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1. Introduction

A metric space is one of attractive objects in mathematics which plays an important
role in various branches of mathematics. It is a nonempty set X together with a distance
function d : X × X → R, which is often called a metric on X. Plenty of research
papers study various kinds of spaces generalized from the definition of a metric space in
different directions. Some authors remove or change initial properties of a metric space
while others change the values of the distance function to be in generalized sets of real or
complex numbers, such as, a Banach space or a C*-algebra which can be seen in [1] and
[2], respectively.

The concept of a C*-algebra-valued metric space was first introduced in 2014 by Z.
Ma and others. For this space the distance function was replaced by a function valued in
a C*-algebra A. If we consider the set of all positive elements A+ of A as a cone of A.
A C*-algebra-valued metric space is, in fact, a cone metric space which was introduced
in 2004 by L. G. Huang and others, see more details about a cone metric space in [1].
Recently, there are many authors whose study area related to C*-algebra-valued metric
(like) spaces especially in mathematical analysis, see [3–9] for examples.
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The main purpose of this research is to study the completion for C*-algebra-valued
metric spaces and a C*-algebra-valued normed spaces. We verify some facts and use
them to extend the results from others in [10]. Then we discuss relationships between C*-
algebra-valued metric spaces and Hilbert C*-modules, generalized inner product spaces
whose scalar fields are replaced by some C*-algebras.

The rest of the paper is organized as follows. In section 2 we derive the important
definitions and theorems used to obtain our results. In section 3 We discuss on C*-
algebra-valued metric and normed spaces and the relation to cone metric spaces. In
section 4 the connection to Hilbert C*-modules is provided.

2. Preliminaries

This section provides a brief review of basic knowledge used in this research which can
be found in [1, 2, 10–12]. We start with the concept of C*-algebras and some necessary
related properties. A C*-algebra A is a *-algebra with a complete submultiplicative norm
‖ · ‖A such that ‖a∗a‖A = ‖a‖2A for every a ∈ A. If A admits a unit I (aI = Ia = a for
every a ∈ A) such that ‖I‖A = 1, we call A a unital C*-algebra. It is known that not
all C*-algebras are unital. However, we can embed them as C*-subalgebras in another

unital C*-algebras which are called the unitizations of C*-algebras. We denote by Ã the
unitization of A.

We say that a ∈ A is invertible if there is b ∈ A such that ab = I = ba. We denote by
Inv(A) the set of all invertible elements of A. The spectrum of a is the set

σ(a) = σA(a) = {λ ∈ C : λI − a /∈ Inv(A)}.

If A is nonunital, we define σA(a) = σÃ(a). Let Ah = {aA : a = a∗}, the set of all
hermitian elements of A. An element a ∈ Ah with σ(a) ⊆ [0,+∞) is called positive
and the set of all positive elements of A is denoted by A+. Now Ah becomes a partially
ordered set by defining a ≤ b to mean b − a ∈ A+. It is obvious that 0A ≤ a precisely
for a ∈ A+ where 0A is the zero in A. Thus, we may write 0A ≤ a to indicate that a is
positive.

Proposition 2.1. Let A be a C*-algebra. Then for each x ∈ A there is a unique pair
of hermitian elements a, b ∈ A such that x = a + bi. More precisely, a = 1

2 (x + x∗) and

b = 1
2i (x− x

∗).

Theorem 2.2. Let a be a positive element of a C*-algebra A. Then there is a unique
b ∈ A+ such that b2 = a.

By the previous theorem we can define the square root of the positive element a to
be the element b, we denote it by a1/2. A brief review of some necessary properties for
positive elements of a C*-algebra is provided below, see more details in [11].

Proposition 2.3. The sum of two positive elements in a C*-algebra are positive.

Theorem 2.4. Let A be a C*-algebra. The the following properties are satisfied.

(1) Suppose that A is unital and a ∈ A is hermitian. If ‖a − αI‖A ≤ α for some
α ∈ R, then a is positive. In the reverse direction, for every α ∈ R, if ‖a‖A ≤ α
and a is positive, then ‖a− αI‖A ≤ α.

(2) For every a, b, c ∈ Ah, a ≤ b implies a+ c ≤ b+ c.
(3) For every real numbers α, β ≥ 0 and every a, b ∈ A+, αa+ βb ∈ A+.
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(4) A+ = {a∗a : a ∈ A}.
(5) If a, b ∈ Ah and c ∈ A, then a ≤ b implies c∗ac ≤ c∗bc.
(6) If 0A ≤ a ≤ b, then ‖a‖A ≤ ‖b‖A.

Proposition 2.5. Let γ = α+ βi ∈ C and a ∈ A+. Then ((α2 + β2)a)1/2 = |γ|a1/2.

Proof. It is obvious that |γ|a1/2 is positive. Consider

(|γ|a1/2)2 = |γ|2(a1/2)2 = (α2 + β2)a.

By Theorem 2.2 , we have ((α2 + β2)a)1/2 = |γ|a1/2.

Theorem 2.6. Let a, b ∈ A+. Then a ≤ b implies a1/2 ≤ b1/2.

Proposition 2.7. A+ is closed in a C*-algebra A.

Proof. Let {xn} be a sequence in A+ converging to x ∈ A. We first examine for the case
that A is unital. Since Ah is closed in A and A+ ⊆ Ah, we have x ∈ Ah. Since {xn}
is convergent, it is certainly bounded. Then there is a positive real number α such that
‖xn‖A ≤ α for every n ∈ N. We know that xn is positive for every n ∈ N. Thus, Theorem
2.4 implies that ‖xn − αI‖A ≤ α for every n ∈ N. Consider

‖x− αI‖A ≤ ‖xn − x‖A + ‖xn − αI‖A ≤ ‖xn − x‖A + α.

This implies that ‖x − αI‖A ≤ α. Since x is hermitian, again by Theorem 2.4 we have
x ∈ A+. Therefore, A+ is closed in A.

In case of non-unital C*-algebra, we work on the unitization Ã. Now {(xn, 0)} is

a sequence in Ã+ converging to (x, 0) ∈ Ã. Now we apply the first case and obtain

(x, 0) ∈ Ã+, so x ∈ A+. Therefore A+ is closed in A.

Next, we provide the definitions of a C*-algebra-valued metric space, convergent se-
quences and Cauchy sequences in the space which are our main study.

