Thai Journal of Mathematics Volume 20 Number 3 (2022) Pages 1089–1097

http://thaijmath.in.cmu.ac.th

On ps-ro Fuzzy Strongly α -Continuous Function

Pankaj Chettri*, Laden Bhutia and Anamika Chettri

Department of Mathematics, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Majitar, Rangpoo East Sikkim, INDIA e-mail : pankaj.c@smit.smu.edu.in; Kaleonlhaden05@gmail.com; anamika.chettri2223@gmail.com

Abstract Here we introduce a new class of function between two fuzzy topological spaces termed as ps-ro fuzzy strongly α -continuous. It is seen that this class of function is independent of the known notion of fuzzy strongly α -continuity and this motivates to study the concept and use it as a tool to investigate fuzzy topological spaces. Also it is observed that this function is stronger than the existing ps-ro fuzzy irresolute, ps-ro fuzzy α -irresolute and ps-ro fuzzy semicontinuous functions. Along with the characterizations of this function, their several properties for the existence are also established.

MSC: 54A40; 54C08

Keywords: Fuzzy strongly α -continuous; ps-ro fuzzy topology; ps-ro fuzzy strongly α -continuous

Submission date: 12.08.2020 / Acceptance date: 19.03.2022

1. INTRODUCTION AND PRELIMINARIES

L.A Zadeh generalized the classical set known as fuzzy set [1], which was further used by C.L Chang to initiate and explore the notion of fuzzy topological space (in short, fts) [2]. Later, various concepts of fuzzy topology have been studied by different researchers. The introduction of *ps-ro* fuzzy topology [3] opened a new direction and tool to study fts and their interrelations. In *ps-ro* fuzzy topology, different type of functions between two fuzzy topological spaces such as *ps-ro* fuzzy continuous [4], [5] *ps-ro* fuzzy semicontinuous [6], *ps-ro* fuzzy irresolute [7], *ps-ro* fuzzy strongly α -irresolute function [8] and *ps-ro* fuzzy α -irresolute [9], *ps-ro* fuzzy semi α -irresolute [10], *ps-ro* fuzzy semi-homeomorphism [11] etc. were introduced and explored. Fuzzy strongly α -continuouity was introduced and studied by R. K. Saraf, S. Mishra and Govindappa Navalagi [12].

The main motive of this paper is to initiate and explore the notion *ps-ro* fuzzy strongly α -continuous function between two *fts* and study their various properties. Independence of this function with the familiar idea of fuzzy strongly α -continuous is established. It is found that this new function is stronger than *ps-ro* fuzzy semicontinuous functions, *ps-ro* fuzzy irresolute and *ps-ro* fuzzy α -irresolute. Also, along with the characterizations of this function, several properties for the existence of this function are also obtained.

^{*}Corresponding author.

On a nonempty set P, a fuzzy set U is a function from P into [0,1] = I. If g is a mapping between two sets P and Q and U, V are fuzzy sets on P and Q respectively, then 1 - U, $g^{-1}(V)$ and g(U) are fuzzy sets respectively on P, P and Q and are given by $(1 - U)(p) = 1 - U(p) \forall p \in P$, $g^{-1}(V)(a) = V(g(a)) \forall a \in P$ and $g(U)(t) = \begin{cases} \sup_{r \in g^{-1}(t)} U(r), when \ g^{-1}(t) \neq \emptyset \\ 0, \ otherwise \end{cases}$. Any fuzzy sets U, V on A, U is subset of V if $U(t) \leq V(t) \forall t \in A$ and is written as $U \leq V$. A fuzzy set x_r is called fuzzy point whose value is $r \in (0, 1] = I_1$ at x, otherwise the value is 0, also it is q-coincident to a fuzzy set U for r + U(x) > 1 and is denoted by $x_r qU$ [1].

