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1. Introduction

Metric fixed point theory has its roots in methods from the late 19th century, when
successive approximations were used to establish the existence and uniqueness of solu-
tions to equations, and especially differential equations. This approach is particularly
associated with the work of Picard, although it was Stefan Banach who in 1922 in [1]
developed the ideas involved in an abstract setting.

Banach’s contraction principle is a fundamental result in fixed point theory. Due to
its importance, several authors have obtained many interesting extensions and general-
izations see [2–6].

Many generalizations of the concept of metric spaces are defined and some fixed point
theorems were proved in these spaces. In particular, asymmetric metric spaces were
introduced by Wilson [7] as a generalization of metric spaces. many mathematicians
worked on this interesting space. For more, the reader can refer to [8, 9].

A. Branciari in [10] initiated the notions of a generalized metric space as a general-
ization of a metric space, where the triangular inequality of metric spaces replaced by
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d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) (quadrilateral Inequality). Various fixed point results
were established on such spaces, see [11–16] and references therein.

Combining conditions used for definitions of asymmetric metric and generalized metric
spaces, Piri et al [17] announced the notions of generalized asymmetric metric space and
establish nice results of fixed point on such space.

In this paper, inspired by the work done in [18, 19], we introduce the notion of
F−contraction and establish some new fixed point theorems for mappings in the setting
of complete generalized asymmetric metric spaces. Moreover, an illustrative examples is
presented to support the obtained results.

2. Preliminaries

In the following, we recollect some definitions which will be useful in our main results.

Definition 2.1. [10]. Let X be a non-empty set and d : X × X → R+ be a mapping
such that for all x, y ∈ X and for all distinct points u, v ∈ X, each of them different from
x and y, on has

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all distinct points x, y ∈ X;
(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y). (quadrilateral Inequality)
Then (X, d) is called a generalized metric space.

Definition 2.2. [17]. Let X be a non-empty set and d : X × X → R+ be a mapping
such that for all x, y ∈ X and for all distinct points u, v ∈ X, each of them different from
x and y, on has

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y). (quadrilateral Inequality) Then (X, d) is called a
generalized asymmetric metric space.

Example 2.3. Consider X = {0, 1, 2, 3} Let d : X ×X → R+ be mapping defined by
(i) d(x, y) = 0 if and only x = y;
(ii) d(0, 1) = d(1, 0) = d(2, 1) = d(2, 0) = d(3, 0) = d(2, 3) = d(3, 1) = 1;
(iii) d(1, 2) = d(0, 2) = 2;
(iv) d(0, 3) = 3, d(3, 2) = 4;
(v) d(1, 3) = 2.

Clearly, (X, d) is not asymmetric metric space. Indeed, d(1, 3) = 4 > d(1, 2)+d(2, 3) =
3.
But is a complete generalized asymmetric metric space.

Definition 2.4. [17]. Let (X, d) is a generalized asymmetric metric space and {xn}n∈N
be a sequence in X, and x ∈ X. Then

(i) We say that {xn}n∈N forward (backward) converges to x if and only if

lim
n→+∞

d (x, xn) = lim
n→+∞

d (xn, x) = 0.

(ii) We say that {xn}n∈N forward (backward) Cauchy if

lim
n,m→+∞

d (xn, xm) = lim
n,m→+∞

d (xm, xn) = 0.

Lemma 2.5. [17]. Let (X, d) be an generalized asymmetric metric space and {xn}n be
a forward (or backward) Cauchy sequence with pairwise disjoint elements in X. If {xn}n
forward converges to x ∈ X and backward converges to y ∈ X, then x = y.
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Definition 2.6. [17]. Let (X, d) be a generalized asymmetric metric space. X is said to
be forward (backward) complete if every forward (backward) Cauchy sequence {xn}n∈N
in X forward (backward) converges to x ∈ X.

Definition 2.7. [17]. Let (X, d) be a generalized asymmetric metric space. X is said to
be complete if X is forward and backward complete.

The following definition was given by Samet et al in [20].

Definition 2.8. [20]. Let T : X → X be function and α : X × X → [0,+∞[ be a
function. We say that T is an α-admissible mapping if

x, y ∈ X,α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1.

The following definition was given by Salimi et al in [21].

Definition 2.9. [21]. Let T be a self-mapping on X and α, η : X ×X → [0,+∞[ be two
functions. We say that T is an α-admissible mapping with respect to η if

x, y ∈ X,α(x, y) ≥ η(x, y)⇒ α(Tx, Ty) ≥ η(Tx, Ty).

Definition 2.10. [22]. Let (X, d) be a metric space. Let α, η : X × X → [0,+∞[ and
T : X → X be functions. We say T is an α -η−continuous mapping on (X, d), if for
given x ∈ X and sequence {xn}n∈N with xn → x, α(xn, xn+1) ≥ η(xn, xn+1) for all
n ∈ N ⇒ Txn → Tx.

Definition 2.11. [5]. Let F be the family of all functions F : R+ → R such that
(i) F is strictly increasing;
(ii) For each sequence {xn}n∈N of positive numbers

lim
n→0

xn = 0, if and only if lim
n→∞

F (xn) = −∞;

(iii) There exists k ∈ ]0, 1[ such that limx→0 x
kF (x) = 0.

