Completion of C^{\star}-algebra-valued Metric Spaces

Wanchai Tapanyo ${ }^{1, *}$, Wachiraphong Ratiphaphongthon ${ }^{2}$ and Areerat Arunchai ${ }^{1}$
${ }^{1}$ Division of Mathematics and Statistics, Nakhon Sawan Rajabhat University, Nakhon Sawan, 60000, Thailand e-mail : wanchai.t@nsru.ac.th (W. Tapanyo); areerat.a@nsru.ac.th (A. Arunchai)
${ }^{2}$ Department of Mathematics, Naresuan University, Phisanulok, 65000, Thailand
e-mail : wachirapongr58@nu.ac.th (W. Ratiphaphongthon)

Abstract

The concept of a C^{*}-algebra-valued metric space was introduced in 2014. It is a generalization of a metric space replacing the set of real numbers by a C^{*}-algebra. In this paper, we show that C^{*} -algebra-valued metric spaces are cone metric spaces in some point of view which is useful to extend results of the cone case to C^{*}-algebra-valued metric spaces. Then the completion theorem of C^{*}-algebra-valued metric spaces is obtained. Moreover, the completion theorem of C^{*}-algebra-valued normed spaces is verified and the connection with Hilbert C^{*}-modules, generalized inner product spaces, is also provided.

MSC: 54E50; 46B99; 46L07
Keywords: C^{*}-algebra-valued metric space; cone metric space; normed space; inner product space; completion

Submission date: 29.11.2021 / Acceptance date: 20.05.2022

1. Introduction

A metric space is one of attractive objects in mathematics which plays an important role in various branches of mathematics. It is a nonempty set X together with a distance function $d: X \times X \rightarrow \mathbb{R}$, which is often called a metric on X. Plenty of research papers study various kinds of spaces generalized from the definition of a metric space in different directions. Some authors remove or change initial properties of a metric space while others change the values of the distance function to be in generalized sets of real or complex numbers, such as, a Banach space or a C^{*}-algebra which can be seen in [1] and [2], respectively.

The concept of a C^{*}-algebra-valued metric space was first introduced in 2014 by Z. Ma and others. For this space the distance function was replaced by a function valued in a C^{*}-algebra \mathbb{A}. If we consider the set of all positive elements \mathbb{A}_{+}of \mathbb{A} as a cone of \mathbb{A}. A C^{*}-algebra-valued metric space is, in fact, a cone metric space which was introduced in 2004 by L. G. Huang and others, see more details about a cone metric space in [1]. Recently, there are many authors whose study area related to C^{*}-algebra-valued metric (like) spaces especially in mathematical analysis, see [3-9] for examples.

[^0]The main purpose of this research is to study the completion for C^{*}-algebra-valued metric spaces and a C^{*}-algebra-valued normed spaces. We verify some facts and use them to extend the results from others in [10]. Then we discuss relationships between $C^{*}{ }^{*}$ algebra-valued metric spaces and Hilbert C^{*}-modules, generalized inner product spaces whose scalar fields are replaced by some C^{*}-algebras.

The rest of the paper is organized as follows. In section 2 we derive the important definitions and theorems used to obtain our results. In section 3 We discuss on C^{*} -algebra-valued metric and normed spaces and the relation to cone metric spaces. In section 4 the connection to Hilbert C^{*}-modules is provided.

2. PRELIMINARIES

This section provides a brief review of basic knowledge used in this research which can be found in $[1,2,10-12]$. We start with the concept of C^{*}-algebras and some necessary related properties. A C^{*}-algebra \mathbb{A} is a ${ }^{*}$-algebra with a complete submultiplicative norm $\|\cdot\|_{\mathbb{A}}$ such that $\left\|a^{*} a\right\|_{\mathbb{A}}=\|a\|_{\mathbb{A}}^{2}$ for every $a \in \mathbb{A}$. If \mathbb{A} admits a unit $I(a I=I a=a$ for every $a \in \mathbb{A}$) such that $\|I\|_{\mathbb{A}}=1$, we call \mathbb{A} a unital C^{*}-algebra. It is known that not all C^{*}-algebras are unital. However, we can embed them as C^{*}-subalgebras in another unital C^{*}-algebras which are called the unitizations of C^{*}-algebras. We denote by $\widetilde{\mathbb{A}}$ the unitization of \mathbb{A}.

We say that $a \in \mathbb{A}$ is invertible if there is $b \in \mathbb{A}$ such that $a b=I=b a$. We denote by $\operatorname{Inv}(\mathbb{A})$ the set of all invertible elements of \mathbb{A}. The spectrum of a is the set

$$
\sigma(a)=\sigma_{\mathbb{A}}(a)=\{\lambda \in \mathbb{C}: \lambda I-a \notin \operatorname{Inv}(A)\} .
$$

If \mathbb{A} is nonunital, we define $\sigma_{\mathbb{A}}(a)=\sigma_{\widetilde{\mathbb{A}}}(a)$. Let $\mathbb{A}_{h}=\left\{a \mathbb{A}: a=a^{*}\right\}$, the set of all hermitian elements of \mathbb{A}. An element $a \in \mathbb{A}_{h}$ with $\sigma(a) \subseteq[0,+\infty)$ is called positive and the set of all positive elements of \mathbb{A} is denoted by \mathbb{A}_{+}. Now \mathbb{A}_{h} becomes a partially ordered set by defining $a \leq b$ to mean $b-a \in \mathbb{A}_{+}$. It is obvious that $0_{\mathbb{A}} \leq a$ precisely for $a \in \mathbb{A}_{+}$where $0_{\mathbb{A}}$ is the zero in \mathbb{A}. Thus, we may write $0_{\mathbb{A}} \leq a$ to indicate that a is positive.

Proposition 2.1. Let \mathbb{A} be a C^{*}-algebra. Then for each $x \in \mathbb{A}$ there is a unique pair of hermitian elements $a, b \in \mathbb{A}$ such that $x=a+b i$. More precisely, $a=\frac{1}{2}\left(x+x^{*}\right)$ and $b=\frac{1}{2 i}\left(x-x^{*}\right)$.
Theorem 2.2. Let a be a positive element of a C^{*}-algebra \mathbb{A}. Then there is a unique $b \in \mathbb{A}_{+}$such that $b^{2}=a$.

By the previous theorem we can define the square root of the positive element a to be the element b, we denote it by $a^{1 / 2}$. A brief review of some necessary properties for positive elements of a C^{*}-algebra is provided below, see more details in [11].
Proposition 2.3. The sum of two positive elements in a C^{*}-algebra are positive.
Theorem 2.4. Let \mathbb{A} be a C^{*}-algebra. The the following properties are satisfied.
(1) Suppose that \mathbb{A} is unital and $a \in \mathbb{A}$ is hermitian. If $\|a-\alpha I\|_{\mathbb{A}} \leq \alpha$ for some $\alpha \in \mathbb{R}$, then a is positive. In the reverse direction, for every $\alpha \in \mathbb{R}$, if $\|a\|_{\mathbb{A}} \leq \alpha$ and a is positive, then $\|a-\alpha I\|_{\mathbb{A}} \leq \alpha$.
(2) For every $a, b, c \in \mathbb{A}_{h}, a \leq b$ implies $a+c \leq b+c$.
(3) For every real numbers $\alpha, \beta \geq 0$ and every $a, b \in \mathbb{A}_{+}, \alpha a+\beta b \in \mathbb{A}_{+}$.
(4) $A_{+}=\left\{a^{*} a: a \in \mathbb{A}\right\}$.
(5) If $a, b \in A_{h}$ and $c \in A$, then $a \leq b$ implies $c^{*} a c \leq c^{*} b c$.
(6) If $0_{\mathbb{A}} \leq a \leq b$, then $\|a\|_{\mathbb{A}} \leq\|b\|_{\mathbb{A}}$.

Proposition 2.5. Let $\gamma=\alpha+\beta i \in \mathbb{C}$ and $a \in \mathbb{A}_{+}$. Then $\left(\left(\alpha^{2}+\beta^{2}\right) a\right)^{1 / 2}=|\gamma| a^{1 / 2}$.
Proof. It is obvious that $|\gamma| a^{1 / 2}$ is positive. Consider

$$
\left(|\gamma| a^{1 / 2}\right)^{2}=|\gamma|^{2}\left(a^{1 / 2}\right)^{2}=\left(\alpha^{2}+\beta^{2}\right) a
$$

By Theorem 2.2, we have $\left(\left(\alpha^{2}+\beta^{2}\right) a\right)^{1 / 2}=|\gamma| a^{1 / 2}$.
Theorem 2.6. Let $a, b \in \mathbb{A}_{+}$. Then $a \leq b$ implies $a^{1 / 2} \leq b^{1 / 2}$.
Proposition 2.7. \mathbb{A}_{+}is closed in a C^{*}-algebra \mathbb{A}.
Proof. Let $\left\{x_{n}\right\}$ be a sequence in \mathbb{A}_{+}converging to $x \in \mathbb{A}$. We first examine for the case that \mathbb{A} is unital. Since \mathbb{A}_{h} is closed in \mathbb{A} and $\mathbb{A}_{+} \subseteq \mathbb{A}_{h}$, we have $x \in \mathbb{A}_{h}$. Since $\left\{x_{n}\right\}$ is convergent, it is certainly bounded. Then there is a positive real number α such that $\left\|x_{n}\right\|_{\mathbb{A}} \leq \alpha$ for every $n \in \mathbb{N}$. We know that x_{n} is positive for every $n \in \mathbb{N}$. Thus, Theorem 2.4 implies that $\left\|x_{n}-\alpha I\right\|_{\mathbb{A}} \leq \alpha$ for every $n \in \mathbb{N}$. Consider

$$
\|x-\alpha I\|_{\mathbb{A}} \leq\left\|x_{n}-x\right\|_{\mathbb{A}}+\left\|x_{n}-\alpha I\right\|_{\mathbb{A}} \leq\left\|x_{n}-x\right\|_{\mathbb{A}}+\alpha
$$

This implies that $\|x-\alpha I\|_{\mathbb{A}} \leq \alpha$. Since x is hermitian, again by Theorem 2.4 we have $x \in \mathbb{A}_{+}$. Therefore, \mathbb{A}_{+}is closed in \mathbb{A}.

