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Abstract Conformal Ricci solitons are self similar solutions of the conformal Ricci flow equation.

This paper deals with the study of conformal Ricci solitons within the framework of warped product

manifolds which extends the notion of usual Riemannian product manifolds. First, we prove that if a

warped product manifold admits conformal Ricci soliton then the base and the fiber also share the same

property. In the next section the characterization of conformal Ricci solitons on warped product manifolds

in terms of Killing and conformal vector fields has been studied. Next, we prove that a warped product

manifold admitting conformal Ricci soliton with concurrent potential vector field is Ricci flat. Finally,

an application of conformal Ricci soliton on a class of warped product spacetimes namely, generalized

Robertson-Walker spacetimes has been discussed.
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1. Introduction

Hamilton’s [1],[2] theory of Ricci flow reached to a highest magnitude and popularity
after G.Perelman [3],[4] successfully applied it in solving the Poincaré conjecture. The
study of Ricci solitons was also introduced by Hamilton as fixed or stationary points of the
Ricci flow in the space of the parameterized metrics g(t) on M modulo diffeomorphisms
and scaling. Since then, both the topics have been studied by many mathematicians like
Brendle [5], H. D. Cao [6], B.Y. Chen [7] etc. and many others [8–11].

A smooth manifold M equipped with a Riemannian metric g is said to be a Ricci
soliton, if for some constant λ, there exist a smooth vector field X on M satisfying the
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equation

Ric+
1

2
LXg = λg,

where LX denotes the Lie derivative and Ric is the Ricci tensor. The Ricci soliton is
called shrinking if λ > 0, steady if λ = 0 and expanding if λ < 0.

A. E. Fischer [12] has introduced conformal Ricci flow in 2004 as a modified Ricci flow.
It preserves the constant scalar curvature of the evolving metrics. Because of the role of
conformal geometry plays in maintaing scalar curvature constant such a modified Ricci
flow was named as conformal Ricci flow.

The conformal Ricci flow equation on a smooth closed connected oriented n-manifold,
n ≥ 3, is given by

∂g

∂t
+ 2(Ric+

g

n
) = −pg and r(g) = −1,

where p is a non-dynamical(time dependent) scalar field and r(g) is the scalar curvature
of the manifold.The term −pg acts as the constraint force to maintain the scalar curva-
ture constraint. Thus these evolution equations are analogous to famous Navier-Stokes
equations where the constraint is divergence free. For this reason p is also called the
conformal pressure.

In 2015, Basu and Bhattacharyya [13] introduced the notion of conformal Ricci soliton
equation as

LXg + 2Ric = [2λ− (p+
2

n
)]g, (1.1)

where λ is constant and p is the conformal pressure. The equation is the generalization
of the Ricci soliton equation and it satisfies the conformal Ricci flow equation.

After N. Basu’s paper [13], many authors have studied conformal Ricci solitons and ob-
tained interesting results. D. Ganguly and A. Bhattacharyya studied the conformal Ricci
soliton within the framework of almost co-Kähler manifolds [14] and (LCS)n-manifolds
[15] and obtained some interesting results. T. Dutta et. al. in [16] showed that if a
Lorentzian α-Sasakian manifold admits conformal Ricci soliton and is Weyl conformally
semi-symmetric, then the manifold is η-Einstein. Again in [17] it has been proved that

a (k, µ)
′
-almost Kenmotsu manifold admitting conformal Ricci soliton is either locally

isometric to Hn+1(−4)×Rn or the soliton is expanding, steady or shrinking according to
some conditions on the conformal pressure p. S.K. Hui et. al. [18] proved that a conformal
Ricci soliton on a three-dimensional f -Kenmotsu manifold with torqued potential vector
field is an almost quasi-Einstein manifold. In [19] M. D. Siddiqui et al., established that
a conformal Ricci soliton, on a perfect fluid spacetime with torse-forming vector field and
without cosmological constant, is expanding. So, motivated by the above studies, in this
paper we investigate the nature of conformal Ricci soliton on warped product spaces.

The concept of warped product was introduced by Bishop and O’Neill [20]. They have
given the examples of complete Riemannian manifolds with negative sectional curvature.
After that the study of warped product have been of great interest among both mathe-
maticians and physicists. Considering two Riemannian manifolds (B, gB) and (F, gF ) as
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well as a positive smooth function f on B,we define on the product manifold B × F , the
metric

g = π∗gB + (f ◦ π)2σ∗gF , (1.2)

where π and σ are the natural projections on B and F respectively. Under this conditions
the product manifold is said to be the warped product of B and F ; it is denoted by
M = B ×f F . Here the manifold B is called the base manifold and F is called the fiber.
The function f is called the warping function.