Definition 2.8. Let X be a nonempty set and d : X ×X → A be a function satisfying
the following properties:

(C1) d(x, y) ≥ 0A,
(C2) d(x, y) = 0A if and only if x = y,
(C3) d(x, y) = d(y, x),
(C4) d(x, y) ≤ d(x, z) + d(z, y),

for every x, y, z ∈ X. We call the function d a C*-algebra-valued metric and call the
triple (X,A, d) a C*-algebra-valued metric space.

The C*-algebra A in the above definition need not be unital, so our C*-algebra-valued
metric space is a generalization of that in [2]. We know that every C*-algebra A can be

embedded in Ã. Thus we can consider a C*-algebra-valued metric space (X,A, d) as a

C*-algebra-valued metric space (X, Ã, d) and work on Ã if necessary.
The following definitions provides the conditions of convergent and Cauchy sequences

in a C*-algebra-valued metric space which are defined in [2, Definition 2.2]. We change
some inequality in the definitions to correspond them with other familiar definitions that
we use frequently.
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Definition 2.9. Let (X,A, d) be a C*-algebra-valued metric space. A sequence {xn} in
X is said to converge to an element x ∈ X (with respect to A) if and only if for every ε > 0
there is a positive integer N such that for every integer n ≥ N we have ‖d(xn, x)‖A < ε.
In this case we write lim

n→∞
xn = x, and say that the sequence {xn} is convergent.

A sequence {xn} in X is said to be Cauchy (with respect to A) if and only if for
every ε > 0 there is a positive integer N such that for every integer n,m ≥ N we have
‖d(xn, xm)‖A < ε.

We say that a C∗-algebra-valued metric space (X,A, d) is complete if every Cauchy
sequence is convergent.

Next, we discuss cone metric spaces which closely related to C∗-algebra-valued metric
spaces. We start with a cone of a real Banach space which was introduced in [1]. The
definition is different from [12] which allows a cone to be trivial.

Definition 2.10. Let (E, ‖ · ‖E) be a real Banach space. A nonempty closed subset P of
E is called a cone if and only if it satisfies the following properties:

(P1) P 6= {0},
(P2) For every real numbers α, β ≥ 0 and every a, b ∈ P , αa+ βb ∈ P ,
(P3) If x ∈ P and −x ∈ P , then x = 0.

Now we can define a partial order ≤ on E with respect to a cone P by x ≤ y to mean
y − x ∈ P . We write x < y to indicate that x ≤ y and x 6= y, and write x � y if
y − x ∈ Int(P ).

A cone P is said to be normal if and only if there exists a positive real number α such
that for every x, y ∈ E, 0 ≤ x ≤ y implies ‖x‖E ≤ α‖y‖E. The following proposition is a
consequence of Theorem 2.4. A+ is a cone in the sense of the preceding definition.

Proposition 2.11. A+ is a normal cone of a unital C*-algebra A.

Proof. We show that A+ satisfies all conditions in Definition 2.10. We see that A+ 6= {0}
since I ∈ A+. The condition P2 is a property of A+ and the condition P3 is obtained by
considering the spectrums of elements of A directly. Since A+ is closed by Proposition
2.7, A+ is a cone of A. Normality is obvious by the sixth item of Theorem 2.4.

Definition 2.12. Let X be a nonempty set and d : X ×X → E be a function satisfying
the following properties:

(M1) d(x, y) ≥ 0E,
(M2) d(x, y) = 0E if and only if x = y,
(M3) d(x, y) = d(y, x),
(M4) d(x, y) ≤ d(x, z) + d(z, y),

for every x, y, z ∈ X. We call the function d a cone metric and call the pair (X, d) a cone
metric space.

Consider a unital C*-algebra A. If the scalar filed is restricted to the set of real num-
bers, A becomes a real Banach space. Thus, a C*-algebra-valued metric space becomes
a cone metric space.

Definition 2.13. Let (X, d) be a cone metric space. A sequence {xn} in X is said to
converge to x ∈ X (with respect to E) if and only if for every c ∈ E with c� 0 there is a
positive integer N such that for every integer n ≥ N we have d(xn, x) � c. In this case
we write lim

n→∞
xn = x, and say that the sequence {xn} is convergent.
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A sequence {xn} in X is said to be Cauchy (with respect to E) if and only if for every
c ∈ E with c � 0 there is a positive integer N such that for every integer n,m ≥ N we
have d(xn, xm)� c.

We say that a cone metric space (X, d) is complete if every Cauchy sequence is con-
vergent.

Lemma 2.14. Let (X, d) be a cone metric space together with a normal cone. A sequence
{xn} converges to x ∈ X if and only if lim

n→∞
d(xn, x) = 0. A sequence {xn} is Cauchy if

and only if lim
n,m→∞

d(xn, xm) = 0.

Lemma 2.15. Let (X, d) be a cone metric space together with a normal cone and x, y ∈
X. Assume that sequences {xn} and {yn} converge to x and y, respectively. Then
lim
n→∞

d(xn, yn) = d(x, y).

Definition 2.16. Let X be a vector space over the real field and ‖ · ‖X : X → E be a
function. A pair (X, ‖ · ‖X) is called a cone normed space if ‖ · ‖X satisfies the following
properties:

(1) ‖x‖X = 0E if and only if x = 0X ,
(2) ‖αx‖X = |α|‖x‖X ,
(3) ‖x+ y‖X ≤ ‖x‖X + ‖y‖X ,

for every x, y ∈ X and every scalar α.

It is clear that each cone normed space is a cone metric space with the cone metric
given by d(x, y) = ‖x−y‖X . Complete cone normed spaces are called cone Banach spaces.

Theorem 2.17. Let (X, d) be a cone metric space over a normal cone. Then there is
a complete cone metric space (Xc, dc) which has a dense subspace W isometric with X.
The space Xc is unique except for isometries.

Theorem 2.18. Let (X, ‖ · ‖) be a cone normed space over a normal cone. Then there
is a cone Banach space (Xc, ‖ · ‖c) which has a dense subspace W isometric with X. The
space Xc is unique except for isometries.