A fts (U, σ) is a pair where σ is a collection of some fuzzy sets on U with $0, 1 \in \sigma$ and finite intersection and arbitrary union of members of σ belongs to σ [2]. A set B is called regular open if int(clB) = B, where B is a subset of a topological space [13]. A fuzzy set P defined on fts (U, σ) is fuzzy regular open for P = int(clP) [14]. For a fts (U, σ) , the collection $i_{\alpha}(\sigma) = \{P^{\alpha} : P \in \sigma \text{ and } \alpha \in I_1, \text{ where } P^{\alpha} = \{s \in U; P(s) > \alpha\}, \text{ is a } i \in I_1, i \in I_1\}$ topology on U named as strong α -level topology. P^{α} for being regular open in $(U, i_{\alpha}(\sigma))$, $\forall \alpha \in I_1$, the fuzzy open set P on fts (U, σ) is called pseudo regular open fuzzy set, the collection of which generates a fuzzy topology on U, named as *ps-ro* fuzzy topology on U, the elements of which are termed as *ps-ro* open fuzzy sets and as usual their complements as ps-ro closed fuzzy sets [3], [4], [5]. Fuzzy ps-interior of a fuzzy set P in the fts (U, σ) , written as ps-int(P) is the biggest ps-ro open fuzzy set on U that is subset of P also its fuzzy ps-closure written as ps-cl(P) is the tiniest ps-ro closed fuzzy set that contains P [4], [5]. A fuzzy set P on a fts (U, σ) is known as fuzzy α -open [16] (resp. fuzzy α closed [16], ps-ro semiopen [6], ps-ro semiclosed [6], ps-ro α -open [15], ps-ro α -closed [15]) on U if $P \leq int(cl(int(P)))$ (resp. $P \geq cl(int(cl(P))), P \leq ps-cl(ps-int(P)), ps-int(ps-int(P)))$ $cl(P) \leq P, P \leq ps$ -int(ps-cl(ps-int $(P))), P \geq ps$ -cl(ps-int(cl(P)))). Let us use the symbols $ps_{-}(r, U_{\sigma}), ps_{-}(o, U_{\sigma}), ps_{-}(s, U_{\sigma})$ and $ps_{-}(\alpha, U_{\sigma})$ respectively to denote the set of all pseudo regular open, ps-ro open, ps-ro semiopen and ps-ro α -open fuzzy sets on the $fts(U,\sigma)$ and also by $ps(r^c, U_{\sigma})$, $ps(o^c, U_{\sigma})$, $ps(s^c, U_{\sigma})$ and $ps(\alpha^c, U_{\sigma})$ respectively for the set of all pseudo regular closed, *ps-ro* closed, *ps-ro* semiclosed and *ps-ro* α -closed fuzzy sets on the fts (U, σ) . Also, P is ps-ro fuzzy dense, nowhere ps-ro fuzzy dense respectively for ps-cl(P) = 1 and ps-int(ps-cl(P)) = 0 [9] and P is called ps-ro fuzzy semi-nbd of x_t , if we get Q, a ps-ro semiopen fuzzy set satisfying $x_t \in Q \leq P$ [6]. Similarly, ps-ro fuzzy α -nbd is defined [15]. In the line of *ps-int* and *ps-cl*, similar concepts of *ps*-semi closure(ps-scl), ps-semi interior(ps-sint) and ps- α closure(ps- αcl), ps- α interior(ps- αint) operators are defined [6], [15].