In our study, we shall focus on the conditions that makes the warped product to a
conformal Ricci soliton. To begin with, let us first recall a very important result (for
details see [20]) which will be required for our purpose in later sections.

Lemma 1.1. Let (M, g) = (B×f F, gB⊕f2gF ) be an warped product of two Riemannian
manifolds (B, gB) and (F, gF ) with dimB = m and dimF = n. Then for all X,Y ∈ X(B)
and U, V ∈ X(F )

(1) DXU = DUX = X(f)
f U ,

(2) Ric(X,U) = 0,
(3) Ric(X,Y ) = RicB(X,Y )− n

fH
f (X,Y ),

(4) Ric(U, V ) = RicF (U, V )− (∆f
f + (n− 1)‖∇f‖

2

f2 )g(U, V ),

where DXY is the lift of ∇XY on B and RicB, RicF are the lifts of the Ricci tensors on
the base B and the fiber F respectively.

2. Conformal Ricci Soliton on Warped Product Manifolds

This section deals with the investigations of conformal Ricci soliton on warped prod-
uct manifolds. Basically here we want to study if a warped product manifold admits a
conformal Ricci soliton then how its effect is on the base manifold and on the fiber i.e; we
try to find out under which conditions they become conformal Ricci soliton. So, for this
purpose let us first suppose that (M, g) = (B ×f F, gB ⊕ f2gF ) be an warped product of
two Riemannian manifolds (B, gB) and (F, gF ) with dimB = m and dimF = n. Now let
(M, g, µ, ξ) be a conformal Ricci soliton, where µ = [2λ − (p + 2

n )]. Then from equation
(1.1) we get

Lξg + 2Ric = [2λ− (p+
2

n
)]g = µg (2.1)

where µ = [2λ − (p + 2
n )]. Again note that from the lemma 1.1 of the previous section

(for details see [20]) the following two well-known formulas for warped product manifolds
can be easily deduced

Lξg = LBξBgB + f2LFξF gF + 2fξB(f)gF , (2.2)

Ric = RicB − n

f
Hf +RicF − f̃gF , (2.3)

where f̃ = f∆f+(n−1)‖∇f‖2B . Now in equation (2.1) using the definition of the warped
metric from equation (1.2) and then applying the values from the above two equations
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(2.2) and (2.3) we have

µ(gB + f2gF ) = µg

= Lξg + 2Ric

= LBξBgB + f2LFξF gF + 2fξB(f)gF + 2RicB

−2
n

f
Hf + 2RicF − 2f̃gF , (2.4)

Again for all U, V ∈ X(B), using the definition of Lie derivation we can write

(LBξBgB)(U, V ) = gB(DB
U ξB , V ) + gB(U,DB

V ξB). (2.5)

Now from the definition of Hessian and the above equation (2.5) we have

(LBξBgB − 2
n

f
Hf )(U, V ) = gB(DB

U ξB , V ) + gB(U,DB
V ξB)− 2

n

f
gB(DB

U∇Bf, V ).

The above equation can be rewritten as

(LBξBgB − 2
n

f
Hf )(U, V ) = (gB(DB

U ξB , V )− n

f
gB(DB

U∇Bf, V ))

+(gB(U,DB
V ξB)− n

f
gB(DB

U∇Bf, V ))

= gB(DB
U (ξB − n∇B ln f), V )

+gB(U,DB
V (ξB − n∇B ln f)). (2.6)

Using the definition of Lie derivative again equation (2.6) becomes

(LBξBgB − 2
n

f
Hf )(U, V ) = (LBξB−n∇B ln fgB)(U, V ),∀U, V ∈ X(B).

Since the above equation is true for all U, V ∈ X(B), in operator notation we can write

LBξBgB − 2
n

f
Hf = LBξB−n∇B ln fgB (2.7)

Now using the value from equation (2.7), the equation (2.4) finally yields

(LBξB−n∇B ln fgB + 2RicB) + (f2LFξF gF + 2RicF )

= µgB + (µf2 − 2fξB(f) + 2f̃)gF ). (2.8)

Hence from the above discussion and equation (2.8) we have the following theorem

Theorem 2.1. Let us consider that (M, g) = (B ×f F, gB ⊕ f2gF ) be an warped product
of two Riemannian manifolds (B, gB) and (F, gF ) with warping function f , dimB = m
and dimF = n. If (M, g, µ, ξ) be a conformal Ricci soliton, then the base (B, gB , µ, ξB −
n∇B ln f) and the fiber (F, gF , µf

2−2fξB(f)+2f̃ , f2ξF ) are both conformal Ricci solitons;

where f̃ = f∆f + (n − 1)‖∇f‖2B, µ = [2λ − (p + 2
n )], λ is the soliton constant and p is

the conformal pressure.