Recently Piri et al. [4], replaced the condition (iii) in [5] by the condition : F is
continuous.

Definition 2.12. [4]. Let = be the family of all functions F : R+ → R such that
(i) F is strictly increasing;
(ii) For each sequence {xn}n∈N of positive numbers

lim
n→0

xn = 0, if and only if lim
n→∞

F (xn) = −∞;

(iii) F is continuous.

3. Main Result

The following Definition is similar to Definition 2.10 in the framework of generalized
asymmetric metric space.

Definition 3.1. Let (X, d) be a generalized asymmetric metric space. Let α, η : X ×X
→ [0,+∞[ and T : X → X be functions. We say T is an α -η−continuous mapping on
(X, d), if for given x ∈ X and sequence {xn}n∈N with xn → x, α(xn, xn+1) ≥ η(xn, xn+1)
for all n ∈ N ⇒ Txn → Tx.

Example 3.2. Consider X = {0, 1, 2, 3} . Let d : X ×X → R+, be a mapping defined by
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(i) d(x, y) = 0 ⇔ x = y for all x, y ∈ X;
(ii) d(0, 1) = d(1, 0) = d(2, 1) = d(2, 0) = d(3, 0) = d(2, 3) = d(3, 1) = 1;
(iii) d(1, 2) = d(0, 2) = 2;
(iv) d(0, 3) = d(3, 2) = 3, d(1, 3) = 4. Clearly, (X, d) is a complete generalized asymmetric
metric space.
Let T :X → X, be given by
T (0) = T (1) = 0, T (2) = 1, T (3) = 2.
Define, α, η : X × X → [0,+∞[ by

α (x, y) =
x+ y

max {x, y}+ 1
, and η (x, y) =

|x− y|
max {x, y}+ 1

,

so,

|x− y|
max {x, y}+ 1

≤ x+ y

max {x, y}+ 1
∀x, y ∈ X.

so, we have

η (x, y) ≤ α (x, y) ∀x, y ∈ X.

Since T (x) ∈ X ∀x ∈ X, imply

η (Tx, Ty) ≤ α (Tx, Ty) for all x, y ∈ X.

Therefore, T is not continuous, but T is α-η -continuous on (X, d).

Definition 3.3. Let (X, d) be a generalized asymmetric metric space. A mapping T :
X ×X is said to be an α -η-contraction of type (A) on (X, d), if there exist F ∈ F, α, η:
X ×X → [0,+∞[ and τ > 0 such that

max {d(Tx, Ty), d(Ty, Tx)} > 0⇒F [max{d(Tx, Ty), d(Ty, Tx)}] + τ

≤ F [max{d(x, y), d(y, x)}] . (3.1)

Theorem 3.4. Let (X, d) be a complete generalized asymmetric metric space and let
T : X → X be a mapping satisfying the following assertions:

(i) T is α-admissible mapping with respect to η;
(ii) T is α-η -F -contraction of type (A);
(iii) there exists x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0) and α(x0, T

2x0) ≥ η(x0, T
2x0);

(iv) T is α-η-continuous.
Then T has a fixed point. Moreover, if α(x, y) ≥ η(x, x) for all x, y ∈ Fix(T ), then T
has a unique fixed point

Proof. First step. We shall prove that

lim
n→∞

d (xn, xn+1) = 0 and lim
n→∞

d (xn+1, xn) = 0.

Let x0 ∈ X such that α (x0, Tx0) ≥ η (x0, Tx0) and α
(
x0, T

2x0
)
≥ η

(
x0, T

2x0
)
.

For such x0, we define the sequence {xn}n∈N by xn = Tnx0 = Txn−1.
Since, T is α-admissible mapping with respect to η we have

α (x0, Tx0) = α (x0, x1) ≥ η (x0, Tx0) = η (x0, x1)

and

α
(
x0, T

2x0
)

= α (x0, x2) ≥ η
(
x0, T

2x0
)

= η (x0, x2) .
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By continuing this process, we have

η (xn, Txn) = η (xn, xn+1) ≤ α (xn, xn+1) , (3.2)

and

η (xn, Txn+1) = η (xn, xn+2) ≤ α (xn, xn+2) . (3.3)

for all n ∈ N . If there exist n0 ∈ N such that d (xn0 , xn0+1) = 0 or d
(
xn0+1 , xn0

)
= 0,

then xn0 is fixed point of T .
So, we assume that d (xn, Txn) > 0 and d (Txn, xn) > 0 for all n ∈ N .
Therefore,

max [d (xn, xn+1) , d (xn+1, xn)] > 0.

So from assumption of the theorem, we get,

F [max {(d (xn, xn+1)) , d (xn+1, xn)}] + τ ≤F [max {d (xn−1, xn) , d (xn, xn−1)}],
which implies,

F [max {d (xn, xn+1) , d (xn+1, xn)}] ≤ F [max {d (xn−1, xn) , d (xn, xn−1)}]− τ
≤ F [max {d (xn−2, xn−1) , d (xn−1, xn−2)}]− 2τ

≤ ... ≤ F [max {d (x0, x1) , d (x1, x0)}]− nτ
Therefore,

F [max {(d (xn, xn+1)) , d (xn+1, xn)}] ≤ F [max {d (x0, x1) , d (x1, x0)}]− nτ.
(3.4)

Letting n → +∞ in (3.4), we obtain

lim
n→∞

F [max {(d (xn, xn+1)) , d (xn+1, xn)}] = −∞.