In case of non-unital C^{*}-algebra, we work on the unitization $\widetilde{\mathbb{A}}$. Now $\left\{\left(x_{n}, 0\right)\right\}$ is a sequence in $\widetilde{\mathbb{A}}_{+}$converging to $(x, 0) \in \widetilde{\mathbb{A}}$. Now we apply the first case and obtain $(x, 0) \in \widetilde{\mathbb{A}}_{+}$, so $x \in \mathbb{A}_{+}$. Therefore \mathbb{A}_{+}is closed in \mathbb{A}.

Next, we provide the definitions of a C^{*}-algebra-valued metric space, convergent sequences and Cauchy sequences in the space which are our main study.

Definition 2.8. Let X be a nonempty set and $d: X \times X \rightarrow \mathbb{A}$ be a function satisfying the following properties:

$$
\begin{aligned}
& \text { (C1) } d(x, y) \geq 0_{\mathbb{A}}, \\
& \text { (C2) } d(x, y)=0_{\mathbb{A}} \text { if and only if } x=y, \\
& \text { (C3) } d(x, y)=d(y, x), \\
& \text { (C4) } d(x, y) \leq d(x, z)+d(z, y),
\end{aligned}
$$

for every $x, y, z \in X$. We call the function d a C^{*}-algebra-valued metric and call the triple (X, \mathbb{A}, d) a C^{*}-algebra-valued metric space.

The C^{*}-algebra \mathbb{A} in the above definition need not be unital, so our C^{*}-algebra-valued metric space is a generalization of that in [2]. We know that every C^{*}-algebra \mathbb{A} can be embedded in $\widetilde{\mathbb{A}}$. Thus we can consider a C^{*}-algebra-valued metric space (X, \mathbb{A}, d) as a C^{*}-algebra-valued metric space $(X, \widetilde{\mathbb{A}}, d)$ and work on $\widetilde{\mathbb{A}}$ if necessary.

The following definitions provides the conditions of convergent and Cauchy sequences in a C^{*}-algebra-valued metric space which are defined in [2, Definition 2.2]. We change some inequality in the definitions to correspond them with other familiar definitions that we use frequently.

Definition 2.9. Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued metric space. A sequence $\left\{x_{n}\right\}$ in X is said to converge to an element $x \in X$ (with respect to \mathbb{A}) if and only if for every $\varepsilon>0$ there is a positive integer N such that for every integer $n \geq N$ we have $\left\|d\left(x_{n}, x\right)\right\|_{\mathbb{A}}<\varepsilon$. In this case we write $\lim _{n \rightarrow \infty} x_{n}=x$, and say that the sequence $\left\{x_{n}\right\}$ is convergent.

A sequence $\left\{x_{n}\right\}$ in X is said to be Cauchy (with respect to \mathbb{A}) if and only if for every $\varepsilon>0$ there is a positive integer N such that for every integer $n, m \geq N$ we have $\left\|d\left(x_{n}, x_{m}\right)\right\|_{\mathbb{A}}<\varepsilon$.

We say that a C^{*}-algebra-valued metric space (X, \mathbb{A}, d) is complete if every Cauchy sequence is convergent.

Next, we discuss cone metric spaces which closely related to C^{*}-algebra-valued metric spaces. We start with a cone of a real Banach space which was introduced in [1]. The definition is different from [12] which allows a cone to be trivial.

Definition 2.10. Let $\left(\mathbb{E},\|\cdot\|_{\mathbb{E}}\right)$ be a real Banach space. A nonempty closed subset P of \mathbb{E} is called a cone if and only if it satisfies the following properties:
(P1) $P \neq\{0\}$,
(P2) For every real numbers $\alpha, \beta \geq 0$ and every $a, b \in P, \alpha a+\beta b \in P$,
(P3) If $x \in P$ and $-x \in P$, then $x=0$.
Now we can define a partial order \leq on \mathbb{E} with respect to a cone P by $x \leq y$ to mean $y-x \in P$. We write $x<y$ to indicate that $x \leq y$ and $x \neq y$, and write $x \ll y$ if $y-x \in \operatorname{Int}(P)$.

A cone P is said to be normal if and only if there exists a positive real number α such that for every $x, y \in \mathbb{E}, 0 \leq x \leq y$ implies $\|x\|_{\mathbb{E}} \leq \alpha\|y\|_{\mathbb{E}}$. The following proposition is a consequence of Theorem 2.4. \mathbb{A}_{+}is a cone in the sense of the preceding definition.
Proposition 2.11. \mathbb{A}_{+}is a normal cone of a unital C^{*}-algebra \mathbb{A}.
Proof. We show that A_{+}satisfies all conditions in Definition 2.10. We see that $A_{+} \neq\{0\}$ since $I \in \mathbb{A}_{+}$. The condition P 2 is a property of A_{+}and the condition P 3 is obtained by considering the spectrums of elements of \mathbb{A} directly. Since \mathbb{A}_{+}is closed by Proposition $2.7, A_{+}$is a cone of \mathbb{A}. Normality is obvious by the sixth item of Theorem 2.4.

Definition 2.12. Let X be a nonempty set and $d: X \times X \rightarrow \mathbb{E}$ be a function satisfying the following properties:
(M1) $d(x, y) \geq 0_{\mathbb{E}}$,
(M2) $d(x, y)=0_{\mathbb{E}}$ if and only if $x=y$,
(M3) $d(x, y)=d(y, x)$,
(M4) $d(x, y) \leq d(x, z)+d(z, y)$,
for every $x, y, z \in X$. We call the function d a cone metric and call the pair (X, d) a cone metric space.

Consider a unital C^{*}-algebra \mathbb{A}. If the scalar filed is restricted to the set of real numbers, \mathbb{A} becomes a real Banach space. Thus, a C^{*}-algebra-valued metric space becomes a cone metric space.

Definition 2.13. Let (X, d) be a cone metric space. A sequence $\left\{x_{n}\right\}$ in X is said to converge to $x \in X$ (with respect to \mathbb{E}) if and only if for every $c \in \mathbb{E}$ with $c \gg 0$ there is a positive integer N such that for every integer $n \geq N$ we have $d\left(x_{n}, x\right) \ll c$. In this case we write $\lim _{n \rightarrow \infty} x_{n}=x$, and say that the sequence $\left\{x_{n}\right\}$ is convergent.

A sequence $\left\{x_{n}\right\}$ in X is said to be Cauchy (with respect to \mathbb{E}) if and only if for every $c \in \mathbb{E}$ with $c \gg 0$ there is a positive integer N such that for every integer $n, m \geq N$ we have $d\left(x_{n}, x_{m}\right) \ll c$.

We say that a cone metric space (X, d) is complete if every Cauchy sequence is convergent.
Lemma 2.14. Let (X, d) be a cone metric space together with a normal cone. A sequence $\left\{x_{n}\right\}$ converges to $x \in X$ if and only if $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$. A sequence $\left\{x_{n}\right\}$ is Cauchy if and only if $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$.

Lemma 2.15. Let (X, d) be a cone metric space together with a normal cone and $x, y \in$ X. Assume that sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge to x and y, respectively. Then $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=d(x, y)$.
Definition 2.16. Let X be a vector space over the real field and $\|\cdot\|_{X}: X \rightarrow \mathbb{E}$ be a function. A pair $\left(X,\|\cdot\|_{X}\right)$ is called a cone normed space if $\|\cdot\|_{X}$ satisfies the following properties:
(1) $\|x\|_{X}=0_{\mathbb{E}}$ if and only if $x=0_{X}$,
(2) $\|\alpha x\|_{X}=|\alpha|\|x\|_{X}$,
(3) $\|x+y\|_{X} \leq\|x\|_{X}+\|y\|_{X}$,
for every $x, y \in X$ and every scalar α.
It is clear that each cone normed space is a cone metric space with the cone metric given by $d(x, y)=\|x-y\|_{X}$. Complete cone normed spaces are called cone Banach spaces.
Theorem 2.17. Let (X, d) be a cone metric space over a normal cone. Then there is a complete cone metric space $\left(X_{c}, d_{c}\right)$ which has a dense subspace W isometric with X. The space X_{c} is unique except for isometries.
Theorem 2.18. Let $(X,\|\cdot\|)$ be a cone normed space over a normal cone. Then there is a cone Banach space $\left(X_{c},\|\cdot\|_{c}\right)$ which has a dense subspace W isometric with X. The space X_{c} is unique except for isometries.

The two results above are completion theorems obtained in [10]. We apply the them to obtain our results. The isometry mentioned in that research is a mapping $T: X \rightarrow Y$ between cone metric spaces preserving distances, that is,

$$
d_{X}(x, y)=d_{Y}(T x, T y),
$$

for every $x, y \in X$, where d_{X} and d_{Y} are cone metrics on X and Y, respectively. Properties of the mapping T are different from those of the ordinary version only the values of d_{X} and d_{Y} which are not real numbers. For the second theorem the author applied the first one to obtain a bijective isometry from a cone normed space onto a dense metric subspace of the cone metric completion. By the setting that provided algebraic operations and a norm for the metric completion, the isometry was actually a linear operator. Thus it is an isomorphism between cone normed spaces, a vector space isomorphism which preserves cone norms. Since isomorphisms of cone normed spaces are always isometry, we have another version of the completion theorem for normed spaces.

Theorem 2.19. Let $(X,\|\cdot\|)$ be a cone normed space over a normal cone. Then there is a cone Banach space $\left(X_{c},\|\cdot\|_{c}\right)$ which has a dense subspace W isomorphic with X. The space X_{c} is unique except for isomorphisms.

Concepts of isometries of C^{*}-algebra-values metric spaces and isomorphisms of C^{*} -algebra-values normed spaces will be provided in the next section with more general than those of the cone version.