A function f between two $fts(U, \sigma_1)$ and (V, σ_2) is called fuzzy strongly α -continuous [12] (resp. ps-ro fuzzy continuous [5], ps-ro fuzzy semicontinuous [6], ps-ro fuzzy irresolute [7], ps-ro fuzzy α -irresolute [9], ps-ro fuzzy semi α -irresolute [10], ps-ro fuzzy strongly α irresolute [8]) if $f^{-1}(Q)$ is fuzzy α -open (resp. member of ps- (o, U_{σ_1}) , ps- (s, U_{σ_1}) , ps- (s, U_{σ_1}) , ps- (α, U_{σ_1}) , ps- (s, U_{σ_1}) , ps- (o, U_{σ_1})) on U for any fuzzy semiopen set Q (resp. member of ps- (o, V_{σ_2}) , ps- (o, V_{σ_2}) , ps- (a, V_{σ_2}) , ps- (α, V_{σ_2}) , ps- (α, V_{σ_2}) , ps- (α, V_{σ_2}) on V.

2. ps-ro fuzzy strongly α -continuous function

Definition 2.1. A mapping g between two fts (U, σ_1) and (V, σ_2) is called ps-ro fuzzy strongly α -continuous if for every $Q \in ps$ - (s, V_{σ_2}) , $g^{-1}(Q) \in ps$ - (α, U_{σ_1}) .

We shall now establish relationship of ps-ro fuzzy strongly α -continuous function with existing well-known allied concepts.

Example 2.2. Consider $P = \{e, b, s, d\}$, $Q = \{w, i, m, z\}$ and let us take K, L, M and N the fuzzy sets on P given as $K(r) = 0.1 \forall r \in P$; L(e) = 0.4, L(b) = 0.4, L(s) = 0.5, L(d) = 0.5; $M(r) = 0.5 \forall r \in P$ and N(e) = 0.1, N(b) = 0.1, N(s) = 0.2, N(d) = 0.2. Let U, V, W and J be the fuzzy sets on Q given as $U(r) = 0.5 \forall r \in Q$; V(w) = 0.7, V(i) = 0.7, V(m) = 0.8, V(z) = 0.8; $W(r) = 0.3 \forall r \in Q$ and J(w) = 0.6, J(i) = 0.6, J(m) = 0.7, J(z) = 0.7. Then $\sigma_1 = \{0, 1, K, L, M, N\}$ and $\sigma_2 = \{0, 1, U, V, W, J\}$ are fuzzy topologies in P and Q respectively.

The open sets in the corresponding strong α -level topological space $(P, i_{\alpha}(\sigma_1))$ are $\phi, P, K^{\alpha}, L^{\alpha}, M^{\alpha}$ and $N^{\alpha}, \forall \alpha \in I_1$, where

$$\begin{split} K^{\alpha} &= \begin{cases} P, & if \ \alpha < 0.1\\ \phi, & if \ \alpha \ge 0.1 \end{cases}, \ L^{\alpha} = \begin{cases} P, & if \ \alpha < 0.4\\ \{s, d\}, & if \ 0.4 \le \alpha < 0.5, \\ \phi, & if \ \alpha \ge 0.5 \end{cases} \\ M^{\alpha} &= \begin{cases} P, & if \ \alpha < 0.5\\ \phi, & if \ \alpha \ge 0.5 \end{cases} \text{ and } N^{\alpha} = \begin{cases} P, & if \ \alpha < 0.1\\ \{s, d\}, & if \ 0.1 \le \alpha < 0.2\\ \phi, & if \ \alpha \ge 0.2 \end{cases} \end{split}$$

 L^{α} and N^{α} are not regular open on $(P, i_{\alpha}(\sigma_1))$, as for $\alpha \in [.4, .5)$, $int(cl(K^{\alpha})) = P$ and for $\alpha \in [.1, .2)$, $int(cl(N^{\alpha})) = P$. Hence, $L, N \notin ps \cdot (r, P_{\sigma_1})$. As, $int(cl(K^{\alpha})) = K^{\alpha}$ and $int(cl(M^{\alpha})) = M^{\alpha}$, $\forall \alpha \in I_1$, K^{α} and M^{α} are regular open on $(P, i_{\alpha}(\sigma_1))$, $\forall \alpha \in I_1$. Hence, $ps \cdot (r, P_{\sigma_1}) = \{0, K, M, 1\}$ which implies that $\{0, 1, K, M\}$ is ps-ro fuzzy topology on P. Again, the open sets in the corresponding strong α -level topological space $(Q, i_{\alpha}(\sigma_2)), \forall \alpha \in I_1$ are $\phi, Q, U^{\alpha}, V^{\alpha}, W^{\alpha}$ and J^{α} , where