From (F2) , we obtain

lim
n→∞

max {(d (xn, xn+1)) , d (xn+1, xn)} = 0.

Therefore,

lim
n→∞

d (xn, xn+1) = 0 and lim
n→∞

d (xn+1, xn) = 0. (3.5)

Second step. We shall prove that

lim
n→∞

d (xn, xn+2) = 0 and lim
n→∞

d (xn+2, xn) = 0.

We assume that xn 6= xm for every n,m ∈ N. Indeed, suppose that xn = xm for some
n = m+ k with k > 0, so we have Txn = Txm. By (3.1) implies that

F [max {d (xm, xm+1) , d (xm+1, xm)}] = F [max {d (xn, xn+1) , d (xn+1, xn)}]
≤ F [max {d (xn−1, xn) , d (xn, xn−1)}]− τ.
< F [max {d (xn−1, xn) , d (xn, xn−1)}] .

Since F is strictly increasing, so

max {d (xn, xn+1) , d (xn+1, xn)} < max {d (xn−1, xn) , d (xn, xn−1)} .
Continuing this process, we have

max {d (xm, xm+1) , d (xm+1, xm)} < max {d (xm, xm+1) , d (xm+1, xm)} .
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which is a contradiction. Therefore,

max {d (xm, xn) , d (xn, xm)} > 0

for every n,m ∈ N, n 6= m
Substituting x = xn and y = xn+2. Then

max {d (xn, xn+2) , d (xn+2,xn)} > 0.

Now, applying (3.1) with x = xn−1 and y = xn+1, we get

F [max {d (xn, xn+2) , d (xn+2, xn)}]+τ ≤F [max {d (xn−1, xn+1) , d (xn+1, xn−1)}].
So, F (max {d (xn, xn+2) , d (xn+2, xn)}) ≤ F [max {d (xn−1, xn+1) , d (xn+1, xn−1)}]− τ

≤F [max {d (xn−2, xn) , d (xn, xn−2)}]−2τ ... ≤F [max {d (x0, x2) , d (x2, x0)}]−nτ.
Therefore,

F [max {d (xn, xn+2) , d (xn+2, xn)}] ≤ F [max {d (x0, x2) , d (x2, x0)}]− nτ. (3.6)

Letting n → +∞ in (3.6), we obtain

lim
n→∞

F [max {(d (xn, xn+2)) , d (xn+2, xn)}] = −∞

and from (F2) , we obtain

lim
n→∞

max {(d (xn, xn+2)) , d (xn+2, xn)} = 0.

Therefore,

lim
n→∞

d (xn, xn+2) = 0 and lim
n→∞

d (xn+2, xn) = 0. (3.7)

Third step. We shall prove that, {xn}n∈N is a Cauchy sequence in (X, d).
Now, from (F3) , there exists k ∈ ]0, 1[ such that

lim
n→∞

[max {(d (xn, xn+1)) , d (xn+1, xn)}]kF (max {(d (xn, xn+1)) , d (xn+1, xn)})= 0.

(3.8)

Since

F [max {d (xn, xn+1) , d (xn+1, xn)}] ≤ F [max {d (x0, x1) , d (x1, x0)}]− nτ,
we have

[max {(d (xn, xn+1)) , d (xn+1, xn)}]k F [max {d (d (xn, xn+1)) , d (xn+1, xn)}]

≤ [max {(d (xn, xn+1)) , d (xn+1, xn)}]k F [max {d (x0, x1) , d (x1, x0)}]

− nτ [max {(d (xn, xn+1)) , d (xn+1, xn)}]k

Therefore,

[max {(d (xn, xn+1)) , d (xn+1, xn)}]k F [max {d (xn, xn+1) , d (xn+1, xn)}]

− [max {(d (xn, xn+1)) , d (xn+1, xn)}]k F [max {d (x0, x1) , d (x1, x0)}]

≤ −nτ [max {(d (xn, xn+1)) , d (xn+1, xn)}]k

≤ 0. (3.9)

Letting n → +∞ in (3.9) and from (3.8) , we obtain

lim
n→∞

n [max {(d (xn, xn+1)) , d (xn+1, xn)}]k = 0.
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From the definition of the limit, there exists n0 ∈ N such that

[max {(d (xn, xn+1)) , d (xn+1, xn)}] ≤ 1

n
1
k

,∀n ≥ n0.

Which implies

(d (xn, xn+1)) ≤ 1

n
1
k

and d (xn+1, xn) ≤ 1

n
1
k

∀n ≥ n0. (3.10)

On the other hand from (F3) there exists k ∈ ]0, 1[ such that

lim
n→∞

[max{(d (xn, xn+2)) , d (xn+2, xn)}]kF (max{(d (xn, xn+2)) , d (xn+2, xn)})= 0.