3. Completion of C^{*}-algebra-valued metric and normed spaces

In this section we verify that a C^{*}-algebra-valued metric space can be embedded in a complete C^{*}-algebra-valued metric space as a dense subspace. The theorem in a version of a C^{*}-algebra-valued normed space is also provided. We apply the fact that the C^{*} -algebra-valued metric (resp. normed) spaces are cone metric (resp. normed) spaces to extend the completion results from [10]. To work with a cone metric space, we need to assume that the interior of a cone is not empty. However, this property does not generally occur for a C^{*}-algebra as we show in the series of examples below.
Example 3.1. Let a C^{*}-algebra \mathbb{A} be a complex plane \mathbb{C}. Then $\mathbb{A}_{+}=[0, \infty)$, so $\operatorname{Int}\left(\mathbb{A}_{+}\right)$ is empty in \mathbb{C}. Observe that $\operatorname{Int}\left(\mathbb{A}_{+}\right)$is not empty in \mathbb{R}, the set of hermitian elements of \mathbb{C}.
Example 3.2. In this example we consider \mathbb{A} as a C^{*}-algebra of all bounded complex sequences ℓ^{∞} with operations defined as follows:

$$
\begin{aligned}
\left(\xi_{n}\right)+\left(\eta_{n}\right) & =\left(\xi_{n}+\eta_{n}\right), \\
\left(\xi_{n}\right)\left(\eta_{n}\right) & =\left(\xi_{n} \eta_{n}\right), \\
\lambda\left(\xi_{n}\right) & =\left(\lambda \xi_{n}\right), \\
\left(\xi_{n}\right)^{*} & =\left(\bar{\xi}_{n}\right), \\
\left\|\left(\xi_{n}\right)\right\|_{\mathbb{A}} & =\sup _{n \in \mathbb{N}}\left|\xi_{n}\right|,
\end{aligned}
$$

for every $\left(\xi_{n}\right),\left(\eta_{n}\right) \in \ell^{\infty}$ and every $\lambda \in \mathbb{C}$. We have

$$
\ell_{h}^{\infty}=\left\{a \in \ell^{\infty}: a^{*}=a\right\}=\left\{\left(\xi_{n}\right) \in \ell^{\infty}: \xi_{n} \in \mathbb{R} \text { for all } n \in \mathbb{N}\right\}
$$

and

$$
\ell_{+}^{\infty}=\left\{a \in \ell_{h}^{\infty}: \sigma(a) \subseteq \mathbb{R}_{+}\right\}=\left\{\left(\xi_{n}\right) \in \ell^{\infty}: \xi_{n} \in \mathbb{R}_{+} \text {for all } n \in \mathbb{N}\right\}
$$

To show that $\operatorname{Int}\left(\ell_{+}^{\infty}\right)=\emptyset$, we let $a=\left(\xi_{n}\right) \in \ell_{+}^{\infty}$ and $\varepsilon>0$. Then choose $b=\left(\xi_{1}-\right.$ $i \frac{\varepsilon}{2}, \xi_{2}, \xi_{3}, \ldots$. Clearly, b is in $\ell^{\infty} \backslash \ell_{+}^{\infty}$ such that $\|a-b\|_{\mathbb{A}}=\frac{\varepsilon}{2}<\varepsilon$. This implies that $b \in B(a, \varepsilon)$, the open ball in ℓ^{∞} of radius ε centered at a. Since ε is arbitrary, the element a is not an interior point of ℓ_{+}^{∞}. Therefore $\operatorname{Int}\left(\ell_{+}^{\infty}\right)=\emptyset$.
Example 3.3 (A C^{*}-algebra-valued metric space with the empty interior of \mathbb{A}_{+}).
In this example we replace X and \mathbb{A} by \mathbb{C} and \mathbb{C}^{2}, respectively. By the same operations used in the previous example, the space \mathbb{C}^{2} can be considered as a C^{*}-subalgebra of ℓ^{∞} with $\operatorname{Int}\left(\mathbb{C}_{+}^{2}\right)=\emptyset$. Let $d: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}^{2}$ be a function defined by

$$
d(a, b)=(|a-b|, \alpha|a-b|)
$$

for every $a, b \in \mathbb{C}$ and α is a fixed positive real number. Therefore, $\left(\mathbb{C}, \mathbb{C}^{2}, d\right)$ is a C^{*} -algebra-valued metric space.

Although the situation in the previous example can occur, the assumption of the nonempty interior of \mathbb{A}_{+}is not necessary. There exists a suitable real Banach subspace of $\widetilde{\mathbb{A}}$ containing $\widetilde{\mathbb{A}}_{+}$with a nonempty interior under the topology on the Banach subspace restricted from $\widetilde{\mathbb{A}}$, and so, we will work on the subspace instead.

Proposition 3.4. \mathbb{A}_{h} is a real Banach subspace of a C^{*}-algebra \mathbb{A}.
Proof. We know that $\mathbb{A}_{h} \subseteq \mathbb{A}, 0_{\mathbb{A}} \in \mathbb{A}_{h}$ and $(\alpha a+b)^{*}=\alpha a+b$ for all $\alpha \in \mathbb{R}$ and all $a, b \in \mathbb{A}_{h}$. Then \mathbb{A}_{h} is a real normed space. Let $\left\{a_{n}\right\}$ be a sequence in \mathbb{A}_{h} converging to $a \in \mathbb{A}$. Since $\left\|a_{n}-a\right\|_{\mathbb{A}}=\left\|\left(a_{n}-a\right)^{*}\right\|_{\mathbb{A}}=\left\|a_{n}^{*}-a^{*}\right\|_{\mathbb{A}}=\left\|a_{n}-a^{*}\right\|_{\mathbb{A}},\left\{a_{n}\right\}$ converges to a^{*}. By the uniqueness of limits of a convergent sequence, we have $a=a^{*}$, i.e. $a \in \mathbb{A}_{h}$. Therefore, \mathbb{A}_{h} is closed in \mathbb{A}, and so \mathbb{A}_{h} is a real Banach subspace of \mathbb{A}.
Proposition 3.5. If \mathbb{A} is a unital C^{*}-algebra, then $\operatorname{Int}_{A_{h}}\left(\mathbb{A}_{+}\right) \neq \emptyset$.
Proof. Let I be a unit of \mathbb{A} and $B(I, 1)=\left\{a \in \mathbb{A}_{h}:\|a-I\|_{\mathbb{A}}<1\right\}$. Then Theorem 2.4 implies that $B(I, 1) \subseteq \mathbb{A}_{+}$. Hence, $I \in \operatorname{Int}_{A_{h}}\left(\mathbb{A}_{+}\right)$, so $\operatorname{Int}_{A_{h}}\left(\mathbb{A}_{+}\right) \neq \emptyset$.
Corollary 3.6. If \mathbb{A} is a unital C^{*}-algebra and $\mathbb{A}=\mathbb{A}_{h}$, then $\operatorname{Int}\left(\mathbb{A}_{+}\right) \neq \emptyset$.
Corollary 3.7. $\operatorname{Int}_{\widetilde{\mathbb{A}}_{h}}\left(\widetilde{\mathbb{A}}_{+}\right) \neq \emptyset$.
In the previous section, we show that a unital C^{*}-algebra \mathbb{A} contains \mathbb{A}_{+}as a normal cone. Then so does \mathbb{A}_{h}. Therefore a C^{*}-algebra-valued metric space (X, \mathbb{A}, d) is a cone metric space $\left(X, \widetilde{\mathbb{A}}_{h}, d\right)$ with a normal cone $\widetilde{\mathbb{A}}_{+}$such that $\operatorname{Int}_{\widetilde{\mathbb{A}}_{h}}\left(\widetilde{\mathbb{A}}_{+}\right) \neq \emptyset$. Finally, we obtain Lemma 2.14 in a version of a C^{*}-algebra-valued metric space (X, \mathbb{A}, d), equivalent definitions of convergent and Cauchy sequences, stated in the following theorem.
Theorem 3.8. Let $\left\{x_{n}\right\}$ be a sequence in a C^{*}-algebra-valued metric space (X, \mathbb{A}, d). Then the following statements are satisfied.
(1) $\left\{x_{n}\right\}$ converges to $x \in \mathbb{X}$ (in the sense of Definition 2.9) if and only if for every $c \in \widetilde{\mathbb{A}}_{h}$ with $c \gg 0$ there is a positive integer N such that for every integer $n \geq N$ we have $d\left(x_{n}, x\right) \ll c$.
(2) $\left\{x_{n}\right\}$ is Cauchy (in the sense of Definition 2.9) if and only if for every $c \in \widetilde{\mathbb{A}}_{h}$ with $c \gg 0$ there is a positive integer N such that for every integer $n, m \geq N$ we have $d\left(x_{n}, x_{m}\right) \ll c$.
Proof. We prove only the case of convergence, the other can be proved similarly. Suppose that $\left\{x_{n}\right\}$ converges to an element x of (X, \mathbb{A}, d). Then $\left\{x_{n}\right\}$ converges to an element x of $(X, \widetilde{\mathbb{A}}, d)$, and so, converges in $\left(X, \widetilde{\mathbb{A}}_{h}, d\right)$. Then the forward implication is obtained after applying Lemma 2.14. For the converse implication, we suppose that the condition holds. Then Lemma 2.14 implies that $\lim _{n \rightarrow \infty}\left\|d\left(x_{n}, x\right)\right\|_{\tilde{\mathbb{A}}_{h}}=0$. Since $d\left(x_{n}, x\right)$ belongs to \mathbb{A}, we have $\lim _{n \rightarrow \infty}\left\|d\left(x_{n}, x\right)\right\|_{\mathbb{A}}=0$. Therefore, $\left\{x_{n}\right\}$ converges to an element x of (X, \mathbb{A}, d).

