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1. Introduction

Let the symbol A denote the class of normalised analytic functions f(z) =
∑∞
n=1 anz

n;
(a1 = 1) defined on D := {z ∈ C : |z| < 1}. The subclass of A consisting of one-to-one
functions denoted by S. A function f ∈ S is starlike of order α (0 ≤ α < 1), denoted by
S∗(α), if <(zf ′(z)/f(z)) > α for all z ∈ D. Note that S∗(0) = S∗ is the class of starlike
functions on D. The function f ∈ A is starlike of reciprocal order α, denoted by S∗r (α), if

<
{
f(z)

zf ′(z)

}
> α, z ∈ D.

The function g(z) = ze(1−α)z is a starlike function of reciprocal order 1/(2 − α) [1].
Note that every function f ∈ S∗r := S∗r (0) is starlike and univalent. Ravichandran and
Kumar [2] investigated the argument estimates for the analytic functions f ∈ S∗r (α).
Frasin and Sabri [3] derived certain sufficient conditions for starlikeness of reciprocal
order of analytic functions in D. For more related results of some associated classes, see
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[4–8]. Next, we are giving terminologies, concepts and literature which will be used in
this paper.

For positive integers q and n, the Hermitian-Toeplitz determinant of order n associated
with the coefficients of the function f ∈ A, is given by

Tq,n(f) :=

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1
an+1 an · · · an+q−2

...
...

...
...

an+q−1 an+q−2 · · · an

∣∣∣∣∣∣∣∣∣ .
The Hermitian-Toeplitz determinant Tq, 1(f) is rotationally invariant [9, 10]. Thus, the
third order Hermitian-Toeplitz determinant T3,1(f) is given by

T3,1(f) := 2 Re(a22 ā3)− 2|a2|2 − |a3|2 + 1. (1.1)

Cudna et al. [11] investigated the sharp lower and upper bounds for the second and third
Hermitian-Toeplitz determinants for the classes of starlike and convex functions of order
α. Jastrzȩbski et al. [12] determined the sharp estimates on the second and third order
Hermitian-Toeplitz determinants for the close-to-star functions. Recently, the sharp upper
and lower bounds on the Hermitian-Toeplitz determinant of the third order are computed
for the classes of certain strongly starlike functions [13]. For recent updates on this type
of problem one may refer to the papers [14–18].

In view of Koebe one quarter theorem, it is noted that the image of D under a univalent
function contains a disk D1/4 := {z ∈ C : |z| < 1/4}. Thus for every univalent function f

there exists inverse function f−1 such that f−1(f(z)) = z for z ∈ D and f(f−1(ω)) = ω
for |ω| < r0(f), where r0(f) ≥ 1/4. The Taylor series expansion of the function f−1 is
given as

f−1(ω) = ω +A2ω
2 +A3ω

3 + · · · .

Löwner [19] determined the coefficient estimates for the inverse function f ∈ S. The
authors [20, 21] obtained bounds on the initial inverse coefficients for the classes of starlike
and convex functions of order α (0 ≤ α < 1). In [22], the authors computed bounds on the
inverse coefficients for Janowski starlike functions. For more details related to the inverse
coefficient problem, see [23–26]. The logarithmic coefficients γn are associated with the
function f ∈ S in the following way:

log
f(z)

z
= 2

∞∑
n=1

γnz
n, z ∈ D. (1.2)

For the Koebe function k(z) = z/(1 − eiθz)2, the nth logarithmic coefficient is given by
γn = einθ/n for each θ and for all n ≥ 1. Using the concept of integral means, Duren and
Leung [27] found the sharp bound on the nth logarithmic coefficient of univalent functions.
For details, see [28–32]. Elhosh [33] proved γn ≤ 1/n for close-to-convex functions. In
2018, the authors in the paper [34] determined the sharp estimates on γ1, γ2 and γ3 for
functions belonging to certain subclasses of close-to-convex functions. Recently, Adegani
et al. [35] computed the sharp bounds on γn for the Ma-Minda starlike and convex
functions.