$$\begin{split} U^{\alpha} &= \begin{cases} Q, & \text{if } \alpha < 0.5\\ \phi, & \text{if } \alpha \ge 0.5 \end{cases}, V^{\alpha} = \begin{cases} Q, & \text{if } \alpha < 0.7\\ \{m, z\}, & \text{if } 0.7 \le \alpha < 0.8, \\ \phi, & \text{if } \alpha \ge 0.8 \end{cases} \\ W^{\alpha} &= \begin{cases} Q, & \text{if } \alpha < 0.3\\ \phi, & \text{if } \alpha \ge 0.3 \end{cases} \text{ and } J^{\alpha} = \begin{cases} Q, & \text{if } \alpha < 0.6\\ \{m, z\}, & \text{if } 0.6 \le \alpha < 0.7\\ \phi, & \text{if } \alpha > 0.7 \end{cases} \end{split}$$

 V^{α} and J^{α} are not regular open in $(Q, i_{\alpha}(\sigma_2))$ for $\alpha \in [.7, .8)$ and $\alpha \in [.6, .7)$ respectively. So, $V, J \notin ps \cdot (r, Q_{\sigma_2})$. Now, $\forall \alpha \in I_1$, U^{α} and W^{α} are regular open on $(Q, i_{\alpha}(\sigma_2))$. Hence, $ps \cdot (r, Q_{\sigma_2}) = \{0, U, W, 1\}$ which implies that ps-ro fuzzy topology on Q is $\{0, U, W, 1\}$.

Let us take a function h from P to Q by h(e) = w, h(b) = i, h(s) = m and h(d) = z. As, $U, W \in ps \cdot (o, Q_{\sigma_2})$ we have $U, W \in ps \cdot (s, Q_{\sigma_2})$. Here, $h^{-1}(U) = M$ and $ps \cdot int(ps \cdot cl(ps \cdot int(h^{-1}(U)))) = M$. Thus, $h^{-1}(U) \leq ps \cdot int(ps \cdot cl(ps \cdot int(h^{-1}(U))))$. So, $h^{-1}(U) \in ps \cdot (\alpha, P_{\sigma_1})$. Similarly, $h^{-1}(W) \in ps \cdot (\alpha, P_{\sigma_1})$. Any fuzzy set Z on Q satisfying $S \leq Z \leq ps \cdot cl(S)$, $Z \in ps \cdot (s, Q_{\sigma_2})$ where $S \in ps \cdot (o, Q_{\sigma_2})$. Also, $h^{-1}(Z) \in ps \cdot (\alpha, P_{\sigma_1})$. Hence, h is $ps \cdot ro$ fuzzy strongly α -continuous from P to Q.

Here, $J \in ps$ - (s, Q_{σ_2}) and $int(cl(int(h^{-1}(J)))) = M$, $h^{-1}(J) > int(cl(int(h^{-1}(J))))$. Hence, $h^{-1}(J)$ is not fuzzy α -open on P, showing h is not fuzzy strongly α -continuous from P to Q.

