Thai Journal of **Math**ematics Volume 20 Number 3 (2022) Pages 1109–1117

http://thaijmath.in.cmu.ac.th

Coincidence and Common Fixed Point Results in *G*-Metric Spaces using Generalized Cyclic Contraction

Sejal V. Puvar^{1,*} and Rajendra G. Vyas¹

¹ Department of Mathematics, Faculty of Science, the Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India e-mail : puvarsejal@gmail.com (S.V. Puvar); drrgvyas@yahoo.com (R.G. Vyas)

Abstract Here, we have established the generalized cyclic contractive condition in G-metric spaces which can't be reduced to the contractive condition in standard metric spaces. The coincidence and common fixed point results are obtained for the pair of (A, B)-weakly increasing mappings in G-metric spaces.

MSC: 47H10; 54H25 Keywords: G-metric spaces; cyclic maps; common fixed point

Submission date: 26.11.2021 / Acceptance date: 14.03.2022

1. INTRODUCTION

In 2006, Mustafa and Sims [1] introduced the notion of G-metric spaces. After that many researchers established fixed point and common fixed point results in G-metric spaces. Jleli and Samet [2], Samet et al. [3] have shown that G-metric space has a quasimetric type structure and then many results on such spaces are derived from quasi-metric spaces.

The notion of cyclic mappings was introduced by Kirk et al. [4] and proved fixed point results for cyclic mappings. Such results are generalized by Shatanawi and Postolache [5] by introducing the notion of (A, B)-weakly increasing maps.

Shatanawi and Abodayeh [6] introduced new contractive condition and proved fixed point and common fixed point results in G-metric spaces for which the techniques of Jleli and Samet [2], Samet et al. [3] can't be used to reduce the contractive condition to metric spaces.

In this paper, we have dropped the continuity condition and used $\psi \in \Psi$ instead of $\psi \in \Phi$ and generalized the contractive condition of Shatanawi and Abodayeh [6] for cyclic mappings and proved common fixed point result in *G*-metric spaces for the pair of (A, B)-weakly increasing mappings and some illustrative examples are given. Note that

^{*}Corresponding author.

the generalized cyclic contractive condition can't be reduced to contractive conditions in standard metric spaces.

2. Preliminaries

Notations:

- (1) Ψ is the family of all mappings $\psi : [0, \infty) \to [0, \infty)$ verifying: if $\{t_m\}_{m \in \mathbb{N}} \subset [0, \infty)$ and $\psi(t_m) \to 0$ then $t_m \to 0$.
- (ii) Φ is the family of all altering distance functions.

Definition 2.1. An altering distance function is a continuous, non-decreasing mapping $\phi : [0, \infty) \to [0, \infty)$ such that $\phi^{-1}(0) = 0$.

Remark 2.2. $\Phi \subset \Psi$.

Lemma 2.3 ([7]). Let $\phi \in \Phi, \psi \in \Psi$ and $t_n \subset [0, \infty)$ be a sequence such that $\phi(t_{n+1}) \leq \phi(t_n) - \psi(t_n)$, for all $n \in \mathbb{N}$, then $t_n \to 0$.

Definition 2.4 ([1]). Let X be a nonempty set. Let $G : X \times X \times X \to \mathbb{R}^+$ be a function satisfying the following properties:

- (G_1) G(x, y, z) = 0, if x = y = z,
- (G_2) G(x, x, y) > 0, for all $x, y \in X$ with $x \neq y$,
- (G₃) $G(x, x, y) \leq G(x, y, z)$; for all $x, y, z \in X$ with $z \neq y$,
- (G_4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \dots$ (symmetry in all three variables),
- (G_5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$; for all $x, y, z, a \in X$ (rectangle inequality).

The function G is called G-metric on X and the pair (X, G) is called a G-metric space.

Definition 2.5. A *G*-metric space (X, G) is said to be symmetric if G(x, y, y) = G(y, x, x); for all $x, y \in X$.