Motivated by the stated research works, we first establish coefficient inequalities for
functions f belonging to the class S∗r (α). The best possible lower and upper bounds
on the third order Hermitian-Toeplitz determinant T3,1(f) and the bounds on the initial
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inverse coefficients A2, A3, A4, A5 are computed for such functions. In addition, the
bounds on the initial logarithmic coefficients γ1, γ2, γ3, γ4 are also determined.

2. Preliminary Results

Let the class P consists of analytic functions of the form p(z) = 1+p1z+p2z
2+p3z

3+· · ·
satisfying the inequality Re p(z) > 0 for all z ∈ D. There is a close relation between
the class P and the class B of Schwarz function w(z) = c1z + c2z

2 + c3z
3 + · · · and

satisfying the condition |w(z)| < 1 for z ∈ D. Consider the coefficient functional Ψ(µ, ν) =
|c3 + µc1c2 + νc31| associated with the coefficients of w for w ∈ B and µ, ν ∈ R. Let us
assume that the symbols Ωk’s are defined as follows:

Ω1 :=
{

(µ, ν) ∈ R2 : |µ| ≤ 1/2, |ν| ≤ 1
}
,

Ω2 :=

{
(µ, ν) ∈ R2 :

1

2
≤ |µ| ≤ 2,

4

27
(|µ|+ 1)3 − (|µ|+ 1) ≤ ν ≤ 1

}
,

Ω4 :=

{
(µ, ν) ∈ R2 : |µ| ≥ 1/2, ν ≤ −2

3
(|µ|+ 1)

}
,

Ω5 :=
{

(µ, ν) ∈ R2 : |µ| ≤ 2, ν ≥ 1
}
,

Ω6 :=

{
(µ, ν) ∈ R2 : 2 ≤ |µ| ≤ 4, ν ≥ 1

12
(µ2 + 8)

}
,

Ω7 :=

{
(µ, ν) ∈ R2 : |µ| ≥ 4, ν ≥ 2

3
(|µ| − 1)

}
,

Ω8 :=

{
(µ, ν) ∈ R2 :

1

2
≤ |µ| ≤ 2, −2

3
(|µ|+ 1) ≤ ν ≤ 4

27
(|µ|+ 1)3 − (|µ|+ 1)

}
,

Ω9 :=

{
(µ, ν) ∈ R2 : |µ| ≥ 2, −2

3
(|µ|+ 1) ≤ ν ≤ 2|µ|(|µ|+ 1)

µ2 + 2|µ|+ 4

}
,

Ω10 :=

{
(µ, ν) ∈ R2 : 2 ≤ |µ| ≤ 4,

2|µ|(|µ|+ 1)

µ2 + 2|µ|+ 4
≤ ν ≤ 1

12
(µ2 + 8)

}
,

Ω11 :=

{
(µ, ν) ∈ R2 : |µ| ≥ 4,

2|µ|(|µ|+ 1)

µ2 + 2|µ|+ 4
≤ ν ≤ 2|µ|(|µ| − 1)

µ2 − 2|µ|+ 4

}
,

Ω12 :=

{
(µ, ν) ∈ R2 : |µ| ≥ 4,

2|µ|(|µ| − 1)

µ2 − 2|µ|+ 4
≤ ν ≤ 2

3
(|µ| − 1)

}
.

Lemma 2.1. [36, Lemma 2, p. 128] If w ∈ B, then for any real numbers µ and ν, we
have

Ψ(µ, ν) ≤



1, (µ, ν) ∈ Ω1 ∪ Ω2 ∪ {(2, 1)};

|ν|, (µ, ν) ∈
4⋃
k=3

Ωk;

2
3 (|µ|+ 1)

(
|µ|+1

3(|µ|+ν+1)

)1/2
, (µ, ν) ∈ Ω8 ∪ Ω9;

1
3ν
(
µ2−4
µ2−4ν

)(
µ2−4
3(ν−1)

)1/2
, (µ, ν) ∈ Ω10 ∪ Ω11 \ {(2, 1)};

2
3 (|µ| − 1)

(
|µ|−1

3(|µ|−ν−1)

)1/2
, (µ, ν) ∈ Ω12.
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The extremal functions, up to rotations, are of the form

w1(z) = z3, w2(z) = z, w3(z) =
z(t1 − z)
1− t1z

, w4(z) =
z(t2 + z)

