +∞ by
approximation and diagonalization arguments.

Proof of Lemma 2.4. We split FΨ
ε (u′ε) in three parts

FΨ
ε (u′ε) = FΨ1

ε (u′ε) + FΨ2
ε (u′ε) + FΨ3

ε (u′ε). (2.3)

First, we consider

FΨ1
ε (u′ε) :=

∫

Ω\Bε∪Tε

φp(∇u′ε)Ψ dx =
∫

Ω\Bε∪Tε

φp(∇u)Ψ dx,

where Bε := ∪i∈εIεD
i
Rε
\Di

rε
× (0, L). Hence, the assumption Rε ¿ ε yields

limε→0 |Bε ∪ Tε| = 0 and, consequently,

lim
ε→0

FΨ1
ε (u′ε) =

∫

Ω

φp(∇u)Ψ dx.

Next, we pay attention to

FΨ2
ε (u′ε) :=

∫

Bε

φp(∇u′ε)Ψ dx.

Writing
zε := (v − u)∇̂θε, (2.4)

we obtain
∇u′ε = zε + (wε − v)∇θε + (1− θε)∇u + θε∇wε.

Let us show
lim
ε→0

∫

Bε

(φp(∇u′ε)− φp(zε))Ψ dx = 0. (2.5)
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The function φp, being convex and positively homogeneous of degree p, satisfies

∀ ξ, η ∈ Rn, n = 1, 2, 3, |φp(ξ)− φp(η)| ≤ C|ξ − η|(|ξ|p−1 + |η|p−1). (2.6)

Therefore, Hölder inequality yields

∣∣∣∣
∫

Bε

(φp(∇u′ε)− φp(zε))Ψ dx

∣∣∣∣ ≤ C

(∫

Bε

|∇u′ε − zε|p dx

) 1
p

(∫

Bε

|∇u′ε|p dx +
∫

Bε

|zε|p dx

) 1
p′

.

The smoothness of (u, v) implies

u′ε = u on Ω\(Bε ∪ Tε), |u′ε| ≤ C on Ω, |∇wε| ≤ C on Bε,
u′ε = wε on Tε, |wε − v| ≤ CRε on Bε,

}
(2.7)

so that ∫

Bε

|∇u′ε|p dx +
∫

Bε

|zε|p dx ≤ Cε−2

∫

D(rε,Rε)

φp(∇̂θε) dx̂,

∫

Bε

|∇u′ε − zε|p dx ≤ CRp
εε
−2

∫

D(rε,Rε)

φp(∇̂θε) dx̂,

where D(rε, Rε) =
{
x̂ ∈ R2 : rε < |x̂| < Rε

}
. Hence, if we choose θε such that

∃M > 0 ; ε−2

∫

D(rε,Rε)

φp(∇̂θε) dx̂ ≤ M ∀ ε > 0, (2.8)

then (2.5) is true. We finally have

lim
ε→0

FΨ2
ε (u′ε)

= lim
ε→0

∫

Bε

φp(zε)Ψ dx

= lim
ε→0

∫

Bε

|v − u|pφp(∇̂θε)Ψ dx

= lim
ε→0

∫

D(rε,Rε)

φp(∇̂θε) dx̂

∫ L

0

∑

i∈Iε

|v − u|p(ŷi
ε, x3)Ψ(ŷi

ε, x3) dx3 (with ŷi
ε ∈ Y i

ε )

= lim
ε→0

ε−2

∫

D(rε,Rε)

φp(∇̂θε) dx̂

∫ L

0

∑

i∈Iε

|Y i
ε ||v − u|p(ŷi

ε, x3)Ψ(ŷi
ε, x3) dx3.

Observe that limε→0

∫ L

0

∑
i∈Iε

|Y i
ε ||v − u|p(ŷi

ε, x3)Ψ(ŷi
ε, x3) dx3 =

∫
Ω
|v − u|pΨ dx.