Let X and Y are metric spaces. A function $T: X \rightarrow Y$ is an isometry if an only if

$$
\left(d_{X}(x, y)\right)=d_{Y}(T(x), T(y))
$$

for every $x, y \in X$. In this case, $d_{X}(x, y) \mapsto d_{Y}(T(x), T(y))$ is an identity mapping which admits several properties including the preservation of the norm for \mathbb{R}. In case of C^{*}-algebra-valued metric spaces, the $d_{X}(x, y)$ and $d_{Y}(T(x), T(y))$ may be in different C^{*} algebras which are not related to each other. Thus a function $f: d_{X}(X, X) \rightarrow d_{Y}(Y, Y)$ is needed and the norms' preservation seems to be straightforward to add to the non-identity function f. Additionally, algebraic operations of C^{*}-algebra must be preserved, so f will be assumed as a linear map from a real linear span of $\operatorname{span}\left(d_{X}(X, X)\right)$ to $\operatorname{span}\left(d_{Y}(Y, Y)\right)$. Then f is always injective, and f^{-1} is also an injective norm preserving linear operator.

Observe that $\operatorname{span}\left(d_{X}(X, X)\right)$ and $\operatorname{span}\left(d_{Y}(Y, Y)\right)$ are linear subspace of the real Banach spaces of hermitian elements in C^{*}-algebras.

Now assume that $\left(X, \mathbb{A}, d_{X}\right)$ and $\left(Y, \mathbb{B}, d_{Y}\right)$ are C^{*}-algebra-valued metric spaces. Let $T: X \rightarrow Y$ be a function. If there exists norm-preserving linear operator f from $\operatorname{span}\left(d_{X}(X, X)\right)$ to $\operatorname{span}\left(d_{Y}(Y, Y)\right)$ such that

$$
f\left(d_{X}(x, y)\right)=d_{Y}(T(x), T(y))
$$

for every $x, y \in X$, the function T is called an isometry from X to Y with respect to f. The space X and Y are said to be isometric if there exists a bijective isometry (with respect to f) from X to Y. We note that the phrase "with respect to f " may be omitted if not confused.

Proposition 3.9. An isometry between C^{*}-algebra-valued metric spaces is always injective.

Proof. Suppose that $\left(X, \mathbb{A}, d_{X}\right)$ and $\left(Y, \mathbb{B}, d_{Y}\right)$ are C^{*}-algebra-valued metric spaces and T is an isometry from X to Y with respect to f. Let $x, y \in X$ such that $T(x)=T(y)$. Then $f\left(d_{X}(x, y)\right)=d_{Y}(T(x), T(y))=0_{\mathbb{A}}$. Since f is norm-preserving, $\left\|d_{X}(x, y)\right\|_{\mathbb{A}}=$ $\left\|f\left(d_{X}(x, y)\right)\right\|_{\mathbb{B}}=0$. Now we have $d_{X}(x, y)=0_{\mathbb{A}}$, and so $x=y$. Therefore, T is injective.

Let \sim be a relation on a family of C^{*}-algebra-valued metric spaces which indicates that two C^{*}-algebra-valued metric spaces are isometric. For more precisely, $X \sim Y$ if and only if X is isometric with Y. The next proposition show that \sim is an equivalence relation.

Lemma 3.10. Let T be an isometry from $\left(X, \mathbb{A}, d_{X}\right)$ to $\left(Y, \mathbb{B}, d_{Y}\right)$ with respect to f. If T is surjective, then f is also surjective, i.e., $f\left(\operatorname{span}\left(d_{X}(X, X)\right)\right)=\operatorname{span}\left(d_{Y}(Y, Y)\right)$.
Proof. Let $u, v \in T(X)$ and T be surjective, that is, $T(X)=Y$. Thus there are $x, y \in X$ such that $T(x)=u$ and $T(y)=v$. Then

$$
f\left(d_{X}(x, y)\right)=d_{Y}(T(x), T(y))=d_{Y}(u, v)
$$

After applying linearity of f, we have f is surjective.
Proposition 3.11. The relation \sim determined by isometries is an equivalence relation on the family of all C^{*}-algebra-valued metric spaces.
Proof. Let $\left(X, \mathbb{A}, d_{X}\right),\left(Y, \mathbb{B}, d_{Y}\right)$ and $\left(Z, \mathbb{C}, d_{Z}\right)$ are C^{*}-algebra-valued metric spaces. We see that the identity function is a bijective isometry on X. Then $X \sim X$, so \sim is reflexive. Next suppose that $X \sim Y$. Then there is a bijective isometry T form X to Y with respect to a norm-preserving linear operator f. By the previous lemma, f becomes a bijective norm-preserving linear operator, so $f^{-1}: \operatorname{span}\left(d_{Y}(Y, Y)\right) \rightarrow \operatorname{span}\left(d_{X}(X, X)\right)$ is also a bijective norm-preserving linear operator such that

$$
f^{-1}\left(d_{Y}(x, y)\right)=d_{X}\left(T^{-1}(x), T^{-1}(y)\right)
$$

for every $x, y \in Y$. Thus T^{-1} is bijective isometry form Y to X with respect to f^{-1}, so $Y \sim X$. This verifies that \sim is symmetric. To investigate the transitive property we additionally assume that $Y \sim Z$. Thus there exists a bijective isometry S from Y to Z with respect to g. Then $S \circ T: X \rightarrow Z$ is bijective, and $g \circ f: \operatorname{span}\left(d_{X}(X, X)\right) \rightarrow$ $\operatorname{span}\left(d_{Z}(Z, Z)\right)$ is a norm-preserving linear operator. Hence $S \circ T$ is a bijective isometry form X to Z with respect to a norm-preserving function $g \circ f$. Thus $X \sim Z$, and so \sim
is transitive. Therefore \sim is an equivalence relation on the class of all C^{*}-algebra-valued metric spaces.

Traditionally, denseness of a subset in a topological space is determined using neighborhoods or open balls in the space. It is equivalent to the definition described by sequences. In case of a C^{*}-algebra-valued metric space, we provide a definition using open balls. Also an equivalent definition using sequences will be assigned.
Definition 3.12. Let (X, \mathbb{A}, d) be a C^{*}-algebra-valued metric space. For any $\varepsilon>0$, we define

$$
B(x, \varepsilon)=\left\{y \in X:\|d(x, y)\|_{\mathbb{A}}<\varepsilon\right\}
$$

Let M be a subset of X, the set of all limit points or closure of M is determined by

$$
\mathrm{Cl}(M)=\{x \in X: B(x, \varepsilon) \cap M \neq \emptyset \text { for every } \varepsilon>0\}
$$

If $\mathrm{Cl}(M)=X$, we say that M is dense in X.
Because of Theorem 3.8, an equivalent definition of closure of the set M is obtained, that is,

$$
\mathrm{Cl}(M)=\left\{x \in X: B_{1}(x, c) \cap M \neq \emptyset \text { for every } c \gg 0\right\}
$$

where $B_{1}(x, c)=\{y \in X: d(x, y)<c\}$ with $c \in \mathbb{A}$ such that $c \gg 0$.
Theorem 3.13. The subset M of a C^{*}-algebra-valued metric space (X, \mathbb{A}, d) is dense in X if and only if for every $x \in X$ there is a sequence $\left\{x_{n}\right\}$ in M converging to x.
Proof. Assume that M is dense X and $x \in X$. Then there exits $x_{n} \in B\left(x, \frac{1}{n}\right) \cap M \neq \emptyset$ for every $n \in \mathbb{N}$. Thus we can form a sequence $\left\{x_{n}\right\}$ of elements of M. Let $\varepsilon>0$. There is a positive integer N such that $\frac{1}{N}<\varepsilon$. Then for every $n \geq N, x_{n} \in B(x, \varepsilon)$. This means that $\{x\}$ converges to x.

For the converse implication we assume the condition holds. We show that $\mathrm{Cl}(M)=X$. Let $x \in X$. Then there is a sequence $\left\{x_{n}\right\}$ in M converging to x. For a given positive real number ε, there is an integer N such that $\left\|d\left(x_{n}, x\right)\right\|_{\mathbb{A}}<\varepsilon$ for every $n \geq N$. Thus $x_{N} \in B(x, \varepsilon)$. This shows that $B(x, \varepsilon) \cap M \neq \emptyset$ for every $\varepsilon>0$, so $x \in \operatorname{Cl}(M)$. Hence $\mathrm{Cl}(M)=X$, so M is dense in X.

We have shown that any C^{*}-algebra-valued metric space (X, \mathbb{A}, d) can be considered as the cone metric space $\left(X, \widetilde{\mathbb{A}}_{h}, d\right)$ with the normal cone $\widetilde{\mathbb{A}}_{+}$such that $\operatorname{Int}_{\widetilde{\mathbb{A}}_{h}}\left(\widetilde{\mathbb{A}}_{+}\right) \neq \emptyset$. Thus, we can work on the cone metric space instead, and obtain the metric completion theorem for $\left(X, \mathbb{A}_{h}, d\right)$ after applying Theorem 2.17. Since the values of d belong to \mathbb{A}, the C^{*}-algebra-valued metric space (X, \mathbb{A}, d) is actuary contained in the acquired space as a dense subspace. We conclude this result in the following theorem.
Theorem 3.14 (Completion of C^{*}-algebra-valued metric spaces).
For any C^{*}-algebra-valued metric space (X, \mathbb{A}, d), there exists a complete C^{*}-algebravalued metric space $\left(X_{c}, \mathbb{A}, d_{c}\right)$ which contains a dense subspace W isometric with X. The space X_{c} is unique except for isometries.
Proof. Consider (X, \mathbb{A}, d) is a cone metric space $\left(X, \widetilde{\mathbb{A}}_{h}, d\right)$ with the normal cone $\widetilde{\mathbb{A}}_{+}$such that $\operatorname{Int}_{\widetilde{\mathbb{A}}_{h}}\left(\widetilde{\mathbb{A}}_{+}\right) \neq \emptyset$. Then Theorem 2.17 implies that there is a complete cone metric space $\left(X_{c}, \widetilde{\mathbb{A}}_{h}, d_{c}\right)$ which contains a dense subspace W isometric (in the sense of cone metric spaces) with X. We see that $\left(X_{c}, \widetilde{\mathbb{A}}, d_{c}\right)$ is also a C^{*}-algebra-valued metric space.

We will verify that d_{c} is an \mathbb{A}-valued metric for X_{c}, in fact, after taking the composition with the inverse of the mapping $a \mapsto(a, 0)$ from \mathbb{A} to $\widetilde{\mathbb{A}}$.