Example 2.3. Consider $P = \{e, b, c, d\}$, $Q = \{w, i, m, z\}$. Let us take K, L, M and N be the fuzzy sets on P given as K(e) = 0.5, K(b) = 0.5, K(c) = 0.6, K(d) = 0.6; L(r) = 0.2

 $\forall r \in P; M(r) = 0.4 \ \forall r \in P \text{ and } N(e) = 0.4, N(L) = 0.4, N(c) = 0.5, N(d) = 0.5.$ Let U, V, W and J be the fuzzy sets on Q given as $U(r) = 0.5 \ \forall r \in Q; V(w) = 0.3, V(i) = 0.3, V(m) = 0.4, V(z) = 0.4; W(r) = 0.3 \ \forall r \in Q \text{ and } J(w) = 0.2, J(i) = 0.2, J(m) = 0.3, J(z) = 0.3.$ Then, $\sigma_1 = \{0, K, L, M, N, 1\}$ and $\sigma_2 = \{0, 1, U, V, W, J\}$ are fuzzy topologies in P and Q respectively.

In $(P, i_{\alpha}(\sigma_1))$, $\forall \alpha \in I_1$, the open sets are $\phi, P, K^{\alpha}, L^{\alpha}, M^{\alpha}$ and N^{α} . For $\alpha \in [.5, .6)$, int $(cl(K^{\alpha}) = P$ and for $\alpha \in [.1, .2)$, $int(cl(N^{\alpha})) = P$, proving that K^{α} and N^{α} are not regular open on $(P, i_{\alpha}(\sigma_1))$. Hence, $K, N \notin ps \cdot (r, P_{\sigma_1})$. As, $int(cl(L^{\alpha})) = L^{\alpha}$ and $int(cl(M^{\alpha})) = M^{\alpha}$, we have L^{α} and M^{α} are regular open on $(P, i_{\alpha}(\sigma_1))$, $\forall \alpha \in I_1$. Hence, $ps \cdot (r, P_{\sigma_1}) = \{0, L, M, 1\}$ and $ps \cdot ro$ fuzzy topology on P is $\{1, L, M, 0\}$. In the similar manner, $V, J \notin ps \cdot (r, Q_{\sigma_2})$. Thus, $ps \cdot (r, Q_{\sigma_2}) = \{0, V, W, 1\}$ and $ps \cdot ro$ fuzzy topology on Q is $\{0, U, W, 1\}$.

Let us define a mapping h from P to Q by h(e) = i, h(b) = i, h(c) = m and h(d) = z. Now, $h^{-1}(B)$ is fuzzy α -open on P for any fuzzy semiopen set B on Q. Therefore, h is fuzzy strongly α -continuous from P to Q. But, $U \in ps-(s, Q_{\sigma_2})$ and $h^{-1}(U) \notin ps-(\alpha, P_{\sigma_1})$, proving that h fails to be ps-ro fuzzy strongly α -continuous from P to Q.

Remark 2.4. From Example (2.2) and Example (2.3) we can conclude that fuzzy strongly α -continuity and ps-ro fuzzy strongly α -continuity are independent of each other.

Remark 2.5. From the definition it is clear a ps-ro fuzzy strongly α -continuous is ps-ro fuzzy α -irresolute but not conversely is given below:

Example 2.6. Consider $P = \{e, b, s, d\}$, $Q = \{w, i, m, z\}$ and let K, L, M and N be the fuzzy sets on P given as K(e) = 0.7, K(b) = 0.7, K(s) = 0.6, K(d) = 0.6; $L(r) = 0.2 \forall r \in P$; $M(r) = 0.5 \forall r \in P$ and N(e) = 0.3, N(b) = 0.3, N(s) = 0.2, N(d) = 0.2. Let U, V, W and J be the fuzzy sets on Q given as $U(r) = 0.3 \forall r \in P$; V(w) = 0.1, V(i) = 0.1, V(m) = 0.2, V(z) = 0.2; $W(r) = 0.4 \forall r \in P$ and J(w) = 0.3, J(i) = 0.3, J(m) = 0.4, J(z) = 0.4. Then, the fuzzy topologies on P and Q are $\sigma_1 = \{0, 1, K, L, M, N\}$ and $\sigma_2 = \{0, 1, U, V, W, J\}$ respectively.