To get the lowest upper bound in Proposition 2.2, it is clear that θε has to be the
solution of the capacitary problem

(Pcap
ε ) min





∫

D(rε,Rε)

φp(∇̂ϕ) dx̂ :
ϕ ∈ W 1,p(D(rε, Rε)),
ϕ(x̂) = 1 on |x̂| = rε,
ϕ(x̂) = 0 on |x̂| = Rε.




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As observed in [2], we have

θε =

{
log Rε−log |x̂|
log Rε−log rε

if p = 2,
Rs

ε−|x̂|s
Rs

ε−rs
ε

if p 6= 2 (s = p−2
p−1 )

and ∫

D(rε,Rε)

φp(∇̂θε) dx̂ =
2π

p
Γp(rε, Rε),

where Γp(rε, Rε) :=

{
1

log Rε−log rε
if p = 2,

( s
Rs

ε−rs
ε
)p−1 if p 6= 2 (s = p−2

p−1 ).
Note that

lim
ε→0

ε−2Γp(rε, Rε) = γ.

If γ < +∞, then (2.8) is satisfied and

lim
ε→0

FΨ2
ε (u′ε) =

2πγ

p

∫

Ω

|v − u|pΨ dx.

When γ = +∞, it suffices to prove that limε→0 FΨ2
ε (u′ε) = 0. Due to (2.7), the

result is a consequence of FΨ2
ε (u′ε) ≤ CRp

εε
−2Γp(rε, Rε), which tends to zero.

Now, we consider the remaining part

FΨ3
ε (u′ε) :=

∫

Tε

λεφp(∇wε)Ψ dx.

Recalling the assumption (2.1) on v and using the local Lipschitz property (2.6),
we deduce

lim
ε→0

FΨ3
ε (u′ε) = lim

ε→0

1
|Tε|

∫

Tε

λεφp

(
∂v

∂x3

)
Ψ dx

=
kπ

p

∫

Ω

∣∣∣∣
∂v

∂x3

∣∣∣∣
p

Ψ dx,

as shown in [2].
Now, we will prove the upper bound equality by using the sharper approxima-

tion (u#
ε ). We start with

Fε(u#
ε ) =

∫

Σε

aεφp(∇u#
ε ) dx +

∫

Ω\Σε

aεφp(∇u′ε) dx. (2.9)

Conditions (2.7) imply |u′ε − u| ≤ C(rε1Tε + Rε1Bε). Hence

∫

Σε

aεφp(∇u#
ε ) dx ≤ C

(
|Σε|+

∫

Σε

aε(x)|∇u′ε|p dx + λε|Tε ∩ Σε|+
(

Rε

rε

)p

|Σε|
)

.
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Lemma 2.4 implies that for every Ψ ∈ C0(Ω, [0, 1]), such that Ψ = 1 on a small
neighborhood of Γ0 ∩ (ω0 ∪ ωL),

lim sup
ε→0

∫

Σε

aεφp(∇u#
ε ) dx ≤ lim sup

ε→0

∫

Ω

aεφp(∇u′ε)Ψ dx

=
∫

Ω

(
φp(∇u) +

kπ

p

∣∣∣∣
∂v

∂x3

∣∣∣∣
p

+
2πγ

p
|v − u|p

)
Ψ dx.

Thus, by letting Ψ tend to zero, we deduce

lim
ε→0

∫

Σε

aεφp(∇u#
ε ) dx = lim

ε→0

∫

Σε

aεφp(∇u′ε) dx = 0,

and

lim
ε→0

∫

Ω\Σε

aεφp(∇u′ε) dx = lim
ε→0

(∫

Ω

aεφp(∇u′ε) dx−
∫

Σε

aεφp(∇u′ε) dx

)

=
∫

Ω

φp(∇u) +
kπ

p

∣∣∣∣
∂v

∂x3

∣∣∣∣
p

+
2πγ

p
|v − u|p dx,

which proves the result for (u, v) smooth. We complete the proof by a standard
approximation of (u, v) and a diagonalization argument [1].