Let $x, y \in X_{c}$. Since W is dense in X_{c}, there exist sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in W converging to x and y, respectively. By Lemma 2.15, we have

$$
\begin{equation*}
d_{c}(x, y)=\lim _{n \rightarrow \infty} d_{c}\left(x_{n}, y_{n}\right) \tag{3.1}
\end{equation*}
$$

Let T be a bijective isometry of a cone metric space from W to $\left(X, \widetilde{\mathbb{A}}_{h}, d\right)$. We see that the values of d is initially in \mathbb{A}, so

$$
d_{c}\left(x_{n}, y_{n}\right)=d\left(T\left(x_{n}\right), T\left(y_{n}\right)\right) \in \mathbb{A}
$$

for every $n \in \mathbb{N}$. Since \mathbb{A} is closed in $\widetilde{\mathbb{A}}$, we have

$$
d_{c}(x, y)=\lim _{n \rightarrow \infty} d_{c}\left(x_{n}, y_{n}\right) \in \mathbb{A}
$$

This implies that d_{c} is an \mathbb{A}-valued metric for X_{c}, and so W and X are isometric with respect to the identity function $I: \operatorname{span}\left(d_{c}(W, W)\right) \rightarrow \operatorname{span}(d(X, X))$.

Next we prove the uniqueness of X_{c}. Let $\left(X_{b}, \mathbb{B}, d_{b}\right)$ be another C^{*}-algebra-valued metric space containing a dense subspace W_{b} which is isometric to X. Then there is a bijective isometry T_{b} from X to W_{b} with respect to f. Thus, $T_{b} \circ T$ is also a bijective isometry from W to W_{b} with respect to $f \circ I=f$. If we can extend the operator $T_{b} \circ T$ to be a bijective isometry from X_{c} to X_{b} with respect to the norm-preserving linear extension \tilde{f} of f, then X_{c} and X_{b} will be isometric with respect to \tilde{f}. To complete this proof we will do the necessary arrangements accordingly:
(1) Prove that \tilde{f} exists.
(2) Extended $T_{b} \circ T$ to be an isometry from X_{c} to X_{b} with respect to \tilde{f}.
(3) Verify that the extension of $T_{b} \circ T$ is bijective.

Let us start with the item 1 . We can see that f is a norm-preserving linear operator from $\operatorname{span}\left(d_{c}(W, W)\right)$ to $\operatorname{span}\left(d_{b}\left(X_{b}, X_{b}\right)\right)$. Suppose that $a, b \in d_{c}\left(X_{c}, X_{c}\right)$ and α, β be scalars. Since W is dense in X_{c}, after applying Lemma 2.15 we obtain that there are sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ in $d_{c}(W, W)$ converging to a and b respectively. Next apply continuity of the addition and the scalar multiplication with respect to the norm of $d_{c}\left(X_{c}, X_{c}\right)$. We have

$$
\lim _{n \rightarrow \infty}\left(\alpha a_{n}+\beta b_{n}\right)=\alpha a+\beta b
$$

This shows that $\operatorname{span}\left(d_{c}(W, W)\right)$ is dense in $\operatorname{span}\left(d_{c}\left(X_{c}, X_{c}\right)\right)$. For the completeness of $\operatorname{span}\left(d_{b}\left(X_{b}, X_{b}\right)\right)$, we can show that it is closed in \mathbb{B}_{h}. The proof can be done by the similar arguments applied in the previous one. Now applying the bounded linear extension theorem to obtain the bounded linear extension $\tilde{f}: \operatorname{span}\left(d_{c}\left(X_{c}, X_{c}\right)\right) \rightarrow \operatorname{span}\left(d_{b}\left(X_{b}, X_{b}\right)\right)$ of f. Next we show that \tilde{f} is norm-preserving. Assume that $a \in \operatorname{span}\left(d_{c}\left(X_{c}, X_{c}\right)\right)$. Since $\operatorname{span}\left(d_{c}(W, W)\right)$ is dense in $\operatorname{span}\left(d_{c}\left(X_{c}, X_{c}\right)\right)$, there is a sequence $\left\{a_{n}\right\}$ in $\operatorname{span}\left(d_{c}(W, W)\right)$ converging to a. By Lemma 2.15 together with the continuity of f and the norms of \mathbb{A} and \mathbb{B}, we have

$$
\|\tilde{f}(a)\|_{\mathbb{B}}=\lim _{n \rightarrow \infty}\left\|f\left(a_{n}\right)\right\|_{\mathbb{B}}=\lim _{n \rightarrow \infty}\left\|a_{n}\right\|_{\mathbb{A}}=\|a\|_{\mathbb{A}}
$$

Now \tilde{f} is a norm-preserving linear operator.

Next we apply the same setting of (3.1) and additional assume that $x_{n}^{\prime}=T_{b}\left(T\left(x_{n}\right)\right)$. Then $x_{n}^{\prime} \in W_{b}$ and

$$
\begin{equation*}
\left\|d_{c}\left(x_{m}, x_{n}\right)\right\|_{\mathbb{A}}=\left\|f\left(d_{c}\left(x_{m}, x_{n}\right)\right)\right\|_{\mathbb{B}}=\left\|d_{b}\left(x_{m}^{\prime}, x_{n}^{\prime}\right)\right\|_{\mathbb{B}} \tag{3.2}
\end{equation*}
$$

Since $x_{n} \rightarrow x,\left\{x_{n}^{\prime}\right\}$ is a Cauchy sequence in W_{b}. Hence there are $x^{\prime} \in X_{b}$ such that $x_{n}^{\prime} \rightarrow x^{\prime}$. Thus we determine

$$
\begin{equation*}
\left(T_{b} \circ T\right)(x)=x^{\prime} \tag{3.3}
\end{equation*}
$$

Assume that $\left\{z_{n}\right\}$ be another sequence in W converging to x. Let $z_{n}^{\prime}=T_{b}\left(T\left(z_{n}\right)\right)$. By the same method above we can show that the sequence $\left\{z_{n}^{\prime}\right\}$ converges in X_{b}. Suppose that $z_{n}^{\prime} \rightarrow z^{\prime}$. For every $n \in \mathbb{N}$, we have

$$
\begin{aligned}
\left\|d_{b}\left(x^{\prime}, z^{\prime}\right)\right\|_{\mathbb{B}} & \leq\left\|d_{b}\left(x^{\prime}, x_{n}^{\prime}\right)\right\|_{\mathbb{B}}+\left\|d_{b}\left(x_{n}^{\prime}, z_{n}^{\prime}\right)\right\|_{\mathbb{B}}+\left\|d_{b}\left(z_{n}^{\prime}, z^{\prime}\right)\right\|_{\mathbb{B}} \\
& =\left\|d_{b}\left(x^{\prime}, x_{n}^{\prime}\right)\right\|_{\mathbb{B}}+\left\|d_{b}\left(T_{b}\left(T\left(x_{n}\right)\right), T_{b}\left(T\left(z_{n}\right)\right)\right)\right\|_{\mathbb{B}}+\left\|d_{b}\left(z_{n}^{\prime}, z^{\prime}\right)\right\|_{\mathbb{B}} \\
& =\left\|d_{b}\left(x^{\prime}, x_{n}^{\prime}\right)\right\|_{\mathbb{B}}+\left\|f\left(d_{c}\left(x_{n}, z_{n}\right)\right)\right\|_{\mathbb{B}}+\left\|d_{b}\left(z_{n}^{\prime}, z^{\prime}\right)\right\|_{\mathbb{B}} \\
& =\left\|d_{b}\left(x^{\prime}, x_{n}^{\prime}\right)\right\|_{\mathbb{B}}+\left\|d_{c}\left(x_{n}, z_{n}\right)\right\|_{\mathbb{A}}+\left\|d_{b}\left(z_{n}^{\prime}, z^{\prime}\right)\right\|_{\mathbb{B}} \\
& \leq\left\|d_{b}\left(x^{\prime}, x_{n}^{\prime}\right)\right\|_{\mathbb{B}}+\left\|d_{c}\left(x_{n}, x\right)\right\|_{\mathbb{A}}+\left\|d_{c}\left(x, z_{n}\right)\right\|_{\mathbb{A}}+\left\|d_{b}\left(z_{n}^{\prime}, z^{\prime}\right)\right\|_{\mathbb{B}} .
\end{aligned}
$$

This implies that $x^{\prime}=z^{\prime}$. Hence the extension of $T_{b} \circ T$ from X_{c} to X_{b} is a well-defined. Now we additionally assume that $y \in X_{c}$ and $\left\{y_{n}\right\}$ is a sequence W converging to y. By Lemma 2.15 together with (3.3), we obtain

$$
\begin{aligned}
\tilde{f}\left(d_{c}(x, y)\right) & =\lim _{n \rightarrow \infty} f\left(d_{c}\left(x_{n}, y_{n}\right)\right) \\
& =\lim _{n \rightarrow \infty} d_{b}\left(\left(T_{b} \circ T\right)\left(x_{n}\right),\left(T_{b} \circ T\right)\left(y_{n}\right)\right) \\
& =d_{b}\left(\left(T_{b} \circ T\right)(x),\left(T_{b} \circ T\right)(y)\right) .
\end{aligned}
$$

$T_{b} \circ T$ is now an isometry from X_{c} to X_{b} with respect to \tilde{f}.
Finally, we verify that the extension of $T_{b} \circ T$ is bijective. Let $x^{\prime} \in X_{b}$. Since W_{b} is dense in X_{b}, there is a sequence $\left\{x_{n}^{\prime}\right\}$ in W_{b} converging to x^{\prime}. Since $T_{b} \circ T: W \rightarrow W_{b}$ is surjective, there are $x_{n} \in W$ such that $T_{b}\left(T\left(x_{n}\right)\right)=x_{n}^{\prime}$ for all $n \in \mathbb{N}$. By applying the equation (3.2), $\left\{x_{n}\right\}$ is Cauchy in X_{c}, so it converges to an element x in X_{c}. Thus

$$
\begin{aligned}
\left\|d_{b}\left(T_{b}(T(x)), x^{\prime}\right)\right\|_{\mathbb{B}} & \leq\left\|d_{b}\left(T_{b}(T(x)), T_{b}\left(T\left(x_{n}\right)\right)\right)\right\|_{\mathbb{B}}+\left\|d_{b}\left(x_{n}^{\prime}, x^{\prime}\right)\right\|_{\mathbb{B}} \\
& =\left\|d_{c}\left(x, x_{n}\right)\right\|_{\mathbb{A}}+\left\|d_{b}\left(x_{n}^{\prime}, x^{\prime}\right)\right\|_{\mathbb{B}} .
\end{aligned}
$$

This implies that $T_{b}(T(x))=x^{\prime}$. Hence $T_{b} \circ T$ is surjective, and so, bijective after applying Proposition 3.9. Consequently, $T_{b} \circ T$ is a bijective isometry from X_{c} to X_{b} with respect to \tilde{f}. Therefore X_{c} and X_{b} are isometric.