Now we study a special case when the soliton vector field ξ of the conformal Ricci soliton
(M, g, µ, ξ) becomes gradient of some smooth function φ i.e; when ξ = gradφ = ∇φ. In
this case we call the soliton a conformal gradient Ricci soliton and the function φ is
then called the potential function of the soliton. Also for notational purpose without any
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confusion we denote a conformal gradient Ricci soliton as (M, g, µ, φ), where the last term
specifies the potential function of the soliton.

Let us assume that (M, g) = (B ×f F, gB ⊕ f2gF ) be an warped product of two
Riemannian manifolds (B, gB) and (F, gF ) with dimB = m and dimF = n. Then if
(M, g, µ, φ) be a conformal gradient Ricci soliton, for any vector fields X,Y ∈ X(M),
equation (1.1) implies

2Hφ(X,Y ) + 2Ric(X,Y ) = [2λ− (p+
2

n
)]g(X,Y ) = µg(X,Y ). (2.9)

Now if we take X = XB and Y = YB , where XB , YB are the lifts of the vector fields
X,Y in X(B), then the equation (2.9) gives us

2Hφ(XB , YB) + 2Ric(XB , YB) = µg(XB , YB).

Using the value of the Ricci tensor for the base manifold from lemma 1.1, the above
equation becomes

2HφB

B (XB , YB) + 2RicB(XB , YB)− 2
n

f
Hf
B(XB , YB) = µgB(XB , YB),

where φB = φ at a fixed point of the fiber F . Finally using the properties of Hessian in
the above equation we get

2HφB−n ln f
B (XB , YB) + 2RicB(XB , YB) = µgB(XB , YB). (2.10)

This shows that (B, gB , µ, φB − n ln f) is a conformal gradient Ricci soliton.

Again taking X = XF and Y = YF , where XF , YF are the lifts of the vector fields
X,Y in X(F ), then the equation (2.9) gives us

2Hφ(XF , YF ) + 2Ric(XF , YF ) = µg(XF , YF ).

Using equation (2.3) and lemma 1.1 the above equation becomes

2HφF

F (XF , YF ) + 2RicF (XF , YF )− f̃gF (XF , YF ) = µf2gF (XF , YF ),

where φF = φ at a fixed point of the base B and f̃ = f∆f + (n− 1)‖∇f‖2B . Thus finally
we get from the above equation

2HφF

F (XF , YF ) + 2RicF (XF , YF ) = (µf2 + f̃)gF (XF , YF ).

Therefore if the warping function f is constant, the term f̃ = f∆f + (n − 1)‖∇f‖2B
vanishes from the right hand side of the above equation and we get the following

2HφF

F (XF , YF ) + 2RicF (XF , YF ) = µf2gF (XF , YF ). (2.11)

Thus (F, gF , µf
2, φF ) is a conformal gradient Ricci soliton. Hence from the above obser-

vations and equations (2.10) and (2.11) we can state the following

Theorem 2.2. Let (M, g) = (B×fF, gB⊕f2gF ) be an warped product of two Riemannian
manifolds (B, gB) and (F, gF ) with warping function f , dimB = m and dimF = n. If
(M, g, µ, φ) be a conformal gradient Ricci soliton, then

(1) the base (B, gB , µ, φB−n ln f) is a conformal gradient Ricci soliton with φB = φ
at a fixed point of the fiber F .

(2) the fiber (F, gF , µf
2, φF ) is a conformal gradient Ricci soliton with φF = φ at

a fixed point of the base B, provided the warping function f is constant.
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3. Effect of Certain Special Types of Vector Fields on

Conformal Ricci Soliton on Warped Product Manifolds

The main purpose of this section is to study the effects of some special types of smooth
vector fields on conformal Ricci solitons on warped product spaces. In particular, we will
focus on Killing vector fileds, conformal vector fields and concurrent vector fields. So, We
have included some necessary definitions before proceeding further.

Definition 3.1. A smooth vector field X on a Riemannian manifold (M, g) is called

(1) a Killing vector field or an infinitesimal isometry, if the local 1-parameter group
of transformations generated by X in a neighbourhood of each point of M consists
of local isometries, or in otherwords, if X satisfies LXg = 0 and

(2) a conformal vector field if X satisfies LXg = ρg,

where ρ is a smooth function on the manifold M and LXg denotes the Lie differentiation
of the Riemannian metric g in the direction of the vector field X.

So, based on the above definition our first result of this section is the following

Proposition 3.2. Let (M, g) = (B×fF, gB⊕f2gF ) be an warped product of two Riemann-
ian manifolds (B, gB) and (F, gF ) with warping function f , dimB = m and dimF = n.
If (M, g, µ, ξ) is a conformal Ricci soliton and any one of the following conditions hold

(1) ξ = ξB and ξB is a Killing vector field on the base B.
(2) ξ = ξF and ξF is a Killing vector field on the fiber F .