2.3 Proof of Proposition 2.3

It is enough to consider lim infε Fε(uε) < +∞. Due to the compactness prop-
erty, (u, v) is in (Lp(Ω))2. We first consider the term F 2

ε (uε). Let (uη, vη) be
Lipschitz on Ω such that limη→0 ‖uη − u‖Lp(Ω) + ‖vη − v‖Lp(Ω) = 0. We define
(vη − uη)ε :=

∑
i∈Iε

(vη − uη)(x̂i
ε, x3)1Y i

ε
and zηε := (vη − uη)ε∇̂θε. Because of

the local Lipschitz property (2.6) of φp and (u, v) ∈ (Lp(Ω))2, Hölder inequality
implies

lim
ε→0

∫

Bε

φp(zηε)− φp(zε) dx = 0.

The proof of the upper bound equality allows us to write

lim
ε→0

φp(zηε) =
2πγ

p

∫

Ω

|vη − uη|p dx.

The convexity of φp and the fact that φp(∇uε) ≥ φp(∇̂uε) yield

lim inf
ε→0

F 2
ε (uε) ≥ lim inf

ε→0

∫

Bε

φp(∇̂uε) dx

≥ lim inf
ε→0

∫

Bε

φp(zηε) dx

+ lim inf
ε→0

∫

Bε

φ′p(zηε) · (∇̂uε − zηε) dx. (2.10)
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The very definition of φp implies

φ′p(ξ) = |ξ|p−2ξ ∀ ξ ∈ Rn, n = 1, 2, 3,

φ′p(tξ) = φ′p(t)φ
′
p(ξ) ∀ (t, ξ) ∈ R× Rn, n = 1, 2, 3,

φ′p(ξ) · ξ = pφp(ξ) ∀ ξ ∈ Rn, n = 1, 2, 3.

Hence
lim
ε→0

∫

Bε

φ′p(zηε) · zηε dx = 2πγ

∫

Ω

|vη − uη|p dx. (2.11)

For the other term of (2.10), we have
∫

Bε

φ′p(zηε) · ∇̂uε dx =
∑

i∈Iε

∫ L

0

φ′p(vη − uη)(x̂i
ε, x3)

∫

Di(rε,Rε)

φ′p(∇̂θε) · ∇̂uε dx̂ dx3,

where Di(rε, Rε) = Di
Rε
\Di

rε
. Let ν be the outer normal on ∂Di(rε, Rε), the very

definition of θε as a solution of (Pcap
ε ) yields

∫

Di(rε,Rε)

φ′p(∇̂θε) · ∇̂uε dx̂ =
∫

∂Di(rε,Rε)

(φ′p(∇̂θε) · ν)uε dl

=
∫

∂Di
Rε

(φ′p(∇̂θε) · ν)uε dl +
∫

∂Di
rε

(φ′p(∇̂θε) · ν)uε dl

= −ũi
ε

∫

∂Di
rε

(φ′p(∇̂θε) · ν) dl + ṽi
ε

∫

∂Di
rε

(φ′p(∇̂θε) · ν)uε dl

where ũi
ε :=

R
∂Di

Rε

(φ′p(b∇θε)·ν)uε dl
R

∂Di
rε

(φ′p(b∇θε)·ν) dl
= 1

2πRε

∫
∂Di

Rε

(φ′p(∇̂θε)·ν)uε dl, ũε :=
∑

i∈Iε
ũi

ε1Y i
ε
,

ṽi
ε :=

R
∂Di

rε
(φ′p(b∇θε)·ν)vε dl

R
∂Di

rε
(φ′p(b∇θε)·ν) dl

= 1
2πrε

∫
∂Di

rε

(φ′p(∇̂θε) · ν)vε dl, ṽε :=
∑

i∈Iε
ṽi

ε1Y i
ε
. Thus,

∫

Di(rε,Rε)

φ′p(∇̂θε) · ∇̂uε dx̂ = (ṽi
ε − ũi

ε)
∫

∂Di
rε

(φ′p(∇̂θε) · ν) dl

= (ṽi
ε − ũi

ε)
∫

Di(rε,Rε)

φ′p(∇̂θε) · ∇̂θε dx̂

= 2πΓp(rε, Rε)(ṽi
ε − ũi

ε),

and ∫

Bε

φ′p(zηε) · ∇̂uε dx = 2πΓp(rε, Rε)
∫

Ω

φ′p((vη − uη)ε)(ṽε − ũε) dx.