1 + t2z

and w5(z) = c1z + c2z
2 + c3z

3 + · · · , where the parameters t1, t2 and the coefficients ci
are given by

t1 =

(
|µ|+ 1

3(|µ|+ ν + 1)

) 1
2

, t2 =

(
|µ| − 1

3(|µ| − ν − 1)

) 1
2

, c1 =

(
2ν(µ2 + 2)− 3µ2

3(ν − 1)(µ2 − 4ν)

) 1
2

,

c2 = (1− c21)eiθ0 , c3 = −c1c2eiθ0 ,
where

θ0 = ± arccos

[
µ

2

(
ν(µ2 + 8)− 2(µ2 + 2)

2ν(µ2 + 2)− 3µ2

)1/2
]
.

Lemma 2.2. [24, Lemma 3, p. 254] Let p ∈ P. Then

2p2 = p21 + (4− p21)ξ

for some ξ ∈ D.

Lemma 2.3. [37, Lemma 2.3, p. 507] Let p ∈ P. Then for all n,m ∈ N,

|µpnpm − pm+n| ≤
{

2, 0 ≤ µ ≤ 1;
2|2µ− 1|, elsewhere.

If 0 < µ < 1, then the inequality is sharp for the function p(z) = (1 + zm+n)/(1− zm+n).
In the other cases, the inequality is sharp for the function p̂0(z) = (1 + z)/(1− z).

Lemma 2.4. [38, Lemma 1] Let p ∈ P. Then, for any real number µ,

∣∣µp3 − p31∣∣ ≤


2|µ− 4|, µ ≤ 4

3
;

2µ

√
µ

µ− 1
,

4

3
< µ.

The result is sharp. The extremal function is given by

p̃(z) =

{
p̂0(z), µ ≤ 4

3 ;
1−z2

z2−2
√

µ
µ−1 z+1

, µ > 4
3 .

3. Sufficient Condition and Hermitian-Toeplitz Determinant

Throughout our discussion, we assume 0 ≤ α < 1. First, we establish a sufficient
condition for the function f ∈ A to be in the class S∗r (α).

Theorem 3.1. If f(z) = z +
∑∞
n=2 anz

n ∈ A satisfies the following inequality

∞∑
n=2

((n− 1) + |1 + (1− 2α)n|)|an| ≤ 2(1− α), (3.1)

then f ∈ S∗r (α).
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Proof. Since <w > α if and only if |w − 1| < |w + (1− 2α)|. Therefore, f ∈ S∗r (α) if∣∣∣∣ f(z)

zf ′(z)
− 1

∣∣∣∣ < ∣∣∣∣ f(z)

zf ′(z)
+ 1− 2α

∣∣∣∣ ,
or equivalently

|f(z)− zf ′(z)| − |f(z) + (1− 2α)zf ′(z)| < 0.

Set |F (z)| = |f(z)− zf ′(z)| − |f(z) + (1− 2α)zf ′(z)|. However, by using the hypothesis,
we have

|F (z)| =

∣∣∣∣∣
∞∑
n=2

(1− n)anz
n

∣∣∣∣∣−
∣∣∣∣∣2(1− α)z +

∞∑
n=2

(1 + (1− 2α)n)anz
n

∣∣∣∣∣
≤
∞∑
n=2

(n− 1)|an|+
∞∑
n=2

|1 + (1− 2α)n||an| − 2(1− α)

=

∞∑
n=2

(n− 1 + |1 + (1− 2α)n|)|an| − 2(1− α) ≤ 0.

The result follows.

Corollary 3.2. If f(z) = z +
∑∞
n=2 anz

n ∈ A satisfies
∑∞
n=2 n|an| ≤ 1, then f ∈ S∗r .

This corollary follows by taking α = 0 in the Theorem 3.1. However this could be seen
as a trivial consequence of the fact that

∑∞
n=2 n|an| ≤ 1 is sufficient for f ∈ S∗r . More

generally, we have following result:

Theorem 3.3. If f(z) = z +
∑∞
n=2 anz

n ∈ A satisfies the inequality
∑∞
n=2 n|an| ≤ 1,

then f ∈ S∗r (α) for α ≤ 1
2 .