In $(P, i_{\alpha}(\sigma_1))$, $\forall \alpha \in I_1$, the open sets are $\phi, P, K^{\alpha}, L^{\alpha}, M^{\alpha}$ and N^{α} . Here, $K, N \notin ps-(r, P_{\sigma_1})$ for $\alpha \in [.6, .7)$ and $\alpha \in [.2, .3)$ respectively. So, ps-ro fuzzy topology on P is $\{M, N, U, 0, 1\}$.

Similarly, $V, J \notin ps$ - (r, Q_{σ_2}) for $\alpha \in [.1, .2)$ and $\alpha \in [.3, .4)$ respectively. Thus, ps-ro fuzzy topology on Q is $\{1, U, W, 0\}$.

Now, we define a function h from P to Q by h(e) = w, h(b) = i, h(s) = m, h(d) = z. Here, it can be verified that $h^{-1}(B) \in ps \cdot (\alpha, P_{\sigma_1})$ for each $B \in inps \cdot (\alpha, Q_{\sigma_2})$. Therefore, h is ps-ro fuzzy α -irresolute P to Q. But $h^{-1}(U) \notin inps \cdot (\alpha, P_{\sigma_1})$ where $U \in inps \cdot (s, Q_{\sigma_2})$ given as $U(r) = 0.6 \forall r \in Q$. Thus, h is not ps-ro fuzzy strongly α -continuous.

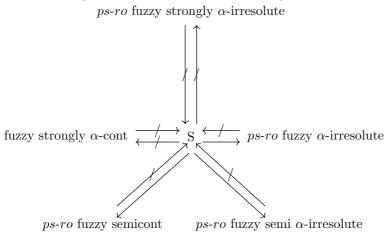
Remark 2.7. As every ps-ro fuzzy α -irresolute is both ps-ro fuzzy semi α -irresolute and ps-ro fuzzy semicontinuous [10], [6], by remark (2.5) we have ps-ro fuzzy strongly α continuous implies ps-ro fuzzy semi α -irresolute and ps-ro fuzzy semicontinuous functions respectively but the converses are not true.

Remark 2.8. From Example (2.2), $W \in ps(\alpha, Q_{\sigma_2})$ but $h^{-1}(W) \notin ps(\alpha, P_{\sigma_1})$, showing h failes to be ps-ro fuzzy strongly α -irresolute, which shows that ps-ro fuzzy strongly α -continuity does not imply ps-ro fuzzy strongly α -irresoluteness.

Also, every ps-ro fuzzy strongly α -irresolute is ps-ro fuzzy α -irresolute [8], but from the

Remark (2.5), ps-ro fuzzy strongly α -irresolute does not imply ps-ro fuzzy strongly α -continuous. Hence, ps-ro fuzzy strongly α -continuous and ps-ro fuzzy strongly α -irresolute are two independent notions.

Schematic diagram of above proven relations is given below:



Here, S denots ps-ro fuzzy strongly α -continuous

Theorem 2.9. Let (U, σ_1) and (V, σ_2) be two fts and h be a function between them, then the following equivalent conditions hold.

(a) h is ps-ro fuzzy strongly α -continuous.

(b) For any x_t on U and each $Q \in ps$ - (s, V_{σ_2}) and $h(x_t) \in Q$, there exist $P \in ps$ - (α, U_{σ_1}) such that $x_t \in P$ and $h(P) \leq Q$.

(c) The preimage of $Q \in ps \cdot (s^c, V_{\sigma_2})$ belongs to $ps \cdot (\alpha^c, U_{\sigma_1})$.

(d) $ps\text{-}cl(ps\text{-}int(ps\text{-}cl(h^{-1}(Q)))) \le h^{-1}(ps\text{-}scl(Q))$, for any fuzzy set Q on V.

(e) $h(ps-cl(ps-cl(P)))) \leq ps-scl(h(P)), \forall fuzzy set P on U.$

(f) $h(ps - \alpha cl(P)) \leq ps - scl(h(P))$, for any fuzzy set P on U.