Then the manifold (M, g) becomes an Einstein manifold.

Proof. As per our assumption (M, g, µ, ξ) being a conformal Ricci soliton, it satisfies
equation (1.1) and we get

Lξg + 2Ric = µg, (3.1)

Now let, ξ = ξB , and ξB is Killing on B, we get LBξBgB = 0. Then using it in equation

(2.2) we have Lξg = 0. Therefore equation (3.1) gives us Ric = µ
2 g and this implies

(M, g) is Einstein manifold.

Again if ξ = ξF and ξF is a Killing vector field on the fiber F , LFξF gF = 0. Then using

equations (2.2) and (3.1) and proceeding similarly as the first part of the proof, it can be
easily shown that in this case also (M, g) is Einstein.

Theorem 3.3. Let (M, g) = (B×fF, gB⊕f2gF ) be an warped product of two Riemannian
manifolds (B, gB) and (F, gF ) with warping function f , dimB = m and dimF = n. If
(M, g, µ, ξ) is a conformal Ricci soliton and ξB is Killing vector field on the base B; then
the base (B, gB , µ,−n ln f) is a conformal gradient Ricci soliton; where ξB is the lift of
the vector field ξ to X(B).

Proof. Since it is given that (M, g, µ, ξ) is a conformal Ricci soliton from theorem 2.1 it
follows that the base (B, gB , µ, ξB −n∇B ln f) is also a conformal Ricci soliton and hence
it satisfies equation 1.1. Thus we can write

LBξB−n∇B ln fgB + 2RicB = µgB . (3.2)
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Again using equation (2.7) the above equation (3.2) becomes

LBξBgB − 2
n

f
Hf + 2RicB = µgB .

Now, as ξB is Killing vector field on the base B, we have LBξBgB = 0. Thus with the help
of this, the above equation gives us

−2
n

f
Hf + 2RicB = µgB .

Thus using the properties of Hessian, the above equation finally yields

2H−n ln f + 2RicB = µgB . (3.3)

Hence compairing the above equation (3.3) with the conformal gradient Ricci soliton
equation (2.9) completes the proof.

We conclude this portion of study of Killing vector fields on conformal Ricci soliton
warped product manifolds with the following result

Theorem 3.4. Assume that (M, g) = (B ×f F, gB ⊕ f2gF ) be an warped product of
two Riemannian manifolds (B, gB) and (F, gF ) with warping function f , dimB = m and
dimF = n. Let (M, g, µ, ξ) be a conformal Ricci soliton and both the lifts ξB and ξF are
Killing on the base B and the fiber F respectively. Then the manifold (M, g) is Einstein
if ξB(f) = 0.

Proof. Since it is given that both ξB and ξF are Killing, we have LBξBgB = 0 and LFξF gF =

0. Then using these values in equation (2.2) we get

Lξg = 2fξB(f)gF . (3.4)

Again as per our hypothesis (M, g, µ, ξ) being a conformal Ricci soliton, from equation
(1.1) we get

Lξg + 2Ric = µg.

Now using equation (3.4) in the above equation, gives us

2fξB(f)gF + 2Ric = µg. (3.5)

Thus if ξB(f) = 0, the above equation (3.5) yields Ric = µ
2 g, which implies the manifold

(M, g) is Einstein and this completes the proof.

Now we shall focus on the effect of conformal vector fields on warped product mani-
folds admitting conformal Ricci solitons. In this direction a very immediate result is the
following

Proposition 3.5. Let (M, g) = (B×fF, gB⊕f2gF ) be an warped product of two Riemann-
ian manifolds (B, gB) and (F, gF ) with warping function f , dimB = m and dimF = n.
Let (M, g, µ, ξ) is a conformal Ricci soliton. Then the manifold (M, g) becomes an Ein-
stein manifold with factor (µ2 −ρ) if and only if the vector field ξ is conformal with factor
2ρ.

Proof. (M, g, µ, ξ) being a conformal Ricci soliton, from (1.1) we can write

Lξg + 2Ric = µg (3.6)
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Since the vector field ξ is conformal with factor 2ρ, by definition 3.1 we have LXg = 2ρg,
where ρ is a smooth function. Thus using this value in equation (3.6) finally we get

Ric = (
µ

2
− ρ)g. (3.7)

This implies (M, g) is an Einstein manifold. Similarly by reverse calculation process it
can be shown that if (M, g) is an Einstein manifold with factor (µ2 − ρ) then ξ becomes
conformal with factor 2ρ. This completes the proof.