Lemma 2.6. If (X, G) is a G-metric space, then

 $G(x, y, y) \leq 2G(y, x, x), \text{ for all } x, y \in X.$

Definition 2.7. Let (X, G) be a *G*-metric space, let $x \in X$ be a point and let $\{x_n\} \subseteq X$ be a sequence. We say that:

(1) $\{x_n\}$ *G*-converges to x, and we write $\{x_n\} \to x$, if $\lim_{n,m\to\infty} G(x_n, x_m, x) = 0$, that is, for all $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ satisfying $G(x_n, x_m, x) \leq \varepsilon$ for all $n, m \geq n_0$. (In such a case, x is the *G*-limit of x_n).

(2) $\{x_n\}$ is *G*-cauchy if $\lim_{n,m,k\to\infty} G(x_n, x_m, x_k) = 0$, that is, for all $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ satisfying $G(x_n, x_m, x_k) \leq \varepsilon$ for all $n, m, k \geq n_0$.

(3) (X, G) is complete if every G-Cauchy sequence in X is G-convergent in X.

Proposition 2.8. Let (X,G) be a *G*-metric space, let $\{x_n\} \subseteq X$ be a sequence and let $x \in X$. Then the following are equivalent.

- (a) $\{x_n\}$ G-converges to x,
- (b) $\lim_{n \to \infty} G(x_n, x_n, x) = 0,$
- (c) $\lim_{n \to \infty} G(x_n, x, x) = 0.$

Proposition 2.9. Let (X,G) be a *G*-metric space, let $\{x_n\} \subseteq X$ be a sequence and let $x \in X$. Then the following are equivalent.

(a) $\{x_n\}$ is G-Cauchy, (b) $\lim_{n,m\to\infty} G(x_n, x_m, x_m) = 0.$

Definition 2.10. A sequence $\{x_n\}$ in a *G*-metric space (X, G) is asymptotically regular if $\lim_{n \to \infty} G(x_n, x_{n+1}, x_{n+1}) = 0$.

Lemma 2.11 ([8],Lemma 4.1.5). Let $\{x_n\}$ be an asymptotically regular sequence in a *G*-metric space (X, G) and suppose that $\{x_n\}$ is not Cauchy. Then there exists a positive real number $\varepsilon > 0$ and two subsequences $\{x_{n_k}\}$ and $\{x_{m_k}\}$ of $\{x_n\}$ such that, for all $k \in \mathbb{N}$,

$$k \le n_k < m_k < n_{k+1},$$

 $G(x_{n_k}, x_{n_k+1}, x_{m_k-1}) \le \varepsilon < G(x_{n_k}, x_{n_k+1}, x_{m_k})$

and also, for all given $p_1, p_2, p_3 \in \mathbb{Z}$,

$$\lim_{n \to \infty} G(x_{n_k+p_1}, x_{m_k+p_2}, x_{m_k+p_3}) = \varepsilon.$$

Definition 2.12. Let (X, G) be a *G*-metric space. We say that a mapping $T : X \to X$ is *G*-continuous at $x \in X$ if $\{Tx_m\} \to Tx$ for all sequence $\{x_m\} \subseteq X$ such that $\{x_m\} \to x$.

In 2013, Shatanawi and Postolache [5] introduced (A, B)-weakly increasing functions for pair of mappings.

Definition 2.13. Let (X, \preceq) be a partially ordered set and A, B be two closed subsets of X with $X = A \cup B$. Let $f, g : X \to X$ be two mappings. Then the pair (f, g) is said to be (A, B)-weakly increasing if $fx \preceq gfx$ for all $x \in A$ and $gx \preceq fgx$ for all $x \in B$.

Shatanawi and Abodayeh [6] introduced a new contractive condition by utilizing the notion of (A, B)- weakly increasing mappings and using auxiliary functions from Φ , proved the following common fixed point result in *G*-metric spaces.

Theorem 2.14. Let \leq be an ordered relation in a set X. Let (X,G) be a complete Gmetric space and $X = A \cup B$, where A and B are nonempty closed subsets of X. Let f, g be self mappings on X that satisfy the following conditions:

- (1) The pair (f,g) is (A,B)-weakly increasing.
- (2) $f(A) \subseteq B$ and $g(B) \subseteq A$.
- (3) There exist two functions $\phi, \psi \in \Phi$ such that

 $\phi(G(fx, gfx, gy)) \le \phi(G(x, fx, y)) - \psi(G(x, fx, y))$

holds for all comparative elements $x, y \in X$ with $x \in A$ and $y \in B$ and

 $\phi(G(gx, fgx, fy)) \le \phi(G((x, gx, y))) - \psi(G(x, gx, y))$

holds for all comparative elements $x, y \in X$ with $x \in B$ and $y \in A$. (4) f or g is continuous.