Proof. If f(z) = z +
∑∞
n=2 anz

n ∈ A satisfies the inequality
∑∞
n=2 n|an| ≤ 1, then∣∣∣∣zf ′(z)f(z)

− 1

∣∣∣∣ < 1.

Let w = f(z)/zf ′(z). Then∣∣∣∣ 1

w
− 1

∣∣∣∣ < 1 or |1− w| < |w| or <(w) >
1

2
.

Thus, we conclude that f ∈ S∗r (1/2).

Next result provides the best possible estimates on the third order Hermitian-Toeplitz
determinants for the classes S∗r (α).

Theorem 3.4. Let f(z) = z +
∑∞
n=2 anz

n ∈ S∗r (α). Then

T3,1(f) ≤
{

16α4 − 64α3 + 87α2 − 46α+ 8, 0 ≤ α ≤ 1
4 ;

1, 1
4 < α < 1.

and

T3,1(f) ≥
{
−(1− α)2, 0 ≤ α < 1

2 ;
16α4 − 64α3 + 87α2 − 46α+ 8, 1

2 ≤ α < 1.

The above estimates are best possible.
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Proof. For some p ∈ P, each function f(z) = z +
∑∞
n=2 anz

n ∈ S∗r (α) satisfies

f(z)

zf ′(z)
= α+ (1− α)p(z). (3.2)

On comparing the coefficients of like power terms in the expression (3.2) , we get

a2 =(1− α)p1, (3.3)

a3 =
1

2
(α− 1)

(
2(α− 1)p21 + p2

)
, (3.4)

a4 =− 1

6
(α− 1)

(
6(α− 1)2p31 + 7(α− 1)p1p2 − 2p3

)
, (3.5)

a5 =
1

24
(α− 1)(24(α− 1)3p41 + 46(α− 1)2p21p2 − 20(α− 1)p1p3

+9(α− 1)p22 + 6p4). (3.6)

Since the classes S∗r (α) and P are invariant under rotation and |p1| ≤ 2, there is no loss
in considering 0 ≤ p1 ≤ 2. Using (3.3), (3.4) in the expression (1.1) and then Lemma 2.2,
we get

T3,1(f) =1 + 2 Re a22a3 − 2|a2|2 − |a3|2

=
1

16
(1− α)2(4α− 5)(4α− 3)p41 − 2(1− α)2p21 −

1

16
(1− α)2(4− p21)2|ζ|2

− 1

8
(1− α)2(4− p21)p21 Re ζ + 1

=Ψ(p21, |ζ|,Re ζ). (3.7)

If p1 = 0, then we have

Ψ(0, |ζ|,Re ζ) = 1− (1− α)2|ζ|2 ≤ 1 (3.8)

and if p1 = 2, then

Ψ(4, |ζ|,Re ζ) = 16α4 − 64α3 + 87α2 − 46α+ 8. (3.9)

We now procced to find the maximum of Ψ(p21, |ζ|,Re ζ). From (3.7), with the settings
x := p21 ∈ [0, 4] and y = |ζ| ∈ [0, 1], it is easy to see that

Ψ(p21, |ζ|,Re ζ) ≤ Ψ(p21, |ζ|,−|ζ|)

=
1

16
(1− α)2(4α− 5)(4α− 3)x2 − 2(1− α)2x

− 1

16
(1− α)2(4− x)2y2 +

1

8
(1− α)2(4− x)xy + 1

=: G(α, x, y).

(A): The function G(α, x, y) is defined on Ω := [0, 4] × [0, 1]. On the boundary of Ω, we
have

G(α, x, 0) =
1

16
(4α− 5)(4α− 3)(1− α)2x2 − 2(1− α)2x+ 1

and

G(α, x, 1) = −(α− 2)α+
1

4

(
4α2 − 8α+ 3

)
(α− 1)2x2 − (α− 1)2x.
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A1: To maximize G(α, x, 0), we proceed as follows. For 0 ≤ α < 3/4, we find that

G′′(α, x, 0) =
1

8
(α− 1)2(4α− 5)(4α− 3) < 0

holds for 0 ≤ α < 3/4 but for this range of α there is no critical point of G(x, 0) and so
G has no maximum in (0, 4). For α = 3/4, we have G(3/4, x, 0) = 1 − x/8 ≤ 1. In case
α > 3/4 the G′(α, x, 0) > 0 which reveals that there is no maximum of G in (0, 4).