(3.11)

Since

F [max {d (xn, xn+2) , d (xn+2, xn)}] ≤ F [max {d (x0, x2) , d (x2, x0)}]− nτ,

Therefore,

[max {(d (xn, xn+2)) , d (xn+2, xn)}]k F [max {(d (xn, xn+2)) , d (xn+2, xn)}]

≤ [max {(d (xn, xn+2)) , d (xn+2, xn)}]k F [max {d (x0, x2) , d (x2, x0)}]

− nτ [max {(d (xn, xn+2)) , d (xn+2, xn)}]k .

So, we have

[max {d (xn, xn+2) , d (xn+2, xn)}]k F [max {(d (xn, xn+2)) , d (xn+2, xn)}]

− [max {(d (xn, xn+2)) , d (xn+2, xn)}]k F [max {d (x0, x2) , d (x2, x0)}]

≤ −nτ [max {(d (xn, xn+2)) , d (xn+2, xn)}]k ≤ 0. (3.12)

Letting n → +∞ in (3.12) and from (11) , we obtain

lim
x→∞

n [max {(d (xn, xn+2)) , d (xn+2, xn)}]k = 0.

From the definition of the limit, there exists n1 ∈ N such that

[max {(d (xn, xn+2)) , d (xn+2, xn)}] ≤ 1

n
1
k

for all n ≥ n1.

So,

d (xn, xn+2) ≤ 1

n
1
k

and d (xn+2, xn) ≤ 1

n
1
k

for all n ≥ n1. (3.13)

Next, we show that {xn}n∈N is a Forward Cauchy sequence, i.e,

lim
n→∞

d (xn, xn+k) = 0 for all k ∈ N.

The cases k = 1 and k = 2, are proved, respectively by (3.5) and (3.7) .
Now, we take k ≥ 3 . It is sufficient to examine two cases:
Case (I): Suppose that k = 2m+ 1 where m ≥ 1. By using the quadrilateral inequality
together we have

d (xn, xn+k)=d (xn, xn+2m+1)≤d (xn, xn+1)+d (xn+1, xn+2)+......+d (xn+2m, xn+2m+1) .
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Using (3.10), we have

d (xn, xn+k) ≤ 1

n
1
k

+
1

(n+ 1)
1
k

+ .......+
1

(n+ 2m)
1
k

≤
i=n+2m∑

i=n

1

i
1
k

≤
∞∑
i=n

1

i
1
k

<∞. (3.14)

Case (II): Suppose that k = 2m where m ≥ 1. Again, by applying the quadrilateral
inequality we have

d (xn, xn+k) = d (xn, xn+2m) ≤ d (xn, xn+2)+d (xn+2, xn+3)+ ......+d (xn+2m−1, xn+2m) .

Using (3.10) and (3.13), we have

d (xn, xn+k) ≤ d (xn, xn+2) +
1

(n+ 2)
1
k

+ .......+
1

(n+ 2m− 1)
1
k

≤ 1

n
1
k

+

i=n+2m−1∑
i=n+2

1

i
1
k

≤
∞∑
i=n

1

i
1
k

<∞. (3.15)

By combining the expressions (3.14) and (3.15), we obtain

d (xn, xn+k) ≤
∞∑
i=n

1

i
1
k

<∞. (3.16)

Letting n → +∞ in (3.16) , we obtain

lim
n→∞

d (xn, xn+k) = 0.

Consequently, {xn}n∈N is forward Cauchy sequence in X. Secondly we show {xn}n∈N is
a Backward Cauchy sequence, i.e.

lim
x→∞

d (xn+k, xn) = 0, for all k ∈ N.

The cases k = 1 and k = 2, are proved, respectively, by (3.5) and (3.7) i.e.,

lim
x→∞

d (xn+1, xn) = lim
x→∞

d (xn+2, xn) = 0.

Now, we take k ≥ 3 . It is sufficient to examine two cases:
Case (I): Suppose that k = 2m + 1 where m ≥ 1. Then, by using the quadrilateral
inequality we have

d (xn+k, xn) =d (xn+2m+1, xn)

≤ d (xn+2m+1, xn+2m) + d (xn+2m, xn+2m−1) + ...+ d (xn+1, xn) .

From (3.10) we have

d (xn, xn+k) ≤ 1

n
1
k

+
1

(n+ 1)
1
k

+ .......+
1

(n+ 2m)
1
k

≤
i=n+2m∑

i=n

1

i
1
k

≤
∞∑
i=n

1

i
1
k

<∞. (17)
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Case (II): Suppose that k = 2m where m ≥ 1. Again, by applying the quadrilateral
inequality we have

d (xn+k, xn)=d (xn+2m, xn)

≤d (xn+2m, xn+2m−2) + d (xn+2m−2, xn+2m−3) + ......+ d (xn+1, xn).

Using (3.10) and (3.13), we obtain

d (xn+k, xn) ≤ d (xn+2m, xn+2m−2) +
1

(n+ 2m− 3)
1
k

+ ....+
1

(n+ 1)
1
k

+
1

n
1
k

≤ 1

(n+ 2m− 2)
1
k

+

i=n+2m−3∑
i=n

1

i
1
k

≤
∞∑
i=n

1

i
1
k

<∞. (3.17)

For two cases, we obtain

d (xn+k, xn) ≤
∞∑
i=n

1

i
1
k

<∞ ∀k ≥ 3. (3.18)

Letting n→∞ in (3.18), we obtain

lim
n→∞

d (xn+k, xn) = 0.