The two results above are completion theorems obtained in [10]. We apply the them
to obtain our results. The isometry mentioned in that research is a mapping T : X → Y
between cone metric spaces preserving distances, that is,

dX(x, y) = dY (Tx, Ty),

for every x, y ∈ X, where dX and dY are cone metrics onX and Y , respectively. Properties
of the mapping T are different from those of the ordinary version only the values of dX
and dY which are not real numbers. For the second theorem the author applied the first
one to obtain a bijective isometry from a cone normed space onto a dense metric subspace
of the cone metric completion. By the setting that provided algebraic operations and a
norm for the metric completion, the isometry was actually a linear operator. Thus it is an
isomorphism between cone normed spaces, a vector space isomorphism which preserves
cone norms. Since isomorphisms of cone normed spaces are always isometry, we have
another version of the completion theorem for normed spaces.

Theorem 2.19. Let (X, ‖ · ‖) be a cone normed space over a normal cone. Then there is
a cone Banach space (Xc, ‖ · ‖c) which has a dense subspace W isomorphic with X. The
space Xc is unique except for isomorphisms.
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Concepts of isometries of C*-algebra-values metric spaces and isomorphisms of C*-
algebra-values normed spaces will be provided in the next section with more general than
those of the cone version.

3. Completion of C*-algebra-valued metric and normed spaces

In this section we verify that a C*-algebra-valued metric space can be embedded in a
complete C*-algebra-valued metric space as a dense subspace. The theorem in a version
of a C*-algebra-valued normed space is also provided. We apply the fact that the C*-
algebra-valued metric (resp. normed) spaces are cone metric (resp. normed) spaces to
extend the completion results from [10]. To work with a cone metric space, we need to
assume that the interior of a cone is not empty. However, this property does not generally
occur for a C*-algebra as we show in the series of examples below.

Example 3.1. Let a C*-algebra A be a complex plane C. Then A+ = [0,∞), so Int(A+)
is empty in C. Observe that Int(A+) is not empty in R, the set of hermitian elements of
C.

Example 3.2. In this example we consider A as a C*-algebra of all bounded complex
sequences `∞ with operations defined as follows:

(ξn) + (ηn) = (ξn + ηn),

(ξn)(ηn) = (ξnηn),

λ(ξn) = (λξn),

(ξn)∗ = (ξ̄n),

‖(ξn)‖A = sup
n∈N
|ξn|,

for every (ξn), (ηn) ∈ `∞ and every λ ∈ C. We have

`∞h =
{
a ∈ `∞ : a∗ = a

}
=
{

(ξn) ∈ `∞ : ξn ∈ R for all n ∈ N
}

and

`∞+ =
{
a ∈ `∞h : σ(a) ⊆ R+

}
=
{

(ξn) ∈ `∞ : ξn ∈ R+ for all n ∈ N
}
.

To show that Int(`∞+ ) = ∅, we let a = (ξn) ∈ `∞+ and ε > 0. Then choose b = (ξ1 −
i ε2 , ξ2, ξ3, . . .). Clearly, b is in `∞ \ `∞+ such that ‖a − b‖A = ε

2 < ε. This implies that
b ∈ B(a, ε), the open ball in `∞ of radius ε centered at a. Since ε is arbitrary, the element
a is not an interior point of `∞+ . Therefore Int(`∞+ ) = ∅.
Example 3.3 (A C*-algebra-valued metric space with the empty interior of A+).

In this example we replace X and A by C and C2, respectively. By the same operations
used in the previous example, the space C2 can be considered as a C*-subalgebra of `∞

with Int(C2
+) = ∅. Let d : C× C→ C2 be a function defined by

d(a, b) = (|a− b|, α|a− b|),
for every a, b ∈ C and α is a fixed positive real number. Therefore, (C,C2, d) is a C*-
algebra-valued metric space.

Although the situation in the previous example can occur, the assumption of the
nonempty interior of A+ is not necessary. There exists a suitable real Banach subspace

of Ã containing Ã+ with a nonempty interior under the topology on the Banach subspace

restricted from Ã, and so, we will work on the subspace instead.
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Proposition 3.4. Ah is a real Banach subspace of a C*-algebra A.

Proof. We know that Ah ⊆ A, 0A ∈ Ah and (αa + b)∗ = αa + b for all α ∈ R and all
a, b ∈ Ah. Then Ah is a real normed space. Let {an} be a sequence in Ah converging to
a ∈ A. Since ‖an − a‖A = ‖(an − a)∗‖A = ‖a∗n − a∗‖A = ‖an − a∗‖A, {an} converges to
a∗. By the uniqueness of limits of a convergent sequence, we have a = a∗, i.e. a ∈ Ah.
Therefore, Ah is closed in A, and so Ah is a real Banach subspace of A.

Proposition 3.5. If A is a unital C*-algebra, then IntAh
(A+) 6= ∅.

Proof. Let I be a unit of A and B(I, 1) = {a ∈ Ah : ‖a − I‖A < 1}. Then Theorem 2.4
implies that B(I, 1) ⊆ A+. Hence, I ∈ IntAh

(A+), so IntAh
(A+) 6= ∅.

Corollary 3.6. If A is a unital C*-algebra and A = Ah, then Int(A+) 6= ∅.

Corollary 3.7. IntÃh
(Ã+) 6= ∅.

In the previous section, we show that a unital C*-algebra A contains A+ as a normal
cone. Then so does Ah. Therefore a C∗-algebra-valued metric space (X,A, d) is a cone

metric space (X, Ãh, d) with a normal cone Ã+ such that IntÃh
(Ã+) 6= ∅. Finally, we

obtain Lemma 2.14 in a version of a C∗-algebra-valued metric space (X,A, d), equivalent
definitions of convergent and Cauchy sequences, stated in the following theorem.

Theorem 3.8. Let {xn} be a sequence in a C*-algebra-valued metric space (X,A, d).
Then the following statements are satisfied.

(1) {xn} converges to x ∈ X (in the sense of Definition 2.9) if and only if for every

c ∈ Ãh with c� 0 there is a positive integer N such that for every integer n ≥ N
we have d(xn, x)� c.

(2) {xn} is Cauchy (in the sense of Definition 2.9) if and only if for every c ∈ Ãh

with c� 0 there is a positive integer N such that for every integer n,m ≥ N we
have d(xn, xm)� c.

Proof. We prove only the case of convergence, the other can be proved similarly. Suppose
that {xn} converges to an element x of (X,A, d). Then {xn} converges to an element x

of (X, Ã, d), and so, converges in (X, Ãh, d). Then the forward implication is obtained
after applying Lemma 2.14. For the converse implication, we suppose that the condition
holds. Then Lemma 2.14 implies that lim

n→∞
‖d(xn, x)‖Ãh

= 0. Since d(xn, x) belongs to

A, we have lim
n→∞

‖d(xn, x)‖A = 0. Therefore, {xn} converges to an element x of (X,A, d).