Next, we focus on a C^{*}-algebra-valued normed space. Let X be a vector space over the real or complex fields and \mathbb{A} be a C^{*}-algebra. A triple $\left(X, \mathbb{A},\|\cdot\|_{X}\right)$ is called a C^{*} -algebra-valued normed space if $\|\cdot\|_{X}$ is a function from X to A_{+}satisfying the following properties:
(1) $\|x\|_{X}=0_{\mathbb{A}}$ if and only if $x=0_{X}$,
(2) $\|\alpha x\|_{X}=|\alpha|\|x\|_{X}$,
(3) $\|x+y\|_{X} \leq\|x\|_{X}+\|y\|_{X}$,
for every $x, y \in X$ and every scalar α. Notice that $0_{\mathbb{A}}$ and 0_{X} are zeros in \mathbb{A} and X respectively.

By the definition of a C^{*}-algebra-valued norm, we can investigate that the function $d: X \times X \rightarrow \mathbb{A}$ determined by $d(x, y)=\|x-y\|_{X}$ is a C^{*}-algebra-valued metric. We call it the C^{*}-algebra-valued metric induced by the norm $\|\cdot\|_{X}$ We conclude this fact in the proposition below

Proposition 3.15. $A C^{*}$-algebra-valued normed space $\left(X, \mathbb{A},\|\cdot\|_{X}\right)$ is a C^{*}-algebravalued metric space with a metric $d: X \times X \rightarrow \mathbb{A}$ given by $d(x, y)=\|x-y\|_{X}$.

A complete C^{*}-algebra-valued normed space under the metric induced by the C^{*} -algebra-valued norm is called a C^{*}-algebra-valued Banach Space. In the next example, we show that every commutative C^{*}-algebra is a C^{*}-algebra-valued normed space.

Lemma 3.16. Let A be commutative C^{*}-algebra. Then \mathbb{A}_{h} is a closed $*$-subalgebra of \mathbb{A} over the real field. Moreover, if $a, b \in \mathbb{A}_{+}$, then $a b \in \mathbb{A}_{+}$and $(a b)^{1 / 2}=a^{1 / 2} b^{1 / 2}$.

Proof. Since \mathbb{A} is commutative, $(a b)^{*}=a^{*} b^{*}=a b$ for every $a, b \in \mathbb{A}_{h}$. Combine with Proposition 3.4, \mathbb{A}_{h} is a real $*$-subalgebra of \mathbb{A}.

Next, suppose that $a, b \in \mathbb{A}_{+}$Theorem 2.4 implies that $a=c^{*} c$ for some $c \in \mathbb{A}$. Thus, we have $0_{\mathbb{A}}=c^{*} 0_{\mathbb{A}} c \leq c^{*} b c=c^{*} c b=a b$, so $a b$ is positive. By the same way, $a^{1 / 2} b^{1 / 2}$ is also positive. Since $\left(a^{1 / 2} b^{1 / 2}\right)^{2}=a b$, Theorem 2.2 implies that $a^{1 / 2} b^{1 / 2}=(a b)^{1 / 2}$.

Example 3.17. Let \mathbb{A} be a commutative C^{*}-algebra and $X=\mathbb{A}$. By using Proposition 2.1, every element $x \in \mathbb{A}$ can be uniquely decomposed as $x=a+b i$ for some $a, b \in \mathbb{A}_{h}$. Then we define $\|\cdot\|_{0}: X \rightarrow \mathbb{A}_{+}$by

$$
\|x\|_{0}=\left(a^{2}+b^{2}\right)^{1 / 2}
$$

We will show that $\left(X,\|\cdot\|_{0}, \mathbb{A}\right)$ is a C^{*}-algebra-valued normed space.
Since a and b are hermitian, Theorem 2.4 implies that a^{2} and b^{2} are positive. Thus, $\left(a^{2}+b^{2}\right)^{1 / 2}$ is also positive after applying Proposition 2.3 and Theorem 2.2, respectively. We now obtain that $\|\cdot\|_{0}$ is an \mathbb{A}_{+}valued function. Since $x=0_{X}$ if and only if $a=b=0_{X}$, we obtain that $\|x\|_{0}=0_{\mathbb{A}}$ if and only if $x=0_{X}$. Next, suppose that $\gamma=\alpha+\beta i$ where $\alpha, \beta \in \mathbb{R}$. Hence, $\gamma x=(\alpha+\beta i)(a+b i)=(\alpha a-\beta b)+(\beta a+\alpha b) i$, so

$$
\begin{aligned}
\|\gamma x\|_{0}^{2} & =(\alpha a-\beta b)^{2}+(\beta a+\alpha b)^{2} \\
& =\alpha^{2} a^{2}+\beta^{2} b^{2}+\beta^{2} a^{2}+\alpha^{2} b^{2} \\
& =\left(\alpha^{2}+\beta^{2}\right)\left(a^{2}+b^{2}\right) .
\end{aligned}
$$

Theorem 2.2 and Proposition 2.5 imply that $\|\gamma x\|_{0}=\left(\left(\alpha^{2}+\beta^{2}\right)\left(a^{2}+b^{2}\right)\right)^{1 / 2}=|\alpha|\|x\|_{0}$.
Finally, we prove the triangle inequality. We additionally assume that $y \in X$ is uniquely represented by $c+d i$ where $c, d \in \mathbb{A}_{h}$. Consider

$$
\begin{aligned}
\|x+y\|_{0}^{2} & =\|(a+c)+(b+d) i\|_{0}^{2} \\
& =(a+c)^{2}+(b+d)^{2} \\
& =\left(a^{2}+2 a c+c^{2}\right)+\left(b^{2}+2 b d+b^{2}\right) \\
& =\left(a^{2}+b^{2}+c^{2}+d^{2}\right)+2(a c+b d),
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\|x\|_{0}+\|y\|_{0}\right)^{2} & =\|x\|_{0}^{2}+2\|x\|_{0}\|y\|_{0}+\|y\|_{0}^{2} \\
& =\left(a^{2}+b^{2}\right)+2\left(a^{2}+b^{2}\right)^{1 / 2}\left(c^{2}+d^{2}\right)^{1 / 2}+\left(c^{2}+d^{2}\right) \\
& =\left(a^{2}+b^{2}+c^{2}+d^{2}\right)+2\left(a^{2}+b^{2}\right)^{1 / 2}\left(c^{2}+d^{2}\right)^{1 / 2}
\end{aligned}
$$

Hence after verifying that $a c+b d \leq\left(a^{2}+b^{2}\right)^{1 / 2}\left(c^{2}+d^{2}\right)^{1 / 2}$ and then apply Theorem 2.6, we will obtain the inequality $\|x+y\|_{0}^{2} \leq\left(\|x\|_{0}+\|y\|_{0}\right)^{2}$.

We may see that $0_{\mathbb{A}} \leq(a d-b c)^{2}=(a d)^{2}-2 a b c d+(b c)^{2}$, so $2 a b c d \leq(a d)^{2}+(b c)^{2}$. Therefore,

$$
\begin{aligned}
(a c+b d)^{2} & =(a c)^{2}+2 a b c d+(b d)^{2} \\
& \leq(a c)^{2}+(a d)^{2}+(b c)^{2}+(b d)^{2} \\
& =\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) .
\end{aligned}
$$

Theorem 2.6 implies $\left((a c+b d)^{2}\right)^{1 / 2} \leq\left(\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\right)^{1 / 2}$. Then apply Theorem 2.2 and Lemma 3.16 to the left and right sides of the inequality, respectively. Thus we obtain $a c+b d \leq\left(a^{2}+b^{2}\right)^{1 / 2}\left(c^{2}+d^{2}\right)^{1 / 2}$. Now, the triangle inequality of $\|\cdot\|_{0}$ is investigated. Consequently, $\|\cdot\|_{0}$ is an \mathbb{A}-valued norm for \mathbb{A}.

Remark 3.18. $\|a\|_{0}=a$ for every positive element a of a C^{*}-algebra \mathbb{A}.
Consider an additive operator between traditional normed spaces, it is an isometry if and only if it is norm-preserving. Thus, an isomorphism between normed spaces is always isometry. The similar arguments will be applied to define an isomorphism of C^{*} -algebra-valued normed spaces and the phrase "with respect to f " is also applied to the terminologies determined below. However, we may leave out it for convenience if there is not any confusion.

Assume that $\left(X, \mathbb{A},\|\cdot\|_{X}\right)$ and $\left(Y, \mathbb{B},\|\cdot\|_{Y}\right)$ be C^{*}-algebra-valued normed spaces and $T: X \rightarrow Y$ be an operator. If there exists a norm-preserving linear operator $f: \operatorname{span}\left(\|X\|_{X}\right) \rightarrow \operatorname{span}\left(\|Y\|_{Y}\right)$ such that

$$
f\left(\|x\|_{X}\right)=\|T(x)\|_{Y}
$$

for every $x \in X$, the operator T is called a C^{*}-valued-norm-preserving operator from X to Y with respect to f. Additionally, a bijective C^{*}-valued-norm-preserving linear operator with respect to f is called an isomorphism with respect to f. We say that the C^{*}-valued spaces X and Y are isomorphic if there exists an isomorphism (with respect to f) from X to Y.