Then, f and g have a common fixed point in $A \cap B$.

3. Main results

Here, we have considered functions $\psi \in \Psi$ and generalized the contractivity condition of Theorem 2.14 and proved common fixed point theorems in *G*-metric spaces.

Theorem 3.1. Let \leq be an ordered relation in a set X. Let (X,G) be a complete Gmetric space and $X = A \cup B$, where A and B are nonempty closed subsets of X. Let f, g be self mappings on X that satisfy the following conditions:

- (1) The pair (f, g) is (A, B)-weakly increasing.
- (2) $f(A) \subseteq B$ and $g(B) \subseteq A$.
- (3) There exist two functions $\phi \in \Phi, \psi \in \Psi$ such that

$$\phi(G(fx, gfx, gy)) \le \phi(M(x, y)) - \psi(M(x, y)) \tag{3.1}$$

holds for all comparative elements $x, y \in X$ with $x \in A$ and $y \in B$ and

$$\phi(G(gx, fgx, fy)) \le \phi(M'(x, y)) - \psi(M'(x, y)) \tag{3.2}$$

holds for all comparative elements $x, y \in X$ with $x \in B$ and $y \in A$, where

$$\begin{split} M(x,y) = & max \bigg\{ G(x,fx,y), G(x,fx,fx), G(y,gy,gy), \\ & \frac{1}{2} \Big(G(fx,fx,gy), G(x,gfx,gy), G(fx,gfx,y) \Big) \bigg\} \end{split}$$

and

$$\begin{split} M'(x,y) = & max \bigg\{ G(x,gx,y), G(x,gx,gx), G(y,fy,fy), \\ & \frac{1}{2} \Big(G(gx,gx,fy), G(x,fgx,fy), G(gx,fgx,y) \Big) \bigg\}. \end{split}$$

(4) f or g is continuous.

Then, f and g have a common fixed point in $A \cap B$.

Proof. Since A is nonempty, start with $x_0 \in A$. In view of condition (2), we can construct a sequence $\{x_n\}$ in X such that $fx_{2n} = x_{2n+1}$, for $x_{2n} \in A$ and $gx_{2n+1} = x_{2n+2}$, for $x_{2n+1} \in B$, $n \in \mathbb{N}$.

By condition (1), we have $x_n \preceq x_{n+1}$, for all $n \in \mathbb{N}$. If $x_{2n_0} = x_{2n_0+1}$ for some $n_0 \in \mathbb{N}$, then x_{2n_0} is a fixed point of f in $A \cap B$. Since $x_{2n_0} \preceq x_{2n_0+1}$, by condition (3), we have

$$\phi(G(x_{2n_0+1}, x_{2n_0+2}, x_{2n_0+2})) = \phi(G(fx_{2n_0}, gfx_{2n_0}, gx_{2n_0+1}))$$

$$\leq \phi(M(x_{2n_0}, x_{2n_0+1})) - \psi(M(x_{2n_0}, x_{2n_0+1})), \quad (3.3)$$

where

$$\begin{split} M(x_{2n_0}, x_{2n_0+1}) \\ &= max \bigg\{ G(x_{2n_0}, fx_{2n_0}, x_{2n_0+1}), G(x_{2n_0}, fx_{2n_0}, fx_{2n_0}), \\ &\quad G(x_{2n_0+1}, gx_{2n_0+1}, gx_{2n_0+1}), \frac{1}{2} \Big(G(fx_{2n_0}, fx_{2n_0}, gx_{2n_0+1}), \\ &\quad G(x_{2n_0}, gfx_{2n_0}, gx_{2n_0+1}), G(fx_{2n_0}, gfx_{2n_0}, x_{2n_0+1}) \Big) \bigg\} \\ &= max \bigg\{ G(x_{2n_0}, x_{2n_0+1}, x_{2n_0+1}), G(x_{2n_0+1}, x_{2n_0+2}, x_{2n_0+2}), \\ &\quad \frac{1}{2} \Big(G(x_{2n_0+1}, x_{2n_0+1}, x_{2n_0+2}), G(x_{2n_0}, x_{2n_0+2}, x_{2n_0+2}) \Big) \bigg\}. \end{split}$$