Let X and Y are metric spaces. A function T : X → Y is an isometry if an only if

(dX(x, y)) = dY (T (x), T (y)),

for every x, y ∈ X. In this case, dX(x, y) 7→ dY (T (x), T (y)) is an identity mapping
which admits several properties including the preservation of the norm for R. In case of
C*-algebra-valued metric spaces, the dX(x, y) and dY (T (x), T (y)) may be in different C*
algebras which are not related to each other. Thus a function f : dX(X,X)→ dY (Y, Y ) is
needed and the norms’ preservation seems to be straightforward to add to the non-identity
function f . Additionally, algebraic operations of C*-algebra must be preserved, so f will
be assumed as a linear map from a real linear span of span(dX(X,X)) to span(dY (Y, Y )).
Then f is always injective, and f−1 is also an injective norm preserving linear operator.
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Observe that span(dX(X,X)) and span(dY (Y, Y )) are linear subspace of the real Banach
spaces of hermitian elements in C*-algebras.

Now assume that (X,A, dX) and (Y,B, dY ) are C*-algebra-valued metric spaces. Let
T : X → Y be a function. If there exists norm-preserving linear operator f from
span(dX(X,X)) to span(dY (Y, Y )) such that

f(dX(x, y)) = dY (T (x), T (y)),

for every x, y ∈ X, the function T is called an isometry from X to Y with respect to f .
The space X and Y are said to be isometric if there exists a bijective isometry (with
respect to f) from X to Y . We note that the phrase “with respect to f” may be omitted
if not confused.

Proposition 3.9. An isometry between C*-algebra-valued metric spaces is always injec-
tive.

Proof. Suppose that (X,A, dX) and (Y,B, dY ) are C*-algebra-valued metric spaces and
T is an isometry from X to Y with respect to f . Let x, y ∈ X such that T (x) = T (y).
Then f(dX(x, y)) = dY (T (x), T (y)) = 0A. Since f is norm-preserving, ‖dX(x, y)‖A =
‖f(dX(x, y))‖B = 0. Now we have dX(x, y) = 0A, and so x = y. Therefore, T is injective.

Let ∼ be a relation on a family of C*-algebra-valued metric spaces which indicates
that two C*-algebra-valued metric spaces are isometric. For more precisely, X ∼ Y if
and only if X is isometric with Y . The next proposition show that ∼ is an equivalence
relation.

Lemma 3.10. Let T be an isometry from (X,A, dX) to (Y,B, dY ) with respect to f . If
T is surjective, then f is also surjective, i.e., f(span(dX(X,X))) = span(dY (Y, Y )).

Proof. Let u, v ∈ T (X) and T be surjective, that is, T (X) = Y . Thus there are x, y ∈ X
such that T (x) = u and T (y) = v. Then

f(dX(x, y)) = dY (T (x), T (y)) = dY (u, v).

After applying linearity of f , we have f is surjective.

Proposition 3.11. The relation ∼ determined by isometries is an equivalence relation
on the family of all C*-algebra-valued metric spaces.

Proof. Let (X,A, dX), (Y,B, dY ) and (Z,C, dZ) are C*-algebra-valued metric spaces. We
see that the identity function is a bijective isometry on X. Then X ∼ X, so ∼ is reflexive.
Next suppose that X ∼ Y . Then there is a bijective isometry T form X to Y with respect
to a norm-preserving linear operator f . By the previous lemma, f becomes a bijective
norm-preserving linear operator, so f−1 : span(dY (Y, Y )) → span(dX(X,X)) is also a
bijective norm-preserving linear operator such that

f−1(dY (x, y)) = dX(T−1(x), T−1(y)),

for every x, y ∈ Y . Thus T−1 is bijective isometry form Y to X with respect to f−1,
so Y ∼ X. This verifies that ∼ is symmetric. To investigate the transitive property we
additionally assume that Y ∼ Z. Thus there exists a bijective isometry S from Y to
Z with respect to g. Then S ◦ T : X → Z is bijective, and g ◦ f : span(dX(X,X)) →
span(dZ(Z,Z)) is a norm-preserving linear operator. Hence S ◦ T is a bijective isometry
form X to Z with respect to a norm-preserving function g ◦ f . Thus X ∼ Z, and so ∼
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is transitive. Therefore ∼ is an equivalence relation on the class of all C*-algebra-valued
metric spaces.

Traditionally, denseness of a subset in a topological space is determined using neighbor-
hoods or open balls in the space. It is equivalent to the definition described by sequences.
In case of a C*-algebra-valued metric space, we provide a definition using open balls.
Also an equivalent definition using sequences will be assigned.

Definition 3.12. Let (X,A, d) be a C*-algebra-valued metric space. For any ε > 0, we
define

B(x, ε) = {y ∈ X : ‖d(x, y)‖A < ε},
Let M be a subset of X, the set of all limit points or closure of M is determined by

Cl(M) = {x ∈ X : B(x, ε) ∩M 6= ∅ for every ε > 0}.
If Cl(M) = X, we say that M is dense in X.

Because of Theorem 3.8, an equivalent definition of closure of the set M is obtained,
that is,

Cl(M) = {x ∈ X : B1(x, c) ∩M 6= ∅ for every c� 0},
where B1(x, c) = {y ∈ X : d(x, y) < c} with c ∈ A such that c� 0.

Theorem 3.13. The subset M of a C*-algebra-valued metric space (X,A, d) is dense in
X if and only if for every x ∈ X there is a sequence {xn} in M converging to x.

Proof. Assume that M is dense X and x ∈ X. Then there exits xn ∈ B(x, 1
n )∩M 6= ∅ for

every n ∈ N. Thus we can form a sequence {xn} of elements of M . Let ε > 0. There is
a positive integer N such that 1

N < ε. Then for every n ≥ N , xn ∈ B(x, ε). This means
that {x} converges to x.

For the converse implication we assume the condition holds. We show that Cl(M) = X.
Let x ∈ X. Then there is a sequence {xn} in M converging to x. For a given positive
real number ε, there is an integer N such that ‖d(xn, x)‖A < ε for every n ≥ N . Thus
xN ∈ B(x, ε). This shows that B(x, ε) ∩M 6= ∅ for every ε > 0, so x ∈ Cl(M). Hence
Cl(M) = X, so M is dense in X.