We know that any incomplete normed space can be embedded in a Banach space. In [10], the author defined a cone normed space and verified the existence of its completion. The existence of the C^{*}-algebra-valued Banach completion will be verified in the next theorem.

Theorem 3.19 (Completion of C^{*}-algebra-valued normed spaces).
For any C^{*}-algebra-valued normed space $(X, \mathbb{A},\|\cdot\|)$, there exists a C^{*}-algebra-valued Banach space $\left(X_{c}, \mathbb{A},\|\cdot\|_{c}\right)$ which contains a dense subspace W isomorphic with X. The space X_{c} is unique except for isomorphism.

Proof. The process of the proof follows from the completion theorem for the metric version. Similar to the case of metric, we can consider $(X, \mathbb{A},\|\cdot\|)$ as a cone normed space
$\left(X, \widetilde{\mathbb{A}}_{h},\|\cdot\|\right)$. Then apply Theorem 2.19 to obtain a cone Banach space $\left(X_{c}, \widetilde{\mathbb{A}}_{h},\|\cdot\|_{c}\right)$ containing a dense subspace W which is isomorphic with X. Let $x \in X_{c}$. Then there is a sequence $\left\{x_{n}\right\}$ in W converging to x. Now consider X_{c} as an $\widetilde{\mathbb{A}}$-valued cone metric space with the metric $d(x, y)=\|x-y\|_{c}$. By Lemma 2.15, we have

$$
\begin{equation*}
\|x\|_{c}=d\left(x, 0_{X}\right)=\lim _{n \rightarrow \infty} d\left(x_{n}, 0_{x}\right)=\lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{c} \tag{3.4}
\end{equation*}
$$

Let T be an isomorphism (a norm-preserving linear operator) of a cone normed space from W to $\left(X, \widetilde{\mathbb{A}}_{h},\|\cdot\|\right)$. Since the values of $\|\cdot\|$ is initiated in a C^{*}-algebra \mathbb{A}, we have

$$
\|x\|_{c}=\lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{c}=\lim _{n \rightarrow \infty}\left\|T\left(x_{n}\right)\right\| \in \mathbb{A}
$$

Now $\|\cdot\|_{c}$ is an \mathbb{A}-valued norm for X_{c}. In addition, W and X are isomorphic to each other with respect to the identity function $I: \operatorname{span}\left(\|W\|_{c}\right) \rightarrow \operatorname{span}(\|X\|)$.

For the uniqueness of X_{c}, we suppose that $\left(X_{b}, \mathbb{B},\|\cdot\|_{b}\right)$ is an other C^{*}-algebra-valued normed space containing a dense subspace W_{b} and $T_{b}: X \rightarrow W_{b}$ are isomorphism with respect to f. We can show that $T_{b} \circ T$ is an isomorphism from W to W_{b} with respect to $f \circ I=f$. To investigate that X_{c} and X_{b} are isometric, we need to complete the following tasks to extend the operator $T_{b} \circ T$ to be an isomorphism from X_{c} to X_{b} with respect to the norm-preserving linear extension \tilde{f} of f :
(1) Prove that \tilde{f} exists.
(2) Extended $T_{b} \circ T$ to be an isometry from X_{c} to X_{b} with respect to \tilde{f}.
(3) Verify that the extension of $T_{b} \circ T$ is bijective.
(4) Verify that the extension of $T_{b} \circ T$ is a linear operator.

For the first three items, the similar methodology of the proof in Theorem 3.14 will be applied to $\|\cdot\|_{c}$ and $\|\cdot\|_{b}$. This implies that we can extend $T_{b} \circ T$ to be a bijective isometry from X_{c} to X_{b} with respect to \tilde{f} as follows. For every $x \in X_{c}$

$$
f\left(\|x\|_{c}\right)=\left\|x^{\prime}\right\|_{b}, \quad\left(T_{b} \circ T\right)(x)=x^{\prime}
$$

where x^{\prime} is the limit of the sequence $\left\{x_{n}^{\prime}\right\}$ such that $x_{n}^{\prime}=T_{b}\left(T\left(x_{n}\right)\right)$ and $\left\{x_{n}\right\}$ is a sequence in W converging to x. Let α and β be scalars, and $x, y \in X_{c}$. Then there are sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in W converging to x and y, respectively. Since $T_{b} \circ T$ is linear on W, we have

$$
\left(T_{b} \circ T\right)\left(\alpha x_{n}+\beta y_{n}\right)=\alpha\left(T_{b} \circ T\right)\left(x_{n}\right)+\beta\left(T_{b} \circ T\right)\left(y_{n}\right),
$$

for every positive integer n. Since addition and scalar multiplication of a C^{*}-algebravalued normed space are continuous with respect to the C^{*}-algebra-valued norm. We have

$$
\left(T_{b} \circ T\right)\left(\alpha x_{n}+\beta y_{n}\right) \rightarrow\left(T_{b} \circ T\right)(\alpha x+\beta y)
$$

and

$$
\alpha\left(T_{b} \circ T\right)\left(x_{n}\right)+\beta\left(T_{b} \circ T\right)\left(y_{n}\right) \rightarrow \alpha\left(T_{b} \circ T\right)(x)+\beta\left(T_{b} \circ T\right)(y)
$$

By the uniqueness of limits,

$$
\left(T_{b} \circ T\right)(\alpha x+\beta y)=\alpha\left(T_{b} \circ T\right)(x)+\beta\left(T_{b} \circ T\right)(y)
$$

This means that $T_{b} \circ T$ is a linear operator from X_{c} to X_{b}. Now we obtain that $T_{b} \circ T$ is an isomorphism from X_{c} to X_{b}, so X_{c} and X_{b} are isomorphic. The proof of the theorem is now complete.

4. Connection with Hilbert C^{*}-modules

This section provides certain relationships between concepts of a C^{*}-algebra-valued metric space and an inner-product C^{*}-module which is a generalization of an inner product space. The concept of inner-product C^{*}-module was first introduced in [13], the study of I. Kaplansky in 1953, to develop the theory for commutative unital algebras. In the 1970s, the definition was extended to the case of noncommutative C^{*}-algebra, see more details in $[14,15]$. Let \mathbb{A} be a C^{*}-algebra and X be a complex vector space which is a right \mathbb{A}-module with compatible scalar multiplication:

$$
\begin{equation*}
\alpha(x a)=(\alpha x) a=x(\alpha a), \tag{4.1}
\end{equation*}
$$

for every $\alpha \in \mathbb{C}, x \in X$ and $a \in \mathbb{A}$. The triple $(X, \mathbb{A},\langle\cdot, \cdot\rangle)$ is called an inner product \mathbb{A}-module if the mapping $\langle\cdot, \cdot\rangle: X \times X \rightarrow \mathbb{A}$ satisfies the following conditions:
(1) $\langle x, \alpha y+\beta z\rangle=\alpha\langle x, y\rangle+\beta\langle x, z\rangle$,
(2) $\langle x, y a\rangle=\langle x, y\rangle a$,
(3) $\langle y, x\rangle=\langle x, y\rangle^{*}$,
(4) $\langle x, x\rangle \geq 0_{\mathbb{A}}$,
(5) if $\langle x, x\rangle=0_{\mathbb{A}}$, then $x=0_{X}$,
for every $\alpha \in \mathbb{C}, x, y \in X$ and $a \in \mathbb{A}$. It is known that any inner product C^{*}-module $(X, \mathbb{A},\langle\cdot, \cdot\rangle)$ is a normed space with a scalar-valued norm $\|\cdot\|_{m}$ given by

$$
\|x\|_{m}=\|\langle x, x\rangle\|_{\mathbb{A}}^{1 / 2}
$$

for every $x \in X$ where $\|\cdot\|_{\mathbb{A}}$ is a norm on \mathbb{A}. It is called a Hilbert C^{*}-module if the induced norm is complete.

The concept of completion is also extended to inner product C^{*}-modules. It is mentioned in [16] that for any inner product C^{*}-module X over a C^{*}-algebra \mathbb{A}, one can form its completion X_{c}, a Hilbert \mathbb{A}-module, using a similar way to the case of the scalar-valued inner product space. That is, for given sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X converging to x and y in X_{c}, we define

$$
\langle x, y\rangle:=\lim _{n \rightarrow \infty}\left\langle x_{n}, y_{n}\right\rangle
$$

It is an \mathbb{A}-valued inner product on X_{c} constructed from that of X using the completeness of \mathbb{A} to confirm that the limit exists.

Next, we provide a connection between the concept of C^{*}-algebra-valued metric completion and the completion of an inner product C^{*}-module. We show that this two concepts are identical if a C^{*}-algebra-valued inner product can induce a C^{*}-algebra-valued norm. Similar to the case of a traditional inner product space, for any inner product C^{*}-module $(X, \mathbb{A},\langle\cdot, \cdot\rangle)$ we determine a function $\|\cdot\|_{X}: X \rightarrow \mathbb{A}$ by

$$
\begin{equation*}
\|x\|_{X}=\langle x, x\rangle^{1 / 2} \tag{4.2}
\end{equation*}
$$

Can the \mathbb{A}-valued function $\|\cdot\|_{X}$ be an \mathbb{A}-valued norm on X ? To answer the question we consider \mathbb{A} as a right module over itself, so it becomes an inner product \mathbb{A}-module together with an \mathbb{A}-valued inner product defined by

$$
\langle x, y\rangle=x^{*} y
$$

for every $x, y \in \mathbb{A}$. In this case we have

$$
\|x\|_{X}=\left(x^{*} x\right)^{1 / 2}
$$

and the result given by R. Harte in [17] implies that $\|\cdot\|_{X}$ does not satisfy the triangle inequality in certain cases. Therefore the \mathbb{A}-valued function may not become an \mathbb{A}-valued norm in general. However, R. Jiang provide sufficient conditions in [18] to make the triangle inequality hold, so $\|\cdot\|_{X}$ becomes an \mathbb{A}-valued norm of X. The \mathbb{A}-valued metric completion concept for an inner product C^{*}-module will be studied in this case.