Consequently, {xn}n∈N is a Backward Cauchy sequence in (X, d). We deduce that
{xn}n∈N is a Cauchy sequence in complete generalized asymmetric metric space (X, d).
By completeness of (X, d), there exists z, w ∈ X such that

lim
n→∞

d (xn, z) = 0 and lim
n→∞

d (w, xn) = 0.

By Lemma (2.5), we get z = w.
On the other hand

η (xn, xn+1) ≤ α (xn, xn+1) .

Since T is α− η-continuous, we have xn+1 = Txn → Tz as n→∞.
In this stage, we show that, d (z, Tz) = 0 or d (Tz, z) = 0. Observe that

lim
n→∞

d (Txn, T z) = lim
n→∞

d (Tz, Txn) = 0. (3.19)

From the quadrilateral inequality we get,

d (Txn, T z) ≤ d (Txn, xn) + d (xn, z) + d (z, Tz) , (3.20)

and

d (z, Tz) ≤ d (z, xn) + d (xn, Txn) + d (Txn, T z) . (3.21)

By letting n→∞ in (3.20) and (3.21), we obtain

d (z, Tz) ≤ lim
n→∞

d (Txn, T z) ≤ d (z, Tz) .

Therefore,

lim
n→∞

d (Txn, T z) = d (z, Tz) . (3.22)

Again by quadrilateral inequality, we get

d (Tz, Txn) ≤ d (Tz, z) + d (z, xn) + d (xn, Txn) , (3.23)
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and

d (Tz, z) ≤ d (Tz, Txn) + d (Txn, xn) + d (xn, z) . (3.24)

By letting n→∞ in inequality (3.23) and (3.24), we obtain

d (Tz, z) ≤ lim
n→∞

d (Tz, Txn) ≤ d (Tz, z) . (3.25)

Therefore

lim
n→∞

d (Tz, Txn) = d (Tz, z) . (3.26)

From (3.19) , (3.22) and (3.26) we prove that Tz = z.
Uniqueness.
Let u, v ∈ Fix(T ) where u 6= v. Substituting x = u and y = v in (3.1), we obtain

max [d (Tv, Tu) , d (Tu, Tv)] = max [d (v, u) , d (u, v)] > 0.

So from the assumption of theorem, we have

α(u, v) ≥ η(v, v),

and

F [max{d (Tv, Tu) , d (Tu, Tv)}]− τ = F [max{d (v, u) , d (u, v)}]− τ
< max [d (v, u) , d (u, v)] .

Which is a contradiction. Hence, u = v. Therefore, T has a unique fixed point.

If in Theorem 3.4 we take α(x, y) = η(x, y) = 1 for all x, y ∈ X, then we deduce the
Corollary.

Corollary 3.5. Let (X, d) be a complete generalized asymmetric metric space. Let T :
X → X be a self-mapping satisfying If for x, y ∈ X with max [d (Tx, Ty) , d (Ty, Tx)] > 0
we have

F [max {d (Tx, Ty) , d (Ty, Tx)}] + τ ≤ F [max {d (x, y) , d (y, x)}]

where τ > 0 and F ∈ z. Then T has a unique fixed point.

Example 3.6. Consider X = {0, 1, 2, 3} . Let d : X×X → R+, be a mapping defined by

(i) d(x, y) = d(y, x) = 0⇔ x = y ∀x, y ∈ X;

(ii) d(0, 1) = d(1, 0) = d(2, 1) = d(2, 0) = d(3, 0) = d(2, 3) = d(3, 1) = 1;

(iii) d(1, 2) = d(0, 2) = 2;

(vi) d(0, 3) = d(3, 2) = 3, d(1, 3) = 4.

Clearly, (X, d) is not asymmetric metric spaces, from

d(1, 3) = 4 > d(1, 2) + d(2, 3) = 3.
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But is a complete generalized asymmetric metric space.
Let T : X → X, be given by

T (0) = T (1) = 0

T (2) = 1

T (3) = 2.

T (0) = T (1) = 0, T (2) = 1, T (3) = 2.
Define, α, η : X × X → [0,+∞[ by

α (x, y) =
x+ y

max {x, y}+ 1
, andη (x, y) =

|x− y|
max {x, y}+ 1

,

so,

|x− y|
max {x, y}+ 1

≤ x+ y

max {x, y}+ 1
∀x, y ∈ X,

then,

η (x, y) ≤ α (x, y)∀ x, y ∈ X,

and T (x) ∈ X ∀x ∈ X, imply

η (Tx, Ty) ≤ α (Tx, Ty)∀ x, y ∈ X.

Hence, T is an α -admissible mapping with respect to η.
On the other hand, α (3, T3) = 5

4 ≥
1
4 = η (3, T3) . and α

(
3, T 23

)
= 1 ≥ 1

2 = η
(
3, T 23

)
,

Clearly, T is α− η continuous.
If

limn→∞xn = x and η (xn, Txn) ≤ α (xn, Txn) ,

then,

limn→∞Txn = Tx, ∀xn ∈ X.