Using Lemma 2.6, we obtain

$$G(x_{2n_0+1}, x_{2n_0+1}, x_{2n_0+2}) \le 2G(x_{2n_0+1}, x_{2n_0+2}, x_{2n_0+2}),$$

and by rectangle inequality (G_5) , we get

$$G(x_{2n_0}, x_{2n_0+2}, x_{2n_0+2}) \le G(x_{2n_0}, x_{2n_0+1}, x_{2n_0+1}) + G(x_{2n_0+1}, x_{2n_0+2}, x_{2n_0+2}).$$

Then,

$$M(x_{2n_0}, x_{2n_0+1}) = max\{G(x_{2n_0}, x_{2n_0+1}, x_{2n_0+1}), G(x_{2n_0+1}, x_{2n_0+2}, x_{2n_0+2})\}$$

= $G(x_{2n_0+1}, x_{2n_0+2}, x_{2n_0+2}).$

From (3.3), we have

$$\phi(G(x_{2n_0+1}, x_{2n_0+2}, x_{2n_0+2})) \le \phi(G(x_{2n_0+1}, x_{2n_0+2}, x_{2n_0+2})) - \psi(G(x_{2n_0+1}, x_{2n_0+2}, x_{2n_0+2})).$$

Implies $\psi(G(x_{2n_0+1}, x_{2n_0+2}, x_{2n_0+2})) = 0$. Since $\psi \in \Psi$, we have

$$G(x_{2n_0+1}, x_{2n_0+2}, x_{2n_0+2}) = 0$$

and $x_{2n_0+1} = x_{2n_0+2}$. So, we get $x_{2n_0} = x_{2n_0+1} = x_{2n_0+2}$. Therefore, x_{2n_0} is a fixed point of g in $A \cap B$. Hence, x_{2n_0} is a common fixed point of f and g in $A \cap B$. Now, we assume that $x_{n+1} \neq x_n$, for all $n \in \mathbb{N}$. Since, $x_{2n} \preceq x_{2n+1}$, for all $n \in \mathbb{N}$, by

condition (3) we have
$$\langle G(f_{n-1}, f_{n-1}) \rangle = \langle G(f_{n-1}, f_{n-1}) \rangle$$

$$\phi(G(x_{2n+1}, x_{2n+2}, x_{2n+2})) = \phi(G(fx_{2n}, gfx_{2n}, gx_{2n+1}))$$

$$\leq \phi(M(x_{2n}, x_{2n+1})) - \psi(M(x_{2n}, x_{2n+1})), \qquad (3.4)$$

where

$$M(x_{2n}, x_{2n+1}) = \max \left\{ G(x_{2n}, x_{2n+1}, x_{2n+1}), G(x_{2n+1}, x_{2n+2}, x_{2n+2}) \right\}.$$

Case i: If $M(x_{2n}, x_{2n+1}) = G(x_{2n+1}, x_{2n+2}, x_{2n+2})$, then by (3.4), we get

$$\phi(G(x_{2n+1}, x_{2n+2}, x_{2n+2})) \le \phi(G(x_{2n+1}, x_{2n+2}, x_{2n+2})) - \psi(G(x_{2n+1}, x_{2n+2}, x_{2n+2}))$$

Therefore, $\psi(G(x_{2n+1}, x_{2n+2}, x_{2n+2})) = 0$, for all $n \in \mathbb{N}$. By taking limit as $n \to \infty$, we get

$$\lim_{n \to \infty} \psi(G(x_{2n+1}, x_{2n+2}, x_{2n+2})) = 0.$$

Since $\psi \in \Psi$, we have

$$\lim_{n \to \infty} G(x_{2n+1}, x_{2n+2}, x_{2n+2}) = 0.$$
(3.5)