We have shown that any C*-algebra-valued metric space (X,A, d) can be considered

as the cone metric space (X, Ãh, d) with the normal cone Ã+ such that IntÃh
(Ã+) 6= ∅.

Thus, we can work on the cone metric space instead, and obtain the metric completion
theorem for (X,Ah, d) after applying Theorem 2.17. Since the values of d belong to A,
the C*-algebra-valued metric space (X,A, d) is actuary contained in the acquired space
as a dense subspace. We conclude this result in the following theorem.

Theorem 3.14 (Completion of C*-algebra-valued metric spaces).
For any C*-algebra-valued metric space (X,A, d), there exists a complete C*-algebra-
valued metric space (Xc,A, dc) which contains a dense subspace W isometric with X.
The space Xc is unique except for isometries.

Proof. Consider (X,A, d) is a cone metric space (X, Ãh, d) with the normal cone Ã+ such

that IntÃh
(Ã+) 6= ∅. Then Theorem 2.17 implies that there is a complete cone metric

space (Xc, Ãh, dc) which contains a dense subspace W isometric (in the sense of cone

metric spaces) with X. We see that (Xc, Ã, dc) is also a C*-algebra-valued metric space.
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We will verify that dc is an A-valued metric for Xc, in fact, after taking the composition

with the inverse of the mapping a 7→ (a, 0) from A to Ã.
Let x, y ∈ Xc. Since W is dense in Xc, there exist sequences {xn} and {yn} in W

converging to x and y, respectively. By Lemma 2.15, we have

dc(x, y) = lim
n→∞

dc(xn, yn). (3.1)

Let T be a bijective isometry of a cone metric space from W to (X, Ãh, d). We see that
the values of d is initially in A, so

dc(xn, yn) = d(T (xn), T (yn)) ∈ A,

for every n ∈ N. Since A is closed in Ã, we have

dc(x, y) = lim
n→∞

dc(xn, yn) ∈ A.

This implies that dc is an A-valued metric for Xc, and so W and X are isometric with
respect to the identity function I : span(dc(W,W ))→ span(d(X,X)).

Next we prove the uniqueness of Xc. Let (Xb,B, db) be another C*-algebra-valued
metric space containing a dense subspace Wb which is isometric to X. Then there is a
bijective isometry Tb from X to Wb with respect to f . Thus, Tb ◦ T is also a bijective
isometry from W to Wb with respect to f ◦ I = f . If we can extend the operator Tb ◦T to
be a bijective isometry from Xc to Xb with respect to the norm-preserving linear extension
f̃ of f , then Xc and Xb will be isometric with respect to f̃ . To complete this proof we
will do the necessary arrangements accordingly:

(1) Prove that f̃ exists.

(2) Extended Tb ◦ T to be an isometry from Xc to Xb with respect to f̃ .
(3) Verify that the extension of Tb ◦ T is bijective.

Let us start with the item 1. We can see that f is a norm-preserving linear opera-
tor from span(dc(W,W )) to span(db(Xb, Xb)). Suppose that a, b ∈ dc(Xc, Xc) and α, β
be scalars. Since W is dense in Xc, after applying Lemma 2.15 we obtain that there
are sequences {an} and {bn} in dc(W,W ) converging to a and b respectively. Next ap-
ply continuity of the addition and the scalar multiplication with respect to the norm of
dc(Xc, Xc). We have

lim
n→∞

(αan + βbn) = αa+ βb.

This shows that span(dc(W,W )) is dense in span(dc(Xc, Xc)). For the completeness
of span(db(Xb, Xb)), we can show that it is closed in Bh. The proof can be done by the
similar arguments applied in the previous one. Now applying the bounded linear extension
theorem to obtain the bounded linear extension f̃ : span(dc(Xc, Xc))→ span(db(Xb, Xb))

of f . Next we show that f̃ is norm-preserving. Assume that a ∈ span(dc(Xc, Xc)). Since
span(dc(W,W )) is dense in span(dc(Xc, Xc)), there is a sequence {an} in span(dc(W,W ))
converging to a. By Lemma 2.15 together with the continuity of f and the norms of A
and B, we have

‖f̃(a)‖B = lim
n→∞

‖f(an)‖B = lim
n→∞

‖an‖A = ‖a‖A.

Now f̃ is a norm-preserving linear operator.
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Next we apply the same setting of (3.1) and additional assume that x′n = Tb(T (xn)).
Then x′n ∈Wb and

‖dc(xm, xn)‖A = ‖f(dc(xm, xn))‖B = ‖db(x′m, x′n)‖B. (3.2)

Since xn → x, {x′n} is a Cauchy sequence in Wb. Hence there are x′ ∈ Xb such that
x′n → x′. Thus we determine

(Tb ◦ T )(x) = x′. (3.3)

Assume that {zn} be another sequence in W converging to x. Let z′n = Tb(T (zn)). By
the same method above we can show that the sequence {z′n} converges in Xb. Suppose
that z′n → z′. For every n ∈ N, we have

‖db(x′, z′)‖B ≤ ‖db(x′, x′n)‖B + ‖db(x′n, z′n)‖B + ‖db(z′n, z′)‖B
= ‖db(x′, x′n)‖B + ‖db(Tb(T (xn)), Tb(T (zn)))‖B + ‖db(z′n, z′)‖B
= ‖db(x′, x′n)‖B + ‖f(dc(xn, zn))‖B + ‖db(z′n, z′)‖B
= ‖db(x′, x′n)‖B + ‖dc(xn, zn)‖A + ‖db(z′n, z′)‖B
≤ ‖db(x′, x′n)‖B + ‖dc(xn, x)‖A + ‖dc(x, zn)‖A + ‖db(z′n, z′)‖B.

This implies that x′ = z′. Hence the extension of Tb ◦ T from Xc to Xb is a well-defined.
Now we additionally assume that y ∈ Xc and {yn} is a sequence W converging to y. By
Lemma 2.15 together with (3.3), we obtain

f̃(dc(x, y)) = lim
n→∞

f(dc(xn, yn))

= lim
n→∞

db((Tb ◦ T )(xn), (Tb ◦ T )(yn))

= db((Tb ◦ T )(x), (Tb ◦ T )(y)).