On the other hand
η (0, T (0)) = η (0, 0) = 0 ≤ α (0, x)∀x ∈ X;
η (1, T (1)) = η (1, 0) = 1

2 ≤ α (1, x)∀x ∈ X;
η (2, T (2)) = η (2, 1) = 1

3 ≤ α (2, x) ∀x ∈ X;
η (3, T (3)) = η (3, 2) = 1

4 ≤ α (3, x) ∀x ∈ X.

Then

η (x, Tx) ≤ α (x, y) , ∀x, y ∈ X.

Suppose F (x) = ln (x), and τ = ln
(
3
2

)
. Obviously, F ∈ z.

First observe that max {d(Tx, Ty), d(Ty, Tx)} > 0 ⇔ {x = 0, y = 2}, {x = 1, y = 2},
{x = 0, y = 3}, {x = 1, y = 3} or {x = 2, y = 3} .
For x = 0, y = 2, we have

ln (max {d(T (0), T (2)), d(T (2), T (0))})+τ=ln (max {d(0, 1), d(1, 0))}) + τ =ln
3

2
≤ ln (max {d(0, 2), d(2, 0)}) =ln 2.
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For x = 1, y = 2, we have

ln (max {d(T (1), T (2)), d(T (2), T (1)})+τ=ln (max d(0, 1), d(1, 0)) +
1

2
=ln

3

2
≤ ln (max {d(1, 2), d(2, 1)}) =ln 2.

For x = 0, y = 3, we have

ln (max {(T (0), T (3)), d(T (3), T (0))})+τ=ln (max d(0, 2), d(2, 0))

=ln
3

2
+ ln 2=ln 3

≤ ln (max {d(0, 3), d(3, 0)}) = ln 3.

For x = 1, y = 3, we have

ln (max {(T (1), T (3)), d(T (3), T (1))}) + τ = ln (max d(0, 2), d(2, 0))

= ln
3

2
+ ln 2 = ln 3

≤ ln (max {d(1, 3), d(3, 1)}) = ln 4.

For x = 2, y = 3, we have

ln (max {(T (2), T (3)), d(T (3), T (2))}) + τ = ln (max d(1, 2), d(2, 1))

= ln
3

2
+ ln 2 = ln 3

≤ ln (max {d(2, 3), d(3, 2)}) = ln 3.

Therefore,

max [d (Tx, Ty) , d (Ty, Tx)] > 0⇒F [max {d (Tx, Ty) , d (Ty, Tx)}] + τ

≤ F [max {d (x, y) , d (y, x)}] .

Hence T has a unique fixed point i.e, T (0) = 0.

Theorem 3.7. Let (X, d) be a complete generalized asymmetric metric space and let
T : X → X be a self-mapping satisfying the following assertions:

(i) T is α-admissible mapping with respect to η;
(ii) T is α-η -F -contraction of type (A) ;
(iii) there exists x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0) and α

(
x0, T

2x0
)
≥ η

(
x0, T

2x0
)

;
(iv) If xn is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) with xn → x as n→∞,
then either η(Txn, T

2xn)≤α(Txn, x) or η(T 2xn, T
3xn)≤α(T 2xn, x) holds for all n ∈ N .

Then T has a fixed point. Moreover, T has a unique fixed point when α(x, y) ≥ η(x, x)
for all x, y ∈ Fix(T ).

Proof. Let x0 ∈ X such that

α (x0, Tx0) ≥ η (x0, Tx0) and α
(
x0, T

2x0
)
≥ η

(
x0, T

2x0
)
.

As in the proof of Theorem (3.4), we can conclude that

η (xn, xn+1) ≤ α (xn, xn+1) ,

and

η (xn, xn+2) ≤ α (xn, xn+2) .
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Therefore,

lim
n→∞

xn = x for all n ∈ N.

From (iv), we have

η (xn+1, xn+2) ≤ α (xn+1, x) or η (xn+2, xn+3) ≤ α (xn+2, x) ,

holds for all n ∈ N. Equivalently, there exists a subsequence {xnk
} of {xn} such that

η (xnk
, Txnk

) = η
(
xnk

, xnk+1

)
≤ α (xnk

, x) .

On the other hand from (ii) we deduce that

F [max {d (Txnk
, Tx) , d (Tx, Txnk

)}] + τ ≤ F [max {d (xnk
, x) , d (x, xnk

)}] .

Since F is strictly increasing, so

max {d (Txnk
, Tx) , d (Tx, Txnk

)} < max {d (xnk
, x) , d (x, xnk

)} . (3.27)

By taking limit as k →∞ in (3.27), we get

lim
k→∞

[max {d (Txnk
, Tx) , d (Tx, Txnk

)}] ≤ lim
k→∞

[max {d (xnk
, x) , d (x, xnk

)}] .

Therefore,

lim
k→∞

[max {d (Txnk
, Tx) , d (Tx, Txnk

)}] = 0.

so, we have

lim
k→∞

d (Txnk
, Tx) = lim

k→∞
d (Tx, Txnk

) = 0

Then limk→∞ Txnk
= Tx, therefore limn→∞ Txn = Tx . As in proof of Theorem (3.4)

we can conclude that Tz = z.
Uniqueness: follow similarly as in Theorem (3.4) .