Case ii: If $M(x_{2n}, x_{2n+1}) = G(x_{2n}, x_{2n+1}, x_{2n+1})$. From (3.4), we have

$$\phi(G(x_{2n+1}, x_{2n+2}, x_{2n+2})) \le \phi(G(x_{2n}, x_{2n+1}, x_{2n+1})) - \psi(G(x_{2n}, x_{2n+1}, x_{2n+1})).$$
(3.6)

By Lemma 2.3, we get

$$\lim_{n \to \infty} G(x_{2n}, x_{2n+1}, x_{2n+1}) = 0.$$
(3.7)

From (3.5) and (3.7), we obtain that for all $n \in \mathbb{N}$

$$\lim_{n \to \infty} G(x_n, x_{n+1}, x_{n+1}) = 0.$$
(3.8)

From definition of G-metric spaces, we have

$$\lim_{n \to \infty} G(x_n, x_n, x_{n+1}) = 0.$$
(3.9)

That is, $\{x_n\}$ is asymptotically regular sequence. Now, we prove that $\{x_n\}$ is *G*-Cauchy. It is sufficient to show that $\{x_{2n}\}$ is a *G*-Cauchy sequence. Suppose on contrary that is not. Then by (3.8), (3.9) and Lemma 2.11 there exists $\varepsilon > 0$ and two subsequences $\{x_{2n_k}\}$ and $\{x_{2m_k}\}$ of $\{x_{2n}\}$ such that, for all $k \in \mathbb{N}$, $k \leq 2n_k < 2m_k < 2n_{k+1}$ and for all given $p_1, p_2, p_3 \in \mathbb{Z}$,

$$\lim_{n \to \infty} G(x_{2n_k+p_1}, x_{2m_k+p_2}, x_{2m_k+p_3}) = \varepsilon.$$
(3.10)

Since, $x_{2m_k} \leq x_{2n_k+1}$, by using condition (3), we get

$$\phi(G(x_{2m_k+1}, x_{2m_k+2}, x_{2n_k+2})) = \phi(G(fx_{2m_k}, gfx_{2m_k}, gx_{2n_k+1}))$$

$$\leq \phi(M(x_{2m_k}, x_{2n_k+1})) - \psi(M(x_{2m_k}, x_{2n_k+1})),$$
(3.11)

where

$$\begin{split} M(x_{2m_k}, x_{2n_k+1}) &= max \bigg\{ G(x_{2m_k}, fx_{2m_k}, x_{2n_k+1}), G(x_{2m_k}, fx_{2m_k}, fx_{2m_k}), \\ G(x_{2n_k+1}, gx_{2n_k+1}, gx_{2n_k+1}), \frac{1}{2} \Big(G(fx_{2m_k}, fx_{2m_k}, gx_{2n_k+1}), \\ G(x_{2m_k}, gfx_{2m_k}, gx_{2n_k+1}), G(fx_{2m_k}, gfx_{2m_k}, x_{2n_k+1}) \Big) \bigg\} \\ &= max \bigg\{ G(x_{2m_k}, x_{2m_k+1}, x_{2n_k+1}), G(x_{2m_k}, x_{2m_k+1}, x_{2m_k+1}), \\ G(x_{2n_k+1}, x_{2n_k+2}, x_{2n_k+2}), \frac{1}{2} \Big(G(x_{2m_k+1}, x_{2m_k+1}, x_{2n_k+2}), \\ G(x_{2m_k}, x_{2m_k+2}, x_{2n_k+2}), G(x_{2m_k+1}, x_{2m_k+2}, x_{2n_k+1}) \Big) \bigg\}. \end{split}$$

By using (3.8), (3.9) and (3.10), we get $\lim_{k \to \infty} M(x_{2m_k}, x_{2n_k+1}) = max\{\varepsilon, 0, \frac{\varepsilon}{2}\} = \varepsilon$. Take $\{t_k = G(x_{2m_k+1}, x_{2m_k+2}, x_{2n_k+2})\}, \{s_k = M(x_{2m_k}, x_{2n_k+1})\}$. Then $\{t_k\}$ and $\{s_k\}$ are sequences converging to the same limit ε and they satisfy $\phi(t_k) \leq \phi(s_k) - \psi(s_k)$, for all k.