A2: Now consider the function G(α, x, 1). For 0 ≤ α < 1/2, we find that

G′′(α, x, 1) =
1

2
(α− 1)2(2α− 3)(2α− 1) > 0

hence G(α, x, 1) has no maximum in (0, x). Further computation reveals that G′(α, x, 1) <
0 for 1/2 < α < 1 but the function G(α, x, 1) = 0 has no critical point in (0, 4) for this
range of α. Finally, G(1/2, x, 1) = (3− x)/4 ≤ 3/4 < 1.

A3: We now find the maximum of G inside the domain (0, 4) × (0, 1). For α = 3/4,
the function G takes the form

g(x, y) = − 1

256
(4− x)2y2 +

1

128
(4− x)xy − x

8
+ 1.

It is a matter of simple calculation to verify that gy(x, y) = 0 = gx(x, y) holds for x = 16
and y = −4/3. No critical point in (0, 4)× (0, 1). Further, in the case when α 6= 3/4, we
have find that

Gy(x, y) =
1

8
(1− α)2(4− x)x− 1

8
(1− α)2(4− x)2y = 0

and

Gx(x, y) = 2(α− 1)2
(
(α− 1)2x− 1

)
= 0

hold for

x = x1 =
1

(α− 1)2
, y = y1 =

1

(2α− 3)(2α− 1)
.

It is verified that (x1, y1) ∈ (0, 4) × (0, 1) and G(x1, y1) = 0. From the above discussion
in A1, A2, A3, in view of (3.8) and (3.9), we have

G(α, x, y) ≤ max
{

1; 16α4 − 64α3 + 87α2 − 46α+ 8
}

=

{
16α4 − 64α3 + 87α2 − 46α+ 8, 0 ≤ α ≤ 1/4,
1, 1/4 ≤ α < 1.

The sharpness of the upper bound follows for the function f0 defined by

f0(z)

zf ′0(z)
=

{
1+(1−2α)z3

1−z3 , 1/4 ≤ α < 1;
1+(1−2α)z

1−z , 0 ≤ α ≤ 1/4.

(B): Using (3.7) we can write

Ψ(p21, |ζ|,Re ζ) ≥ Ψ(p21, |ζ|, |ζ|)
≥ Ψ(p21, 1, 1)

=: h(x),
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where h is given by h(x) = −(α − 2)α + (α − 1)4x2 − 2(α − 1)2x (0 ≤ x ≤ 4). Now at
the end points

h(0) = (2− α)α and h(4) = 16α4 − 64α3 + 87α2 − 46α+ 8.

It can be seen that x = x2 = 1/(α− 1)2 only root of

h′(x) = 2(α− 1)4x− 2(α− 1)2 = 0.

Further h′′(x2) = 2(α − 1)4 > 0 and h(x2) = −(α − 1)2. Here h(0) = (2 − α)α > 0 and
h(x2) = −(α− 1)2 < 0. Hence

h(x) ≥ min {h(0), h(4), h(x2)} =

{
h(x2), 0 ≤ α < 1/2;
h(4), 1/2 ≤ α < 1.

Sharpness follows for the functions f1 defined by

f1(z)

zf ′1(z)
=

{
(1− α)p̃(z) + α, 0 ≤ α < 1/2;
1+(1−2α)z

1−z , 1/2 ≤ α < 1,
(3.10)

where

p̃(z) =
1− z2

1− 1
1−αz + z2

which completes the proof.

4. Inverse Coefficients

Next theorem gives the bounds on initial inverse coefficients of the starlike functions
of reciprocal order α.