It was shown in [2] that (ṽε − ũε) ⇀ (v − u) in Lp(Ω). On the other hand,
(vη − uη) being smooth and φ′p being continuous from Lp(Ω) to Lp′(Ω), we have
φ′p((vη − uη)ε) → φ′p(vη − uη) in Lp′(Ω). Hence,

lim
ε→0

∫

Bε

φ′p(zηε) · ∇̂uε dx = 2πγ

∫

Ω

φ′p(vη − uη)(v − u) dx. (2.12)
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Therefore, (2.10), (2.11) and (2.12) imply

lim inf
ε→0

F 2
ε (uε) ≥ 2πγ

p

∫

Ω

|vη − uη|p dx

+2πγ

[∫

Ω

|vη − uη|p dx−
∫

Ω

φ′p(vη − uη)(v − u) dx

]
.

The expected lower bound for F 2
ε (uε) is obtained by letting η tend to zero.

To complete the proof it suffices to use the arguments of [2] concerning the
lower bounds for F 1

ε (uε), F 3
ε (uε) and the fact that v belongs to Lp(ω,W 1,p(0, L)).

2.4 The Final Result

The following theorem, a convergence result for the minimizer of (Pε), is a
standard consequence of the previous three propositions.

Theorem 2.5. Let the assumptions (1.3) and (1.5) hold with (k, γ) ∈ (0,+∞).
Then the unique solution uε of (Pε) converges weakly in W 1,p(Ω) to the unique
solution u of the problem

min {min {Φ(u, v)− L(u) : v ∈ Lp(Ω)} : u ∈ Lp(Ω)} ,

where Φ and L are defined by (1.4) and (1.2) respectively.

Proof. The proof of this theorem is the same as that in [2].



114 Thai J. Math. Vol 6/No. 3 (2008)/ S. Orankitjaroen et al.

3 Conclusions and Remarks

The previous analysis can be easily extended to the case when φp is replaced
by any strictly convex function which satisfies

∃M > 0, ∃ r ∈ (1, p) ; |W (ξ)− φp(ξ)| ≤ M |ξ|r ∀ ξ ∈ R3, (3.1)

the density function associated with Φ(u, v) becomes

W (∇u) + 2πγ|v − u|p + W

(
∂v

∂x3

)
.

Indeed, (3.1) and Hölder inequality imply
∣∣∣∣
∫

Bε

W (∇uε) dx−
∫

Bε

φp(∇uε) dx

∣∣∣∣ ≤ M |Bε|1−
r
p

∫

Ω

|∇uε|p dx,

while our arguments and those of [2] to derive the upper bound and lower bound
respectively are valid when φp is replaced by any convex function satisfying a
growth condition like

∃α, β > 0 ; α(|ξ|p − 1) ≤ W (ξ) ≤ β(1 + |ξ|p) ∀ ξ ∈ R3,

which is an obvious consequence of (3.1).
Eventually, the key arguments of our analysis are the identification of γ, θε

in terms of the solution of capacitary problems and the use of the p-positive ho-
mogeneity and convexity of φp and of the fact that φp(ξ) ≥ φp(ξ̂). Thus, it is
easy to guess what could be Φ(u, v), when φp is replaced by any strictly convex
function and when the cross sections of the fibers are smooth star-shaped domains
of R2. We hope that our proposed strategy will be able to reduce and overcome
the involved technical difficulties.
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