It is to be noted that in the above result we have discussed on conformal Ricci solitons
with the vector field ξ is taken conformal. So it is natural to ask whether it is necessary to
consider ξ conformal as a whole, or is there a weaker condition than this. The following
theorem could put some light on it.

Theorem 3.6. Assume that (M, g) = (B ×f F, gB ⊕ f2gF ) be an warped product of
two Riemannian manifolds (B, gB) and (F, gF ) with warping function f , dimB = m and
dimF = n. Let (M, g, µ, ξ) be a conformal Ricci soliton and both the lifts ξB and ξF are
conformal on the base B and the fiber F with factors 2ρB and 2ρF respectively; where
ρB and ρF are two smooth functions. Then the manifold (M, g) is Einstein provided
ρB = ρF + ξB(ln f).

Proof. Since ξB is conformal on the base B with factor 2ρB , we have LBξBgB = 2ρBgB .

Also ξF being conformal with factor 2ρF , we get LFξF gF = 2ρF gF . Then using these two

values in equation (2.2) we get

Lξg = 2(ρBgB + f2ρF gF + fξB(f)gF ). (3.8)

Again (M, g, µ, ξ) being a conformal Ricci soliton, from equation (1.1) and the above
equation (3.8) we have

2(ρBgB + f2ρF gF + fξB(f)gF +Ric) = µg.

The above equation can be rewritten as

Ric =
µ

2
g − ρBgB − f2(ρF + ξB(ln f))gF . (3.9)

Hence if ρB = ρF + ξB(ln f), and using equation (1.2), the above equation (3.9) finally
gives us Ric = (µ2 − ρB)g. This implies (M, g) is Einstein and thus completes the proof.

We end this section with our last theorem, which actually gives the converse part
of the previous theorem. In the previous result we characterised the conformal Ricci
soliton (M, g, µ, ξ) whereas our next result gives conditions under which a warped product
manifold (M, g) admits a conformal Ricci soliton.

Theorem 3.7. Let (B, gB , µ, ξB) be a conformal Ricci soliton and (F, gF ) be an Einstein
manifold with factor β, where dimB = m and dimF = n. Let (M, g) = (B×fF, gB⊕f2gF )
be an warped product of (B, gB) and (F, gF ) with warping function f and ξF is conformal
vector field with factor 2ρ. Then (M, g, µ, ξ) is a conformal Ricci soliton if Hf = 0 and
the warping function f satisfies the quadratic equation

(2ρ− µ)f2 + 2fξB(f) + 2β + 2(1− n)k2 = 0,

where k2 = ‖∇f‖2B = gB(∇f,∇f) for some real number k.
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Proof. (B, gB , µ, ξB) being a conformal Ricci soliton, from equation (1.1) we get

LBξBgB + 2RicB = µgB . (3.10)

Again as (F, gF ) is an Einstein manifold with factor β, the Ricci tensor is given by
RicF = βgF . Using this value in equation (2.3) gives us

Ric = RicB − n

f
Hf + βgF − f̃gF , (3.11)

where f̃ = f∆f + (n− 1)‖∇f‖2B . Now, using equation (3.10) in the equation (2.2) we get

Lξg = µgB − 2RicB + f2LFξF gF + 2fξB(f)gF . (3.12)

Multiplying both sides of the equation (3.11) by 2 and then adding it with equation (3.12)
yields

Lξg + 2Ric = µgB + f2LFξF gF + 2fξB(f)gF + 2(−n
f
Hf + βgF − f̃gF ).

Now since the vector field ξF is conformal with factor 2ρ i.e; LFξF gF = 2ρgF , the above
equation becomes

Lξg + 2Ric = µgB + 2f2ρgF + 2fξB(f)gF + 2(−n
f
Hf + βgF − f̃gF ). (3.13)

As it is given that Hf = 0, then it implies that ∆f = 0 and hence f̃ = f∆f+(n−1)‖∇f‖2B
becomes f̃ = (n− 1)‖∇f‖2B = (n− 1)k2, where k2 = ‖∇f‖2B = gB(∇f,∇f) for some real
number k. Therefore using these results in the above equation (3.13) we get

Lξg + 2Ric = µgB + 2f2ρgF + 2fξB(f)gF + 2(βgF − (n− 1)k2gF )

= µ(gB + f2gF ) + (2f2ρ− µf+2fξB(f) + 2(β − (n− 1)k2))gF .

Thus if (2f2ρ − µf2 + 2fξB(f) + 2(β − (n − 1)k2)) = 0 i.e; if f satisfies the quadratic
equation (2ρ−µ)f2 +2fξB(f)+2β+2(1−n)k2 = 0; the above equation finally becomes

Lξg + 2Ric = µ(gB + f2gF ) = µg (3.14)

Therefore from equation (3.14) we can conclude that (M, g, µ, ξ) is a conformal Ricci
soliton and this completes the proof.