Proposition 4.1. Let $(X, \mathbb{A},\langle\cdot, \cdot\rangle)$ be an inner product C^{*}-module. If the function $\|\cdot\|_{X}$ defined above satisfies the triangle inequality, then it is an \mathbb{A}-valued norm on X.

Proof. The proof can be obtained directly from the definition of an \mathbb{A}-valued norm and an \mathbb{A}-valued inner product.

If the inner product C^{*}-module $(X, \mathbb{A},\langle\cdot, \cdot\rangle)$ is a C^{*}-algebra-valued normed space, and so a C^{*}-algebra-valued metric space, we can consider whether the space is complete by using a C^{*}-algebra-valued metric.

Theorem 4.2. Assume that an inner product C^{*}-module $(X, \mathbb{A},\langle\cdot, \cdot\rangle)$ is a C^{*}-algebravalued norm space with an \mathbb{A}-valued norm $\|\cdot\|_{X}$ induced by $\langle\cdot, \cdot\rangle$. Then it is a Hilbert C^{*}-module if and only if it is a C^{*}-algebra-valued Banach space.

Proof. Let x be any element of X and $\|\cdot\|_{X}$ be an \mathbb{A}-valued norm on X induced by $\langle\cdot, \cdot\rangle$. Since $\|x\|_{X}^{2}=\langle x, x\rangle$, we have

$$
\|\langle x, x\rangle\|_{\mathbb{A}}=\| \| x\left\|_{X}^{2}\right\|_{\mathbb{A}}=\| \| x\left\|_{X}\right\|_{\mathbb{A}}^{2}
$$

Thus,

$$
\|x\|_{m}=\|\langle x, x\rangle\|_{\mathbb{A}}^{1 / 2}=\| \| x\left\|_{X}\right\|_{\mathbb{A}}
$$

Then by Definition 2.9 we obtain that the two concepts of convergence of any sequence $\left\{x_{n}\right\}$ in X by $\|\cdot\|_{X}$ and $\|\cdot\|_{m}$ are equivalent. Therefore, X is a Hilbert C^{*}-module if and only if it is a C^{*}-algebra-valued Banach space.

Now we consider the conditions which makes $(X, \mathbb{A},\langle\cdot, \cdot\rangle)$ to be an \mathbb{A}-valued normed space. For any C^{*}-algebra \mathbb{A}, we let $\mathbb{A}^{\prime \prime}$ be the enveloping Von Neumann algebra of \mathbb{A}. Proposition 2.3 in [18] concludes that \mathbb{A} is commutative if and only if $\mathbb{A}^{\prime \prime}$ is commutative. It is a useful fact which is applied to prove the triangle inequality for $\|\cdot\|_{X}$ defined by (4.2). By the sake of Gelfand-Naimark Theorem, we can consider \mathbb{A} as C^{*}-subalgebra of $B(H)$ for some Hilbert space H. Then $\overline{\langle X, X\rangle}{ }^{\prime \prime}$ also lies in $B(H)$ where $\overline{\langle X, X\rangle}$ is a closed two-side ideal of \mathbb{A} generated by $\langle X, X\rangle$. In Lemma 3.5 of [18], the author provides an important fact for a Hilbert \mathbb{A}-module. Since the proof of the lemma does not require the completeness of the Hilbert \mathbb{A}-module, we can remove the condition and apply the new version of the lemma to the reverse implication of Theorem 3.6 in [18]. Therefore we have the sufficient conditions to make the C^{*}-valued function $\|\cdot\|_{X}$ induced by $\langle\cdot, \cdot\rangle$ satisfy the triangle inequality.

Proposition 4.3. Let $(X, \mathbb{A},\langle\cdot, \cdot\rangle)$ be an inner product C^{*}-module. If the closed two-side ideal $\overline{\langle X, X\rangle}$ of \mathbb{A} is commutative, then $\|\cdot\|_{X}$ satisfies the triangle inequality.

Corollary 4.4. Let $(X, \mathbb{A},\langle\cdot, \cdot\rangle)$ be an inner product C^{*}-module with a commutative C^{*} algebra \mathbb{A}. Then $\|\cdot\|_{X}$ satisfies the triangle inequality.

Theorem 4.5. Let $(X, \mathbb{A},\langle\cdot, \cdot\rangle)$ be an inner product C^{*}-module. If the closed two-side ideal $\overline{\langle X, X\rangle}$ of \mathbb{A} is commutative, then the completion of $(X, \mathbb{A},\langle\cdot, \cdot\rangle)$ is an \mathbb{A}-valued Banach completion of $\left(X, \mathbb{A},\|\cdot\|_{X}\right)$.

Proof. By Proposition 4.3, $(X, \mathbb{A},\langle\cdot, \cdot\rangle)$ become an \mathbb{A}-valued norm space with the \mathbb{A}-valued norm $\|\cdot\|_{X}$ induced by $\langle\cdot, \cdot\rangle$. Let $\left(X_{c}, \mathbb{A},\langle\cdot, \cdot\rangle_{c}\right)$ be a completion of $(X, \mathbb{A},\langle\cdot, \cdot\rangle)$. Now apply denseness of X in X_{c} together with joint continuity of multiplication on \mathbb{A}, so $\overline{\left\langle X_{c}, X_{c}\right\rangle_{c}}$ is commutative. Then $\left(X_{c}, \mathbb{A},\langle\cdot, \cdot\rangle_{c}\right)$ becomes an \mathbb{A}-valued norm space with the \mathbb{A}-valued norm $\|\cdot\|_{X_{c}}$ induced by $\langle\cdot, \cdot\rangle_{c}$. By Theorem $4.2\left(X_{c}, \mathbb{A},\|\cdot\|_{X_{c}}\right)$ is actually an \mathbb{A}-valued Banach space. Suppose that $x \in X_{c}$ and $\left\{x_{n}\right\}$ is a sequence in X converging to x by the norm on X extended from $\|\cdot\|_{m}$. Then

$$
\|x\|_{X_{c}}=\langle x, x\rangle_{c}^{1 / 2}=\lim _{n \rightarrow \infty}\left\langle x_{n}, x_{n}\right\rangle^{1 / 2}=\lim _{n \rightarrow \infty}\left\|x_{n}\right\|_{X}
$$

Certainly, the equality implies that the norm $\|\cdot\|_{X}$ is the restriction of $\|\cdot\|_{X_{c}}$ on X. Also the inequality implies the denseness of X in X_{c} under the norm $\|\cdot\|_{X_{c}}$. Therefore $\left(X_{c}, \mathbb{A},\|\cdot\|_{X_{c}}\right)$ is a \mathbb{A}-valued Banach completion of $\left(X, \mathbb{A},\|\cdot\|_{X}\right)$.

Acknowledgements

We would like to thank the referees for their comments and suggestions on the manuscript. This research was supported by Nakhon Sawan Rajabhat University, Thailand.

References

[1] L.G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis and Applications 332 (2007) 1468-1476.
[2] Z. Ma, L. Jiang, H. Sun, C^{*}-algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory and Applications 2014 (2014) 206.
[3] Z. Ma, L. Jiang, C^{*}-algebra-valued b-metric spaces and related fixed point theorems, Fixed Point Theory and Applications, 2015 (2015) 222.
[4] C. Shen, L. Jiang, Z. Ma, C^{*}-algebra-valued G-metric spaces and related fixed-point theorems, Journal of Function Spaces 2018 (2018) 3257189.
[5] H. Massit, R. Mohamed, Fixed point theorem for (ϕ, f)-contraction on C^{*}-algebra valued metric spaces, European Journal of Mathematics and Applications 1 (2021) 14.
[6] D. Anand, R. Dhariwal, C. Park, J. Lee, On fixed point in C^{*}-algebra valued metric spaces using C^{*}-class function, The International Journal of Nonlinear Analysis and Applications 12 (2021) 2008-6822.
[7] S. Omran, I. Masmali, α-admissible mapping in C^{*}-algebra-valued b-metric spaces and fixed point theorems, AIMS Mathematics 6 (2021) 10192-10206.
[8] H. Massit, R. Mohamed, Fixed point theorems for ψ-contractive mapping in C^{*} algebra valued rectangular b-metric spaces, Journal of Mathematical and Computational Science 11 (2021) 6507-6521.
[9] V. Parvaneh, S.H. Bonab, H. Hosseinzadeh, H. Aydi, A tripled fixed point theorem in C^{*}-algebra-valued metric spaces and application in integral equations, Advances in Mathematical Physics 2021 (2021) 1-6.
[10] T. Abdeljawad, Completion of cone metric spaces, Hacettepe Journal of Mathematics and Statistics 39 (2010) 67-74.
[11] G.J. Murphy, Chapter 1 - elementary spectral theory and Chapter 2-C ${ }^{*}$-algebras and Hilbert space operators, in C^{*}-Algebras and Operator Theory (G. J. Murphy, ed.), 1-76, San Diego: Academic Press, 1990.
[12] Q. Ansari, E. Köbis, J. Yao, Vector Variational Inequalities and Vector Optimization: Theory and Applications, Vector Optimization, Springer International Publishing, 2017.
[13] I. Kaplansky, Modules over operator algebras, American Journal of Mathematics 75 (1953) 839-858.
[14] W.L. Paschke, Inner product modules over B^{*}-algebras, Transactions of the American Mathematical Society 182 (1973) 443-468.
[15] M.A. Rieffel, Induced representations of C^{*}-algebras, Advances in Mathematics 13 (1974) 176-257.
[16] E.C. Lance, Chapter 1 - modules and mappings, in Hilbert C^{*}-Modules: A Toolkit for Operator Algebraists, London Mathematical Society Lecture Note Series (Book 210), 1-13, Cambridge University Press, 1995.
[17] R. Harte, The triangle inequality in C^{*}-algebras, Filomat 20 (2006) 51-53.
[18] R. Jiang, A note on the triangle inequality for the C^{*}-valued norm on a Hilbert C^{*}-module, Mathematical Inequalities \& Applications 16 (2013) 743-749.

[^0]: *Corresponding author.