Definition 3.8. Let (X, d) be a generalized asymmetric metric space. A mapping T :
X ×X is said to be an α -η-contraction of type (B) on (X, d), if there exist F ∈ =, α, η:
X ×X → [0,+∞[ and τ > 0 such that

max {d(Tx, Ty), d(Ty, Tx)} > 0⇒F [max{d(Tx, Ty), d(Ty, Tx)}] + τ

≤ F [max{d(x, y), d(y, x)}] . (3.28)

Theorem 3.9. Let (X, d) be a complete generalized asymmetric metric space and let
T : X → X be a self-mapping satisfying the following assertions:

(i) T is α-admissible mapping with respect to η;
(ii) T is α-η -F -contraction of type (B);
(iii) there exists x0 ∈ X such thatα(x0, Tx0) ≥ η(x0, Tx0) and α

(
x0, T

2x0
)
≥ η

(
x0, T

2x0
)

;
(iv) T is α-η-continuous.
Then T has a fixed point. Moreover, T has a unique fixed point when α(x, y) ≥ η(x, x)
for all n ∈ N x, y ∈ Fix(T ).
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Proof. First step. Let x0 ∈ X such that

α (x0, Tx0) ≥ η (x0, Tx0) and α
(
x0, T

2x0
)
≥ η

(
x0, T

2x0
)
.

As in the proof of Theorem (3.4) we can conclude that

lim
n→∞

d (xn, xn+1) = lim
n→∞

d (xn+1, xn) = 0, (3.29)

and

lim
n→∞

d (xn, xn+2) = lim
n→∞

d (xn+2, xn) = 0. (3.30)

Second step. Next we show that {xn}n∈N is a Cauchy sequence.i.e.

lim
n,m→∞

d (xm, xn) = lim
n,m→∞

d (xn, xm) = 0

Now, we define a function D from X ×X → R+ as follows

D (x, y) = max(d(x, y), d(y, x)) for all x, y ∈ X.
Now, we claim that, limn,m→∞D (xm, xn) = 0. Arguing by contradiction. we assume that
there exists ε > 0 we can find and sequences (m (k))k and (n (k))k of positive integers
such that
for all positive integers, n(k) > m(k) > k,

D(xm(k), xn(k)) ≥ ε
and

D(xm(k), xn(k)−1) < ε.

So, we have

ε ≤ D
(
xm(k)

, xn(k)

)
≤ D

(
xm(k)

, xn(k)−1
)

+D
(
xn(k)−1, xn(k)+1

)
+D

(
xn(k)+1, xn(k)

)
< ε+D

(
xn(k)−1, xn(k)+1

)
+D

(
xn(k)+1.xn(k)

)
So,

lim
k→∞

D(xm(k), xn(k)) = ε. (3.31)

Again by the quadrilateral inequality, for all n ∈ N, we have the following two inequalities

D
(
xm(k)+1

, xn(k)+1

)
≤ D

(
xm(k)+1

, xm(k)

)
+D

(
xm(k), xn(k)

)
+D

(
xn(k), xn(k)+1

)
,

(3.32)

and

D
(
xm(k)

, xn(k)

)
≤ D

(
xm(k)

, xm(k)+1

)
+D

(
xm(k)+1, xn(k)+1

)
+D

(
xn(k)+1, xn(k)

)
.

(3.33)

Letting k → +∞ in (3.32) and (3.33) , we obtain

lim
k→∞

D
(
xm(k)+1

, xn(k)+1

)
= ε. (3.34)

From (34) there exists n0 ∈ N such that

D
(
xm(k)+1

, xn(k)+1

)
≥ ε

2
for all n ≥ n0. (3.35)
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Therefore,

max
{
d
(
xm(k)+1

, xn(k)+1

)
, d
(
xn(k)+1

, xm(k)+1

)}
≥ ε

2
∀n ≥ n0 .

So,

max
{
d
(
Txm(k)

, Txn(k)

)
, d
(
xn(k)

, Txm(k)

)}
≥ ε

2
for all n ≥ n0. (3.36)

On the other hand, T is α-η -F -contraction, we obtain

τ + F
(
D
(
xm(k)+1

, xn(k)+1

))
≤ F

(
D
(
xm(k)

, xn(k)

))
. (3.37)

Letting k → +∞ in (3.37) , and from (iii) of Definition 2.12 we obtain

τ + F
(ε

2

)
≤ F

(ε
2

)
⇒ τ ≤ 0.

Which is contradiction, it follows that

lim
n,m→∞

D (xm, xn) = 0. (3.38)

therefore,

lim
n,m→∞

d (xm, xn) = lim
n,m→∞

d (xn, xm) = 0. (3.39)

Hence {xn}n∈N is Forward and Backward Cauchy sequence in X. As in proof of Theorem
(3.4), we can proved that T has is unique fixed point z ∈ X.