4.Warped Product Manifolds Admitting Conformal Ricci
Soliton with Concurrent Vector Field

K. Yano [21] introduced concircular vector fields to study concircular mappings, which
are basically conformal mappings that preserve geodesic circles. In Mathematical Physics
and General Relativity concircular vector fields have many applications. B.Y. Chen in
[22] proved that a Loretzian manifold is a generalised Robertson-Walker spacetime if and
only if it admits a timellike concircular vector field. A vector field ξ on a Riemannian
manifold M satisfying

∇Xξ = αX, (4.1)

for all vector fields X ∈ X(M), is called a concircular vector field [7], where α is a non-
trivial function on M . In particular, if the function α is constant one then the vector field
ξ is called a concurrent vector field. Thus we have the following definition [7]
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Definition 4.1. A vector field ξ on a Riemannian manifold M is called a concurrent
vector field if, for all vector fields X ∈ X(M), the vector field ξ satisfies the following
equation

∇Xξ = X. (4.2)

Based on the above definition, in this section we study conformal Ricci solitons with the
soliton vector field ξ being concircular (also, concurrent) vector field. So in this direction
our first result is as follows

Theorem 4.2. Let (M, g, µ, ξ) be a conformal Ricci soliton on an n-dimensional Rie-
mannian manifold (M, g) and the soliton vector field ξ is concircular with factor α, then

(1) the manifold (M, g) is an Einstein manifold with factor (µ− 2α) and
(2) the soliton is expanding, steady or shrinking according as (p + 2α + 1

n ) < 0,

(p+ 2α+ 1
n ) = 0 or (p+ 2α+ 1

n ) > 0 respectively.

Proof. As per our assumption the soliton vector field ξ is concircular with factor α, then
from equation (4.1) we get∇Xξ = αX. Then using it in the definition of Lie differentiation
we get

(Lξg)(X,Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ)
= g(αX, Y ) + g(X,αY )

= 2αg(X,Y ) (4.3)

for all vector fields X,Y ∈ X(M). Again, (M, g, µ, ξ) being a conformal Ricci soliton,
using the value from (4.3) in the equation (1.1) we get

Ric(X,Y ) = (µ− 2α)g(X,Y ), (4.4)

for all vector fields X,Y ∈ X(M), and µ = [2λ− (p+ 2
n )]. Thus equation (4.4) proves that

(M, g) Einstein with factor (µ− 2α) and this completes the first part of the theorem.

Again we know that for conformal Ricci flow, the scalar curvature r(g) = −1. So taking
an orthonormal basis {ei : 1 ≤ i ≤ n} of the manifold M and summing over 1 ≤ i ≤ n in
both sides of the equation (4.4) gives us

−1 = r(g) = n(µ− 2α).

Finally using the value µ = [2λ− (p+ 2
n )] in the above equation and after simplification

we get

λ = α+
p

2
+

1

2n
. (4.5)

We know that the soliton is expanding steady or shrinking if λ < 0, λ = 0 or λ > 0, thus
applying it in equation (4.5) completes the proof.

Next, we have a result on concurrent vector field, which immediately follows from the
above theorem.

Corollary 4.3. (M, g, µ, ξ) be a conformal Ricci soliton with the soliton vector field ξ is
concurrent, then

(1) the manifold (M, g) is an Einstein manifold with factor (µ− 2) and
(2) the soliton is expanding, steady or shrinking according as (p + 2 + 1

n ) < 0,

(p+ 2 + 1
n ) = 0 or (p+ 2 + 1

n ) > 0 respectively.
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Proof. Proceeding similarly as theorem 4.1 and then putting α = 1 in the equations (4.4)
and (4.5) completes the proof.

We conclude this section with the following theorem on concurrent vector field

Theorem 4.4. Assume that (M, g) = (B ×f F, gB ⊕ f2gF ) be an warped product of
two Riemannian manifolds (B, gB) and (F, gF ) with warping function f , dimB = m and
dimF = n. Let (M, g, µ, ξ) be a conformal Ricci soliton with concurrent vector field ξ. If
f is constant and both the lifts ξB and ξF are concurrent on the base B and the fiber F
then

(1) the soliton (M, g, µ, ξ) is expanding, steady or shrinking according as (p2 + 1
n +

1) < 0, (p2 + 1
n + 1) = 0 or (p2 + 1

n + 1) > 0 respectively,
(2) all the three manifolds M,B and F are Ricci flat manifolds and
(3) all the three manifolds M,B and F admit conformal gradient Ricci solitons.