Theorem 4.1. Let f(z) = z +
∑∞
n=2 anz

n ∈ S∗r (α). Then

|A2| ≤2(1− α),

|A3| ≤(1− α)(5− 4α),

|A4| ≤
{

1, 0 ≤ α ≤ 11
16 ;

|12α2 − 32α+ 19|, 11
16 ≤ α < 1,

|A5| ≤
{
− 1

6 (α− 1)
(
96α3 − 404α2 + 501α− 196

)
, 0 ≤ α < 15

29 ;
1
6 (α− 1)

(
96α3 − 288α2 + 325α− 136

)
, 15

29 ≤ α < 1.

All bounds are sharp except for |A5| in the case 15/29 ≤ α < 1. The extremal function
f1 is given by (3.10).

Proof. Since f−1(ω) = ω +A2ω
2 +A3ω

3 +A4ω
4 + · · · in some neighbourhood of origin,

so we have f(f−1(ω)) = ω. That is,

ω = f−1(ω) + a2(f−1(ω))2 + a3(f−1(ω))3 + · · ·
= ω +A2ω

2 +A3ω
3 +A4ω

4 + · · ·+ a2(ω +A2ω
2 +A3ω

3 +A4ω
4 + · · · )2

+ a3(ω +A2ω
2 +A3ω

3 +A4ω
4 + · · · )3.
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A simple calculation gives the following relations:

A2 = −a2, (4.1)

A3 = 2a22 − a3, (4.2)

A4 = −5a32 + 5a2a3 − a4, (4.3)

A5 = 14a42 − 21a22a3 + 6a2a4 + 3a23 − a5. (4.4)

By using (3.3), (3.4), (3.5), (3.6) in (4.1), (4.2), (4.3), (4.4), we get

A2 =− (1− α)p1

A3 =− 1

2
(α− 1)

(
p2 − 2(α− 1)p1

2
)

(4.5)

A4 =
1

3
(α− 1)

(
3(α− 1)2p1

3 − 4(α− 1)p1p2 − p3
)

(4.6)

A5 =
1

24
(α− 1)(24(α− 1)3p1

4 − 58(α− 1)2p1
2p2 − 28(α− 1)p1p3

+ 9(α− 1)p2
2 − 6p4). (4.7)

By using of the fact |pn| ≤ 2, the desired bound on A2 can be readily obtained. In view
of Lemma 2.3 and the expression (4.5), we get

|A3| =
∣∣∣∣12(1− α)

(
p2 + 2(1− α)p21

)∣∣∣∣ ≤ (1− α)(5− 4α).

Since p ∈ P if and only if w(z) = (p(z)− 1)/(p(z) + 1) ∈ B, we have following relations

p1 = 2c1, p2 = 2c2 + 2c21, p3 = 2c3 + 4c1c2 + 2c31. (4.8)

In view of (4.8) and (4.6), we have

A4 =
2

3
(α− 1)

((
12α2 − 32α+ 19

)
c1

3 + (6− 8α)c1c2 − c3
)

=
2

3
(α− 1)(c3 + µc1c2 + νc1

3), (4.9)

where µ = −(6−8α) and ν = −
(
12α2 − 32α+ 19

)
. It is noted that µ ≥ 0 for 3/4 < α < 1.

Now we verify the following three cases to use the Lemma 2.1:

(1) |µ| ≤ 1
2 and |ν| ≤ 1 is equivalent to

−1

2
≤ 8α− 6 ≤ 1

2
and − 1 ≤ −12α2 + 32α− 19 ≤ 1

which holds for 13
16 ≤ α < 1. This gives (µ, ν) ∈ Ω1 when 13

16 ≤ α < 1.
(2) |µ| ≤ 2 and ν ≤ −1 is equivalent to

−1

2
≤ 8α− 6 ≤ 1

2
and − 12α2 + 32α− 19 ≤ −1

which holds for

11

16
≤ α ≤ 1

6

(
8−
√

10
)
.

So for 11
16 ≤ α ≤

1
6

(
8−
√

10
)
, we have (µ, ν) ∈ Ω3.