Tb ◦ T is now an isometry from Xc to Xb with respect to f̃ .
Finally, we verify that the extension of Tb ◦ T is bijective. Let x′ ∈ Xb. Since Wb is

dense in Xb, there is a sequence {x′n} in Wb converging to x′. Since Tb ◦ T : W → Wb is
surjective, there are xn ∈ W such that Tb(T (xn)) = x′n for all n ∈ N. By applying the
equation (3.2), {xn} is Cauchy in Xc, so it converges to an element x in Xc. Thus

‖db(Tb(T (x)), x′)‖B ≤ ‖db(Tb(T (x)), Tb(T (xn)))‖B + ‖db(x′n, x′)‖B
= ‖dc(x, xn)‖A + ‖db(x′n, x′)‖B.

This implies that Tb(T (x)) = x′. Hence Tb◦T is surjective, and so, bijective after applying
Proposition 3.9. Consequently, Tb ◦ T is a bijective isometry from Xc to Xb with respect
to f̃ . Therefore Xc and Xb are isometric.

Next, we focus on a C*-algebra-valued normed space. Let X be a vector space over
the real or complex fields and A be a C*-algebra. A triple (X,A, ‖ · ‖X) is called a C*-
algebra-valued normed space if ‖ · ‖X is a function from X to A+ satisfying the following
properties:

(1) ‖x‖X = 0A if and only if x = 0X ,
(2) ‖αx‖X = |α|‖x‖X ,
(3) ‖x+ y‖X ≤ ‖x‖X + ‖y‖X ,
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for every x, y ∈ X and every scalar α. Notice that 0A and 0X are zeros in A and X
respectively.

By the definition of a C*-algebra-valued norm, we can investigate that the function
d : X ×X → A determined by d(x, y) = ‖x− y‖X is a C*-algebra-valued metric. We call
it the C*-algebra-valued metric induced by the norm ‖ · ‖X We conclude this fact in the
proposition below

Proposition 3.15. A C*-algebra-valued normed space (X,A, ‖ · ‖X) is a C*-algebra-
valued metric space with a metric d : X ×X → A given by d(x, y) = ‖x− y‖X .

A complete C*-algebra-valued normed space under the metric induced by the C*-
algebra-valued norm is called a C*-algebra-valued Banach Space. In the next example,
we show that every commutative C*-algebra is a C*-algebra-valued normed space.

Lemma 3.16. Let A be commutative C*-algebra. Then Ah is a closed ∗-subalgebra of A
over the real field. Moreover, if a, b ∈ A+, then ab ∈ A+ and (ab)1/2 = a1/2b1/2.

Proof. Since A is commutative, (ab)∗ = a∗b∗ = ab for every a, b ∈ Ah. Combine with
Proposition 3.4, Ah is a real ∗-subalgebra of A.

Next, suppose that a, b ∈ A+ Theorem 2.4 implies that a = c∗c for some c ∈ A. Thus,
we have 0A = c∗0Ac ≤ c∗bc = c∗cb = ab, so ab is positive. By the same way, a1/2b1/2 is
also positive. Since (a1/2b1/2)2 = ab, Theorem 2.2 implies that a1/2b1/2 = (ab)1/2.

Example 3.17. Let A be a commutative C*-algebra and X = A. By using Proposition
2.1, every element x ∈ A can be uniquely decomposed as x = a + bi for some a, b ∈ Ah.
Then we define ‖ · ‖0 : X → A+ by

‖x‖0 = (a2 + b2)1/2.

We will show that (X, ‖ · ‖0,A) is a C*-algebra-valued normed space.
Since a and b are hermitian, Theorem 2.4 implies that a2 and b2 are positive. Thus,

(a2 + b2)1/2 is also positive after applying Proposition 2.3 and Theorem 2.2, respectively.
We now obtain that ‖·‖0 is an A+ valued function. Since x = 0X if and only if a = b = 0X ,
we obtain that ‖x‖0 = 0A if and only if x = 0X . Next, suppose that γ = α + βi where
α, β ∈ R. Hence, γx = (α+ βi)(a+ bi) = (αa− βb) + (βa+ αb)i, so

‖γx‖20 = (αa− βb)2 + (βa+ αb)2

= α2a2 + β2b2 + β2a2 + α2b2

= (α2 + β2)(a2 + b2).

Theorem 2.2 and Proposition 2.5 imply that ‖γx‖0 = ((α2 + β2)(a2 + b2))1/2 = |α|‖x‖0.
Finally, we prove the triangle inequality. We additionally assume that y ∈ X is uniquely

represented by c+ di where c, d ∈ Ah. Consider

‖x+ y‖20 = ‖(a+ c) + (b+ d)i‖20
= (a+ c)2 + (b+ d)2

= (a2 + 2ac+ c2) + (b2 + 2bd+ b2)

= (a2 + b2 + c2 + d2) + 2(ac+ bd),
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and

(‖x‖0 + ‖y‖0)2 = ‖x‖20 + 2‖x‖0‖y‖0 + ‖y‖20
= (a2 + b2) + 2(a2 + b2)1/2(c2 + d2)1/2 + (c2 + d2)

= (a2 + b2 + c2 + d2) + 2(a2 + b2)1/2(c2 + d2)1/2.

Hence after verifying that ac+ bd ≤ (a2 + b2)1/2(c2 + d2)1/2 and then apply Theorem 2.6,
we will obtain the inequality ‖x+ y‖20 ≤ (‖x‖0 + ‖y‖0)2.

We may see that 0A ≤ (ad − bc)2 = (ad)2 − 2abcd + (bc)2, so 2abcd ≤ (ad)2 + (bc)2.
Therefore,

(ac+ bd)2 = (ac)2 + 2abcd+ (bd)2

≤ (ac)2 + (ad)2 + (bc)2 + (bd)2

= (a2 + b2)(c2 + d2).

Theorem 2.6 implies ((ac + bd)2)1/2 ≤ ((a2 + b2)(c2 + d2))1/2. Then apply Theorem 2.2
and Lemma 3.16 to the left and right sides of the inequality, respectively. Thus we obtain
ac + bd ≤ (a2 + b2)1/2(c2 + d2)1/2. Now, the triangle inequality of ‖ · ‖0 is investigated.
Consequently, ‖ · ‖0 is an A-valued norm for A.

Remark 3.18. ‖a‖0 = a for every positive element a of a C*-algebra A.