Therefore, $\psi(s_k) \leq \phi(s_k) - \phi(t_k)$.

By taking limit as $k \to \infty$, since $\phi \in \Phi$, we have

$$\lim_{k \to \infty} \psi(s_k) \le \phi(\varepsilon) - \phi(\varepsilon) = 0.$$

Since $\psi \in \Psi$, $\lim_{k\to\infty} s_k = 0$. This implies that $\varepsilon = 0$, a contradiction. Thus, $\{x_{2n}\}$ is *G*-Cauchy. So, sequence $\{x_n\}$ is *G*-Cauchy. Since (X, G) is complete, there exists $u \in X$ such that $\{x_n\}$ is *G*-convergent to u. Therefore, the subsequences $\{x_{2n+1}\}$ and $\{x_{2n}\}$ are *G*-convergent to u.

Since $\{x_{2n}\} \subseteq A$ and A is closed, implies $u \in A$. Also, $\{x_{2n+1}\} \subseteq B$ and B is closed, implies $u \in B$. We may assume that f is continuous. So, we have $\lim_{n \to \infty} fx_{2n} = fu$ and $\lim_{n \to \infty} fx_{2n} = \lim_{n \to \infty} x_{2n+1} = u$. By uniqueness of the limit we have fu = u. Since $u \leq u$, by condition (3) we have

$$\phi(G(u, gu, gu)) = \phi(G(fu, gfu, gu))$$

$$\leq \phi(M(u, u)) - \psi(M(u, u)), \qquad (3.12)$$

where

$$\begin{split} M(u,u) &= max \bigg\{ G(u,fu,u), G(u,fu,fu), G(u,gu,gu), \\ &\quad \frac{1}{2} \Big(G(fu,fu,gu), G(u,gfu,gu), G(fu,gfu,u) \Big) \bigg\} \\ &= max \{ G(u,u,u), G(u,gu,gu), \frac{1}{2} (G(u,u,gu), G(u,gu,gu), G(u,gu,u)) \} \\ &= max \{ G(u,gu,gu), \frac{1}{2} G(u,gu,gu) \} \\ &= G(u,gu,gu). \end{split}$$

Using (3.12), we obtain

$$\begin{split} \phi(G(u,gu,gu)) &= \phi(G(fu,fgu,gu)) \\ &\leq \phi(G(u,gu,gu)) - \psi(G(u,gu,gu)). \end{split}$$

Therefore, $\psi(G(u, gu, gu)) = 0$. Implies, G(u, gu, gu) = 0. Hence, gu = u. Thus, u is a common fixed point of f and g in $A \cap B$.

Corollary 3.2. Let \leq be an ordered relation in a set X. Let (X,G) be a complete Gmetric space and $X = A \cup B$, where A and B are nonempty closed subsets of X. Let f be a continuous self map on X that satisfy the following conditions:

(1) $fx \leq f^2x$, for all $x \in X$. (2) $f(A) \subseteq B$ and $f(B) \subseteq A$. (3) There exist two functions $\phi \in \Phi, \psi \in \Psi$ such that $\phi(G(fx, f^2x, fy)) \leq \phi(M(x, y)) - \psi(M(x, y))$ holds for all comparative elements $x, y \in X$, where $M(x, y) = max\{G(x, fx, y), G(x, fx, fx), G(y, fy, fy),$ (3.13)

$$\frac{1}{2}(G(fx, fx, fy), G(x, f^2x, fy), G(fx, f^2x, y))\}.$$

Then, f has a fixed point in $A \cap B$.

Proof. The proof follows from Theorem 3.1 by taking g = f.

To support the usability of our result, following example is stated.

Example 3.3. Let X = [0,1] and let $f : X \to X$ be given as $f(x) = \frac{x^2}{1+x}$. Take $A = [0, \frac{1}{2}]$ and B = [0, 1]. Define the function $G : X \times X \times X \to [0, \infty)$ as

$$G(x, y, z) = \begin{cases} 0, & \text{if } x = y = z, \\ max\{x, y, z\}, & \text{otherwise.} \end{cases}$$

Clearly, G is a complete G-metric on X. We introduce a relation on X by $x \leq y$ if and only if $y \leq x$. Also, define the functions $\phi, \psi : [0, \infty) \rightarrow [0, \infty)$ by $\phi(t) = 2t$ and $\psi(t) = \frac{t}{1+2t}$.