Proof. Since (M, g, µ, ξ) is a conformal Ricci soliton on M with concurrent vector field ξ,
from first part of the corollary 4.1 we can write

Ric(X,Y ) = (µ− 2)g(X,Y ), (4.6)

for all vector fields X,Y ∈ X(M).
Now if we set X = XF and Y = YF , then from lemma 1.1 and equation (2.3) we get

Ric(XF , YF ) = RicF (XF , YF )− f̃gF (XF , YF ), (4.7)

where f̃ = f∆f + (n − 1)‖∇f‖2B . Now using equation (4.6) and (1.2), in the above
equation (4.7) yields

RicF (XF , YF ) = f̃gF (XF , YF ) + (µ− 2)f2gF (XF , YF ),

where f̃ = f∆f + (n− 1)‖∇f‖2B . Since it is given that f is constant, say f = c for some

constant c, then it implies that f̃ = 0 and thus the above equation becomes

RicF (XF , YF ) = c2(µ− 2)gF (XF , YF ), (4.8)

for all vector fields XF , YF ∈ X(F ). Thus from the above equation (4.8) we can say that
F is Einstein. Now as the equation (4.8) is true for any vector field in X(F ), by putting
XF = YF = ξF in above we get

RicF (ξF , ξF ) = c2(µ− 2)gF (ξF , ξF )

= c2(µ− 2)‖ξF ‖2F . (4.9)

Let {ξF , e1, e2, e3, ...., en−1} be an orthonormal basis of X(F ). Then the curvature tensor
of the manifold F is given by

RF (ξF , ei, ξF , ei) = gF (RF (ξF , ei)ξF , ei).

Using the well-known formula for curvature, the above equation can be rewritten as

RF (ξF , ei, ξF , ei) = gF (∇FξF∇
F
eiξF −∇

F
ei∇

F
ξF ξF −∇

F
[ξF ,ei]

ξF , ei). (4.10)

Also since ξF is concurrent vector field, from equation (4.2) we have ∇XξF = X, for all
X ∈ X(F ) and using this in equation (4.10) we get

RF (ξF , ei, ξF , ei) = gF (∇FξF ei −∇
F
eiξF − [ξF , ei], ei) = 0.

This implies RicF (ξF , ξF ) = 0 and then from equation (4.9) we get µ = 2, i.e; µ =
[2λ − (p + 2

n )] = 2. After simplification this gives λ = (p2 + 1
n + 1) and the soliton is
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shrinking, steady or expanding according as λ > 0, λ = 0 or λ < 0. This proves the first
part of the theorem.

Now, using this value µ = 2 in equations (4.8) and (4.6) we have Ric = RicF = 0.
This proves that both the manifolds M and F are Ricci flat.
Again if we set X = XB and Y = YB , then from lemma 1.1 we can write

Ric(XB , YB) = RicB(XB , YB)− n

f
Hf (XB , YB),

for all XB , YB ∈ X(B). Now since we just proved Ric = 0, the above equation becomes

RicB(XB , YB) =
n

f
Hf (XB , YB). (4.11)

Since we assumed that f is constant, it implies Hf = 0 and thus the above equation (4.11)
finally gives us RicB(XB , YB) = 0, for all XB , YB ∈ X(B). Therefore we get RicB = 0
and this proves that the manifold B is Ricci flat. This completes the proof of the second
part of the theorem.

To prove the last part of the theorem, let us assume that φ = 1
2g(ξ, ξ). Then

g(X, gradφ) = X(φ) = g(∇Xξ, ξ), (4.12)

for all X ∈ X(M). Again ξ being concurrent, from equation (4.2) we have ∇Xξ = X and
using this value in equation (4.12) we get

g(X, gradφ) = g(X, ξ)

for all X ∈ X(M). Since the above equation is true for any vector field X ∈ X(M), we
can conclude that ξ = gradφ. Hence (M, g) admits a conformal gradient Ricci soliton.
Again taking φB = 1

2g(ξB , ξB) and φF = 1
2g(ξF , ξF ) and proceeding similarly we can

show that ξB = gradφB and ξF = gradφF . Also from theorem 2.1 we know that since
(M, g) is conformal Ricci soliton, B and F both are conformal Ricci soliton. Hence can
conclude that both the manifolds B and F admit conformal gradient Ricci soliton.

5. Application of Conformal Ricci Soliton on Generalized
Robertson-Walker Spacetime

This section deals with the study of conformal Ricci solitons on a very well-known
warped spacetime called a generalized Robertson-Walker spacetime which is an exten-
sion of the classical Robertson-Walker spacetimes. It is to be noted that, generalized
Robertson-Walker spacetimes also obey the Weyl hypothesis, i.e; the world lines should
be everywhere orthogonal to a family of spacelike slices. M. Sánchez [23] characterized
generalized Robertson-Walker spacetimes in terms of timelike and spatially conformal
conformal vector fields. Also, a characterization of generalized Robertson-Walker space-
times in terms of timelike concircular vector field has been studied by B.Y. Chen [22].