Consider an additive operator between traditional normed spaces, it is an isometry
if and only if it is norm-preserving. Thus, an isomorphism between normed spaces is
always isometry. The similar arguments will be applied to define an isomorphism of C*-
algebra-valued normed spaces and the phrase “with respect to f” is also applied to the
terminologies determined below. However, we may leave out it for convenience if there is
not any confusion.

Assume that (X,A, ‖ · ‖X) and (Y,B, ‖ · ‖Y ) be C*-algebra-valued normed spaces
and T : X → Y be an operator. If there exists a norm-preserving linear operator
f : span(‖X‖X)→ span(‖Y ‖Y ) such that

f(‖x‖X) = ‖T (x)‖Y ,
for every x ∈ X, the operator T is called a C*-valued-norm-preserving operator from X to
Y with respect to f . Additionally, a bijective C*-valued-norm-preserving linear operator
with respect to f is called an isomorphism with respect to f . We say that the C*-valued
spaces X and Y are isomorphic if there exists an isomorphism (with respect to f) from
X to Y .

We know that any incomplete normed space can be embedded in a Banach space. In
[10], the author defined a cone normed space and verified the existence of its completion.
The existence of the C*-algebra-valued Banach completion will be verified in the next
theorem.

Theorem 3.19 (Completion of C*-algebra-valued normed spaces).
For any C*-algebra-valued normed space (X,A, ‖ · ‖), there exists a C*-algebra-valued
Banach space (Xc,A, ‖ · ‖c) which contains a dense subspace W isomorphic with X. The
space Xc is unique except for isomorphism.

Proof. The process of the proof follows from the completion theorem for the metric ver-
sion. Similar to the case of metric, we can consider (X,A, ‖ · ‖) as a cone normed space
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(X, Ãh, ‖ · ‖). Then apply Theorem 2.19 to obtain a cone Banach space (Xc, Ãh, ‖ · ‖c)
containing a dense subspace W which is isomorphic with X. Let x ∈ Xc. Then there is a

sequence {xn} in W converging to x. Now consider Xc as an Ã-valued cone metric space
with the metric d(x, y) = ‖x− y‖c. By Lemma 2.15, we have

‖x‖c = d(x, 0X) = lim
n→∞

d(xn, 0x) = lim
n→∞

‖xn‖c. (3.4)

Let T be an isomorphism (a norm-preserving linear operator) of a cone normed space

from W to (X, Ãh, ‖ · ‖). Since the values of ‖ · ‖ is initiated in a C*-algebra A, we have

‖x‖c = lim
n→∞

‖xn‖c = lim
n→∞

‖T (xn)‖ ∈ A.

Now ‖ · ‖c is an A-valued norm for Xc. In addition, W and X are isomorphic to each
other with respect to the identity function I : span(‖W‖c)→ span(‖X‖).

For the uniqueness of Xc, we suppose that (Xb,B, ‖ · ‖b) is an other C*-algebra-valued
normed space containing a dense subspace Wb and Tb : X → Wb are isomorphism with
respect to f . We can show that Tb ◦ T is an isomorphism from W to Wb with respect to
f ◦I = f . To investigate that Xc and Xb are isometric, we need to complete the following
tasks to extend the operator Tb ◦ T to be an isomorphism from Xc to Xb with respect to
the norm-preserving linear extension f̃ of f :

(1) Prove that f̃ exists.

(2) Extended Tb ◦ T to be an isometry from Xc to Xb with respect to f̃ .
(3) Verify that the extension of Tb ◦ T is bijective.
(4) Verify that the extension of Tb ◦ T is a linear operator.

For the first three items, the similar methodology of the proof in Theorem 3.14 will be
applied to ‖·‖c and ‖·‖b. This implies that we can extend Tb◦T to be a bijective isometry

from Xc to Xb with respect to f̃ as follows. For every x ∈ Xc

f(‖x‖c) = ‖x′‖b, (Tb ◦ T )(x) = x′,

where x′ is the limit of the sequence {x′n} such that x′n = Tb(T (xn)) and {xn} is a
sequence in W converging to x. Let α and β be scalars, and x, y ∈ Xc. Then there are
sequences {xn} and {yn} in W converging to x and y, respectively. Since Tb ◦ T is linear
on W , we have

(Tb ◦ T )(αxn + βyn) = α(Tb ◦ T )(xn) + β(Tb ◦ T )(yn),

for every positive integer n. Since addition and scalar multiplication of a C*-algebra-
valued normed space are continuous with respect to the C*-algebra-valued norm. We
have

(Tb ◦ T )(αxn + βyn)→ (Tb ◦ T )(αx+ βy)

and

α(Tb ◦ T )(xn) + β(Tb ◦ T )(yn)→ α(Tb ◦ T )(x) + β(Tb ◦ T )(y).

By the uniqueness of limits,

(Tb ◦ T )(αx+ βy) = α(Tb ◦ T )(x) + β(Tb ◦ T )(y).

This means that Tb ◦ T is a linear operator from Xc to Xb. Now we obtain that Tb ◦ T is
an isomorphism from Xc to Xb, so Xc and Xb are isomorphic. The proof of the theorem
is now complete.
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4. Connection with Hilbert C*-modules

This section provides certain relationships between concepts of a C*-algebra-valued
metric space and an inner-product C*-module which is a generalization of an inner prod-
uct space. The concept of inner-product C*-module was first introduced in [13], the study
of I. Kaplansky in 1953, to develop the theory for commutative unital algebras. In the
1970s, the definition was extended to the case of noncommutative C*-algebra, see more
details in [14, 15]. Let A be a C*-algebra and X be a complex vector space which is a
right A-module with compatible scalar multiplication:

α(xa) = (αx)a = x(αa), (4.1)

for every α ∈ C, x ∈ X and a ∈ A. The triple (X,A, 〈·, ·〉) is called an inner product
A-module if the mapping 〈·, ·〉 : X ×X → A satisfies the following conditions:

(1) 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉,
(2) 〈x, ya〉 = 〈x, y〉a,
(3) 〈y, x〉 = 〈x, y〉∗,
(4) 〈x, x〉 ≥ 0A,
(5) if 〈x, x〉 = 0A, then x = 0X ,

for every α ∈ C, x, y ∈ X and a ∈ A. It is known that any inner product C*-module
(X,A, 〈·, ·〉) is a normed space with a scalar-valued norm ‖ · ‖m given by

‖x‖m = ‖〈x, x〉‖1/2A ,

for every x ∈ X where ‖ · ‖A is a norm on A. It is called a Hilbert C*-module if the
induced norm is complete.