1192 Thai J. Math. Vol. 20 (2022) /V. Kumar et al.

(3) |µ| ≥ 1/2 and ν ≤ 2
3 (|µ|+1) equivalently can be written as µ ≥ 1/2, ν ≤ 2

3 (µ+1)

in case of µ ≥ 0 or µ ≤ −1/2, ν ≤ 2
3 (−µ + 1) in case of µ < 0. Now we see that

µ ≥ 1/2, ν ≤ 2
3 (µ + 1) holds for 13

16 ≤ α < 1. Further, computation shows that

µ ≤ −1/2, ν ≤ 2
3 (−µ+ 1) holds for 0 ≤ α ≤ 11

16 .

Using triangle inequality in expression (4.7), we get

24

1− α |A5| ≤
∣∣24(1− α)3p14 + 9(1− α)p22 + 6p4

∣∣+ ∣∣58(α− 1)2p1
2p2 − 28(1− α)p1p3

∣∣ .
(4.10)

Consider

∣∣58(α− 1)2p1
2p2 − 28(1− α)p1p3

∣∣ = 56(1− α)|p1|
∣∣∣∣29(1− α)

14
p1p2 − p3

∣∣∣∣ .
By applying Lemma 2.3, we have

56(1−α)|p1|
∣∣∣∣29(1− α)

14
p1p2 − p3

∣∣∣∣ ≤ 56(1−α)×
{

2, 15
29 ≤ α < 1;

2(22−29α)
7 , 0 ≤ α < 15

29 .
(4.11)

Therefore, in view of (4.10) and (4.11), for 0 ≤ α < 15
29 , we have

24

1− α
|A5| ≤

∣∣24(1− α)3p14
∣∣+
∣∣9(1− α)p22

∣∣+ |6p4|+ 112(1− α)(22− 29α)

7

and for 15
29 ≤ α < 1, we have

24

1− α
|A5| ≤

∣∣24(1− α)3p14
∣∣+
∣∣9(1− α)p22

∣∣+ |6p4|+ 112(1− α).

Using the fact |pi| ≤ 2, we have

|A5| ≤ −
1

6
(α− 1)

(
96α3 − 404α2 + 501α− 196

)
for 0 ≤ α < 15

29

and

|A5| ≤
1

6
(α− 1)

(
96α3 − 288α2 + 325α− 136

)
for

15

29
≤ α < 1.

This completes the proof.

5. Logarithmic Coefficients

In this section, we determine the estimates on initial logarithmic coefficients for the
starlike functions of reciprocal order α.
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Theorem 5.1. Let α0 = 1
6

(
− 3
√

44− 3
√

177− 7
3
√

44−3
√
177

+ 7

)
≈ 0.170516 and f(z) =

z +
∑∞
n=2 anz

n ∈ S∗r (α). Then

|γ1| ≤1− α,

|γ2| ≤
1− α

2
,

|γ3| ≤


(1−α)(7−4α)

9

√
7−4α
6−3α2 , α0 ≤ α < 1;

(α−2)(1−α)(4α2−4α−1)
9
√
3(1−α)

√
2−α
α , 0 ≤ α ≤ α0,

|γ4| ≤

{
(1−α)(1+2(1+2

√
2)(1−α))

4 , 2/3 ≤ α < 1;
(1−α)(1+2(5+2

√
2−6α)(1−α))

4 , 0 ≤ α < 2/3.

All estimates are sharp except on γ4.

Proof. In view of series expansion (1.2), it follows that

γ1 =
a2
2
, (5.1)

γ2 =
1

2

(
a3 −

a22
2

)
, (5.2)

γ3 =(a4 − a2a3 +
1

3
a32), (5.3)

γ4 =
1

2

(
−a

4
2

4
+ a22a3 − a2a4 −

a23
2

+ a5

)
. (5.4)

By using (3.3), (3.4), (3.5), (3.6) in (5.1), (5.2), (5.3), (5.4), we get

γ1 =
(1− α)p1

2
,

γ2 =
1

4
(1− α)

(
(1− α)p21 − p2

)
,

γ3 =
1

6
(α− 1)

(
−(α− 1)2p31 − 2(α− 1)p1p2 + p3

)
,

γ4 =
1

8
(α− 1)

(
(α− 1)3p41 + 3(α− 1)2p21p2 − 2(α− 1)p1p3 + (α− 1)p22 + p4

)
.