Definition 5.1. A generalized Robertson-Walker spacetime is a warped product manifold
M = I ×f F endowed with the Lorentzian metric

g = −dt2 ⊕ f2gF , (5.1)

where the base is an open interval I of R with its usual metric reversed(I,−dt2), the
fiber is an n-dimensional Riemannian manifold (F, gF ) and the warping function is any
positive function f > 0 on I.
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Based on the above definiton we will consider a generalized Robertson-Walker space-
time and study the effect of conformal Ricci soliton on it. Our main result of this section
is the following

Theorem 5.2. Let M = I ×f F be a generalized Robertson-Walker spacetime endowed

with the metric g = −dt2 ⊕ f2gF and let φ =
∫ t
c
f(z)dz, for some constant c ∈ I. If

(M, g, µ, φ) admits a conformal gradient Ricci soliton, then

(1) the generalized Robertson-Walker spacetime (M, g) becomes Ricci flat if the

soliton constant λ satisfies the relation λ = ḟ + p
2 + 1

n and
(2) the generalized Robertson-Walker spacetime (M, g) is an Einstein manifold if

the warping function f is of the form f(t) = at+ b, where a, b are constants.

Proof. As per our assumption, (M, g, µ, φ) being a conformal gradient Ricci soliton, set-
ting ξ = gradφ, from equation (1.1) we can write

(Lξg)(X,Y ) + 2Ric(X,Y ) = µg(X,Y ) = [2λ− (p+
2

n
)]g(X,Y ), (5.2)

for all X,Y ∈ X(M).

Again since φ =
∫ t
c
f(z)dz, then ξ = gradφ implies that ξ = f(t) ∂∂t and it can be seen

that the vector field ξ is orthogonal to the manifold F .
Let us assume that { ∂∂t ,

∂
∂x1

, ∂
∂x2

, ...., ∂
∂xn
} be an orthonormal basis of X(M). Then the

Hessian of the function φ is given by

Hφ(X,Y ) = g(∇Xgradφ, Y ). (5.3)

Now, we consider the following three cases.

Case 1: First let us consider X = Y = ∂
∂t .

Then from equation (5.3) we get

Hφ

(
∂

∂t
,
∂

∂t

)
= g

(
∇ ∂

∂t
gradφ,

∂

∂t

)
= ḟg

(
∂

∂t
,
∂

∂t

)
. (5.4)

Case 2: Next we consider X = ∂
∂t and Y = ∂

∂xi
for i = 1, 2, ...., n.

Then in this case equation (5.3) implies

Hφ

(
∂

∂t
,
∂

∂xi

)
= g

(
∇ ∂

∂t
gradφ,

∂

∂xi

)
= ḟg

(
∂

∂t
,
∂

∂xi

)
. (5.5)
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Case 3: Finally we consider X = ∂
∂xi

and Y = ∂
∂xj

for 1 ≤ i, j ≤ n.

Then from equation (5.3) we have

Hφ

(
∂

∂xi
,
∂

∂xj

)
= g

(
∇ ∂

∂xi

gradφ,
∂

∂xj

)
= fg

(
∇ ∂

∂xi

∂

∂t
,
∂

∂xj

)
= fg

(
ḟ

f

∂

∂xi
,
∂

∂xj

)

= ḟg

(
∂

∂xi
,
∂

∂xj

)
. (5.6)

Therefore combining equations (5.4), (5.5) and (5.6) and using it in (5.3) we get

Hφ(X,Y ) = ḟg(X,Y ). (5.7)

Now, since ξ = gradφ, using the definition of Lie differentiation we can write

(Lξg)(X,Y ) = g(∇Xgradφ, Y ) + g(X,∇Y gradφ)

= 2Hφ(X,Y ).

Thus using equation (5.7), the above equation becomes

(Lξg)(X,Y ) = 2ḟg(X,Y ). (5.8)

Using the value of equation (5.8) in the equation (5.2) and after simplification we get

Ric(X,Y ) = [λ− ḟ − p

2
− 1

n
]g(X,Y ). (5.9)

Thus if λ = ḟ + p
2 + 1

n , from equation (5.9), it implies that (M, g) is Ricci flat. This
completes the first part of the theorem.

Again if ḟ is a constant, say ḟ = a, i.e; if df = adt, i.e; if f = at + b for some
arbitrary constant b, then from equation (5.9) we can conclude that (M, g) is Einstein.
This completes the proof.
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