The concept of completion is also extended to inner product C*-modules. It is men-
tioned in [16] that for any inner product C*-module X over a C*-algebra A, one can form
its completion Xc, a Hilbert A-module, using a similar way to the case of the scalar-valued
inner product space. That is, for given sequences {xn} and {yn} in X converging to x
and y in Xc, we define

〈x, y〉 := lim
n→∞

〈xn, yn〉.

It is an A-valued inner product on Xc constructed from that of X using the completeness
of A to confirm that the limit exists.

Next, we provide a connection between the concept of C*-algebra-valued metric com-
pletion and the completion of an inner product C*-module. We show that this two con-
cepts are identical if a C*-algebra-valued inner product can induce a C*-algebra-valued
norm. Similar to the case of a traditional inner product space, for any inner product
C*-module (X,A, 〈·, ·〉) we determine a function ‖ · ‖X : X → A by

‖x‖X = 〈x, x〉1/2. (4.2)

Can the A-valued function ‖ · ‖X be an A-valued norm on X? To answer the question
we consider A as a right module over itself, so it becomes an inner product A-module
together with an A-valued inner product defined by

〈x, y〉 = x∗y,

for every x, y ∈ A. In this case we have

‖x‖X = (x∗x)1/2,
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and the result given by R. Harte in [17] implies that ‖ · ‖X does not satisfy the triangle
inequality in certain cases. Therefore the A-valued function may not become an A-valued
norm in general. However, R. Jiang provide sufficient conditions in [18] to make the
triangle inequality hold, so ‖ · ‖X becomes an A-valued norm of X. The A-valued metric
completion concept for an inner product C*-module will be studied in this case.

Proposition 4.1. Let (X,A, 〈·, ·〉) be an inner product C*-module. If the function ‖ · ‖X
defined above satisfies the triangle inequality, then it is an A-valued norm on X.

Proof. The proof can be obtained directly from the definition of an A-valued norm and
an A-valued inner product.

If the inner product C*-module (X,A, 〈·, ·〉) is a C*-algebra-valued normed space, and
so a C*-algebra-valued metric space, we can consider whether the space is complete by
using a C*-algebra-valued metric.

Theorem 4.2. Assume that an inner product C*-module (X,A, 〈·, ·〉) is a C*-algebra-
valued norm space with an A-valued norm ‖ · ‖X induced by 〈·, ·〉. Then it is a Hilbert
C*-module if and only if it is a C*-algebra-valued Banach space.

Proof. Let x be any element of X and ‖ · ‖X be an A-valued norm on X induced by 〈·, ·〉.
Since ‖x‖2X = 〈x, x〉, we have

∥∥〈x, x〉∥∥A =
∥∥‖x‖2X∥∥A =

∥∥‖x‖X∥∥2A.
Thus,

‖x‖m =
∥∥〈x, x〉∥∥1/2A =

∥∥‖x‖X∥∥A.
Then by Definition 2.9 we obtain that the two concepts of convergence of any sequence
{xn} in X by ‖ · ‖X and ‖ · ‖m are equivalent. Therefore, X is a Hilbert C*-module if
and only if it is a C*-algebra-valued Banach space.

Now we consider the conditions which makes (X,A, 〈·, ·〉) to be an A-valued normed
space. For any C*-algebra A, we let A′′ be the enveloping Von Neumann algebra of A.
Proposition 2.3 in [18] concludes that A is commutative if and only if A′′ is commutative.
It is a useful fact which is applied to prove the triangle inequality for ‖ · ‖X defined by
(4.2). By the sake of Gelfand-Naimark Theorem, we can consider A as C*-subalgebra of

B(H) for some Hilbert space H. Then 〈X,X〉
′′

also lies in B(H) where 〈X,X〉 is a closed
two-side ideal of A generated by 〈X,X〉. In Lemma 3.5 of [18], the author provides an
important fact for a Hilbert A-module. Since the proof of the lemma does not require
the completeness of the Hilbert A-module, we can remove the condition and apply the
new version of the lemma to the reverse implication of Theorem 3.6 in [18]. Therefore
we have the sufficient conditions to make the C*-valued function ‖ · ‖X induced by 〈·, ·〉
satisfy the triangle inequality.

Proposition 4.3. Let (X,A, 〈·, ·〉) be an inner product C*-module. If the closed two-side

ideal 〈X,X〉 of A is commutative, then ‖ · ‖X satisfies the triangle inequality.

Corollary 4.4. Let (X,A, 〈·, ·〉) be an inner product C*-module with a commutative C*-
algebra A. Then ‖ · ‖X satisfies the triangle inequality.
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Theorem 4.5. Let (X,A, 〈·, ·〉) be an inner product C*-module. If the closed two-side

ideal 〈X,X〉 of A is commutative, then the completion of (X,A, 〈·, ·〉) is an A-valued
Banach completion of (X,A, ‖ · ‖X).

Proof. By Proposition 4.3, (X,A, 〈·, ·〉) become an A-valued norm space with the A-valued
norm ‖·‖X induced by 〈·, ·〉. Let (Xc,A, 〈·, ·〉c) be a completion of (X,A, 〈·, ·〉). Now apply

denseness of X in Xc together with joint continuity of multiplication on A, so 〈Xc, Xc〉c
is commutative. Then (Xc,A, 〈·, ·〉c) becomes an A-valued norm space with the A-valued
norm ‖ · ‖Xc induced by 〈·, ·〉c. By Theorem 4.2 (Xc,A, ‖ · ‖Xc) is actually an A-valued
Banach space. Suppose that x ∈ Xc and {xn} is a sequence in X converging to x by the
norm on X extended from ‖ · ‖m. Then

‖x‖Xc
= 〈x, x〉1/2c = lim

n→∞
〈xn, xn〉1/2 = lim

n→∞
‖xn‖X .

Certainly, the equality implies that the norm ‖ · ‖X is the restriction of ‖ · ‖Xc
on X.

Also the inequality implies the denseness of X in Xc under the norm ‖ · ‖Xc
. Therefore

(Xc,A, ‖ · ‖Xc
) is a A-valued Banach completion of (X,A, ‖ · ‖X).
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