Example 3.10. Consider X = {0, 1, 2, 3} . Let d : X ×X → R+, be a mapping defined
by

(i) d(x, y) = 0⇔ x = y ∀x, y ∈ X;
(ii) d(0, 1) = d(1, 0) = d(2, 1) = d(2, 0) = d(3, 0) = d(2, 3) = d(3, 1) = 1;
(iii) d(1, 2) = d(0, 2) = 2;
(iv) d(0, 3) = d(3, 2) = 3, d(1, 3) = 4. Clearly, (X, d) is not asymmetric metric spaces, from

d(1, 3) = 4 > d(1, 2) + d(2, 3) = 3.

But is a complete generalized asymmetric space. Let T : X → X, be given by
T (0) = T (1) = 0

T (2) = 1

T (3) = 2.

Define, α, η : X × X → [0,+∞[ by

α (x, y) =
x+ y

max {x, y}+ 1
, and η (x, y) =

|x− y|
max {x, y}+ 1

.

As in the proof of Example (3.12) , we can proved that T satisfying (i) , (iii) and (iv) .
Define F : ]0,+∞[→ R by

F (x) =
−1

x
+
x

4
and τ =

5

12
.
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Obviously, F ∈ Γ. First observe that max {d(Tx, Ty), d(Ty, Tx)} > 0 ⇔ {x = 0, y = 2},
{x = 1, y = 2}, {x = 0, y = 3}, {x = 1, y = 3} or {x = 2, y = 3} .
For x = 0, y = 2, we have

F (max {d(T (0), T (2)), d(T (2), T (0))}) + τ = F max {d(0, 1), d(1, 0))}+ τ

= −3

4
+

5

12
=
−1

12
≤ F (max {d(0, 2), d(2, 0)})
= F (2) = 0.

For x = 1, y = 2, we have

F (max {d(T (1), T (2)), d(T (2), T (1)}) + τ = F (max d(0, 1), d(1, 0))

=
5

12
− 3

4
=
−1

12
≤ F (max {d(1, 2), d(2, 1)})
= F (2) = 0.

For x = 0, y = 3, we have

F (max{d(T (0), T (3)), d(T (3), T (0))}) + τ = F (max d(0, 2), d(2, 0))

=
5

12
+ F (2) =

5

12
≤ F (max {d(0, 3), d(3, 0)})

= F (3) =
5

12
.

For x = 1, y = 3, we have

F (max {(T (1), T (3)), d(T (3), T (1))}) + τ = F (max d(0, 2), d(2, 0))

=
5

12
+ F (2) =

5

12
≤ F (max {d(1, 3), d(3, 1)})

= F (4) =
3

4
.

For x = 2, y = 3, we have

F (max {(T (2), T (3)), d(T (3), T (2))}) + τ = F (max d(1, 2), d(2, 1))

=
5

12
+ F (2) =

5

12
≤ F (max {d(2, 3), d(3, 2)})

= F (3) =
5

12
.

Therefore, T is α-η -F -contraction of type (B).
Hence T satisfies in assumption of Theorem and is the unique fixed point of T, z = 0.
If in Theorem (3.9) we take α(x, y) = η(x, y) = 1 for all x, y ∈ X, then we deduce the
Corollary.
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Corollary 3.11. Let (X, d) be a complete generalized asymmetric space and let T : X →
X be a self-mapping such that for x, y ∈ X, max [d (Tx, Ty) , d (Ty, Tx)] > 0 we have

F [max {d (Tx, Ty) , d (Ty, Tx)}] + τ ≤ F [max {d (x, y) , d (y, x)}]
where τ > 0 and F ∈ Γ. Then T has a unique fixed point.

Theorem 3.12. Let (X, d) be a complete g. a. m. s and let T : X → X be a self-mapping
satisfying the following assertions

(i) T is α-admissible mapping with respect to η;
(ii) T is α-η -F -contraction of type (B);
(iii) there exists x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0) and α

(
x0, T

2x0
)
≥ η

(
x0, T

2x0
)

;
(iv) if xn is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) with xn → x as n→∞,
then
either η(Txn, T

2xn) ≤ α(Txn, x) or η(T 2xn, T
3xn) ≤ α(T 2xn, x) holds for all n ∈ N .

Then T has a fixed point. Moreover, T has a unique fixed point when α(x, y) ≥ η(x, x)
for all x, y ∈ Fix(T ).

Proof. Let x0 ∈ X such that

α (x0, Tx0) ≥ η (x0, Tx0) and α
(
x0, T

2x0
)
≥ η

(
x0, T

2x0
)
.

As in the proof of Theorem (3.10) we can conclude that

lim
n→∞

d (xn, xn+1) = lim
n→∞

d (xn+1, xn) = 0, (3.40)

and

lim
n→∞

d (xn, xn+2) = lim
n→∞

d (xn+2, xn) = 0. (3.41)

As in the proof of Theorem (3.10) we can conclude that {xn}n∈N is Cauchy sequence in
X.
So, from (iv), and either

η (xn+1, xn+2) ≤ α (xn+1, x) or η (xn+2, xn+3) ≤ α (xn+2, x) ∀n ∈ N,

holds for all n ∈ N . Equivalently, there exists a subsequence xnk
of xn such that

lim
k→∞

[max {d (Txnk
, Tx) , d (Tx, Txnk

)}] = 0.

As in the proof of Theorem (3.10) we can conclude that x = Tx.
Uniqueness follow similarly as in Theorem (3.10).
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