Note that $fA = [0, \frac{1}{6}] \subseteq B$ and $fB = [0, \frac{1}{2}] \subseteq A$. To prove (1), given $x \in X$,

$$f^{2}x = \frac{x^{2}}{(1+x)} \frac{x^{2}}{(1+x+x^{2})}$$

Since $x \in [0,1]$, $\frac{x^2}{(1+x+x^2)} < 1$. Thus, $f^2x \leq fx$ and hence $fx \leq f^2x$ for all $x \in X$. To prove (3), given $x, y \in X$ with $x \geq y$. Then,

$$G(fx, f^2x, fy) = max\left\{\frac{x^2}{(1+x)}, \frac{x^2}{(1+x)}, \frac{x^2}{(1+x+x^2)}, \frac{y^2}{(1+y)}\right\} = \frac{x^2}{(1+x)}$$

and

$$M(x,y) = max\left\{x, y, \frac{x^2}{2(1+x)}, \frac{x}{2}\right\} = x.$$

Since

$$\frac{2x^2}{(1+x)} \le 2x - \frac{x}{(1+2x)},$$

we have

$$(G(fx, f^2x, fy)) \le \phi(M(x, y)) - \psi(M(x, y)).$$

Hence, all the conditions of Corollary 3.2 are satisfied. Notice that 0 is the unique fixed point of f.

In Theorem 2.14, we drop the condition of continuity and $\psi(0) = 0$ and replace $\psi \in \Phi$ with $\psi \in \Psi$, then we get the following result.

Theorem 3.4. Let \leq be an ordered relation in a set X. Let (X,G) be a complete Gmetric space and $X = A \cup B$, where A and B are nonempty closed subsets of X. Let f, g be self mappings on X that satisfy the following conditions:

- (1) The pair (f,g) is (A,B)-weakly increasing.
- (2) $f(A) \subseteq B$ and $g(B) \subseteq A$.

φ

(3) There exist two functions $\phi \in \Phi, \psi \in \Psi$ such that

 $\phi(G(fx, gfx, gy)) \le \phi(G(x, fx, y)) - \psi(G(x, fx, y))$

holds for all comparative elements $x, y \in X$ with $x \in A$ and $y \in B$ and

 $\phi(G(gx, fgx, fy)) \le \phi(G((x, gx, y))) - \psi(G(x, gx, y))$

holds for all comparative elements $x, y \in X$ with $x \in B$ and $y \in A$.

(4) f or g is continuous.

Then, f and g have a common fixed point in $A \cap B$.

Proof. By taking M(x,y) = G(x, fx, y) and M'(x,y) = G(x, gx, y) in Theorem 3.1 and using similar argument the result can be proved.

Acknowledgements

The authors would like to thank the anonymous referees for their valuable suggestions. The first author acknowledges the financial support by SHODH-Scheme (Gujarat Government) with student reference number 202001720096.

References

- Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7(2) (2006) 289–297.
- [2] M. Jleli, B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory Appl. 2012 (2012) Paper No. 210.
- [3] B. Samet, C. Vetro, F. Vetro, Remarks on G-metric spaces, Int. J. Anal. 2013 (2013) Article ID 917158.
- [4] W. Kirk, P. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory 4 (1) (2003) 79-89.
- [5] W. Shatanawi, M. Postolache, Common fixed point results for mappings under nonlinear contraction of cyclic form in ordered metric spaces, Fixed Point Theory Appl. 2013 (2013) Paper No. 60.
- [6] W. Shatanawi, K. Abodayeh, Some fixed and common fixed point results in Gmetric spaces which can't be obtained from metric spaces, Bol. Soc. Parana. Mat. 38(6) (2020) 43–51.
- [7] B. Amin, R.G. Vyas, Common fixed point theorems in generalized metric spaces in any number of arguments, Math. Student 89 (2020) 141–152.
- [8] R.P. Agrawal, E. Karapinar, D. O'Regan, A.F. Roldán-López-De Hierro, Fixed point theory in metric type spaces, Springer 2015.