(5.5)

By making use of the fact |pn| ≤ 2 and Lemma 2.3, we get the required bound on γ1 and
γ2. In view of (4.8), γ3 is written in terms of Schwarz coefficients as

γ3 =− 1

3
(α− 1)

((
4α2 − 4α− 1

)
c31 + 2(2α− 3)c1c2 − c3

)
so that

|γ3| =
1− α

3

∣∣c3 + µc1c2 + νc31
∣∣ , (5.6)

where µ = 2(3 − 2α) and ν = 1 + 4α − 4α2. It is noted that µ = 2(3 − 2α) ≥ 0 for
0 ≤ α < 1.

(i) Let 1
2 ≤ α < 1. Now consider 2 ≤ µ ≤ 4 and ν ≥ (µ2 + 8)/12. This is equivalent to

2 ≤ 2(3− 2α) ≤ 4 and − 4α2 + 4α+ 1 ≥ 1

12

(
4(3− 2α)2 + 8

)
,
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or equivalently

1

2
≤ α ≤ 1 and 3α ≥ 2α2 + 1

that is true for 1
2 ≤ α < 1 and hence (µ, ν) ∈ Ω6.

(ii) Let

α0 =
1

6

(
− 3

√
44− 3

√
177− 7

3
√

44− 3
√

177
+ 7

)
≈ 0.170516

be smallest positive root of 2x3 − 7x2 + 7x − 1 = 0. Now assume that 0 ≤ α ≤ α0. It is
easy to see that µ ≥ 2 for all 0 ≤ α < 1. Now the condition

−2

3
(µ+ 1) ≤ ν ≤ 2µ(µ+ 1)

µ2 + 2µ+ 4

is equivalent to

2

3
(4α− 7) ≤ −4α2 + 4α+ 1 ≤ (2α− 3)(4α− 7)

4α2 − 14α+ 13
.

Further computation reveals that this holds for all α ∈ [0, α0]. Thus (µ, ν) ∈ Ω9.
(iii) Let α0 ≤ α ≤ 1/2. It can be verified that µ ≥ 4 for α ≤ 1/2. Now the conditions

2µ(µ+ 1)

µ2 + 2µ+ 4
≤ ν ≤ 2µ(µ− 1)

µ2 − 2µ+ 4

are equivalent to

(2α− 3)(4α− 7)

4α2 − 14α+ 13
≤ −4α2 + 4α+ 1 ≤ (2α− 3)(4α− 5)

4α2 − 10α+ 7

which holds for α0 ≤ α ≤ 1/2. Thus (µ, ν) ∈ Ω11.
By using Lemma 2.1, the above discussion reveals that

∣∣c3 + µc1c2 + νc31
∣∣ ≤


2
3 (|µ|+ 1)

(
|µ|+1

3(|µ|+ν+1)

)1/2
, α0 ≤ α < 1;

1
3ν
(
µ2−4
µ2−4ν

)(
µ2−4
3(ν−1)

)1/2
, 0 ≤ α ≤ α0,

=


1
3 (7− 4α)

√
7−4α
6−3α2 , α0 ≤ α < 1;

(α−2)(4α2−4α−1)
3
√
3(1−α)

√
2−α
α , 0 ≤ α ≤ α0.

(5.7)

From expression (5.6) and (5.7), we get the desired estimate on γ3. In view of (5.5), we
have

|γ4| ≤
1

8
(1−α)

(∣∣(α− 1)3p41 − 2(α− 1)p1p3
∣∣+
∣∣3(α− 1)2p21p2 + (α− 1)p22

∣∣+ |p4|
)
.

(5.8)

Using Lemma 2.3 and Lemma 2.4, we have∣∣3(α− 1)2p1
2p2 + (α− 1)p2

2
∣∣ ≤ { 4(1− α), 2/3 ≤ α < 1;

4(1− α)(5− 6α), 0 ≤ α < 2/3,
(5.9)

and ∣∣(α− 1)3p41 − 2(α− 1)p1p3
∣∣ ≤ 8

√
2(1− α). (5.10)

From (5.8), (5.9) and (5.10), we get the required bound on γ4.
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