(g) $ps - \alpha cl(h^{-1}(Q)) \leq h^{-1}(ps - scl(Q))$, for any fuzzy set Q on V.

(h) $h^{-1}(ps\text{-sint}(Q)) \leq ps\text{-}\alpha int(h^{-1}(Q))$, for every fuzzy set Q on V.

Proof: (a) \Rightarrow (b) For any x_t on U and $Q \in ps$ - (s, V_{σ_2}) such that $h(x_t) \in Q$, there exist $h^{-1}(Q) \in ps$ - (α, U_{σ_1}) which contains x_t . The result follows by taking $h^{-1}(Q) = P$. (b) \Rightarrow (a) $Q \in ps$ - (s, V_{σ_2}) . If $h^{-1}(Q) = 0$, result follows.

Let $h^{-1}(Q) \neq 0$, then $\exists x_t$ on U such that $x_t \in h^{-1}(Q)$. So, $\exists Z_{x_t} \in ps(\alpha, U_{\sigma_1})$ such that $x_t \in Z_{x_t} \leq h^{-1}(Q)$. x_t beings arbitrary, taking union, $h^{-1}(Q) = \lor \{x_t : x_t \in h^{-1}(Q)\} \leq \lor \{Z_{x_t} : x_t \in h^{-1}(Q)\} \leq h^{-1}(Q)$. So, $h^{-1}(Q) = \lor \{Z_{x_t} : x_t \in h^{-1}(Q)\}$ and $h^{-1}(Q) \in ps(\alpha, U_{\sigma_1})$. Hence, h is ps-ro fuzzy strongly α -continuous.

 $(a) \Rightarrow (c)$ For $Q \in ps (s^c, V_{\sigma_2})$, $(1-Q) \in ps (s, V_{\sigma_2})$ and $h^{-1}(1-Q) \in ps (\alpha, U_{\sigma_1})$, which shows that $h^{-1}(Q) \in ps (\alpha^c, U_{\sigma_1})$.

 $(c) \Rightarrow (a)$ Let $Q \in ps\text{-}(s, U_{\sigma_1})$. Then, $h^{-1}(1-Q) \in ps\text{-}(\alpha^c, U_{\sigma_1})$ and $h^{-1}(Q) \in ps\text{-}(\alpha, U_{\sigma_1})$. Hence, h is ps-ro fuzzy strongly α -continuous.

 $(c) \Rightarrow (d)$ For every fuzzy set Q on V, ps- $scl(Q) \in ps$ - (s^c, V_{σ_2}) . So, $h^{-1}(ps$ - $scl(Q)) \in ps$ - (α^c, U_{σ_1}) . Thus, $h^{-1}(ps$ - $scl(Q)) \ge ps$ -cl(ps-int(ps- $cl(h^{-1}(ps$ -scl(Q)))). Also, ps-cl(ps-int(ps- $cl(h^{-1}(ps)))) \ge ps$ -cl(ps-int(ps- $cl(h^{-1}(Q)))$.

This gives, $ps-cl(ps-int(ps-cl(h^{-1}(Q)))) \leq h^{-1}(ps-scl(Q))$.

 $(d) \Rightarrow (e)$ For any fuzzy set P, h(P) is fuzzy set on V and taking h(P) = Q we have,

 $P \leq h^{-1}(Q)$. So, $ps\text{-}cl(ps\text{-}int(ps\text{-}cl(h^{-1}(Q)))) \leq h^{-1}(ps\text{-}scl(Q))$. So, $ps\text{-}cl(ps\text{-}int(ps\text{-}cl(P))) \leq ps\text{-}cl(ps\text{-}int(ps\text{-}cl(h^{-1}(Q))) \leq h^{-1}(ps\text{-}scl(Q)) = h^{-1}(ps\text{-}scl(h(P))$. Thus, $h(ps\text{-}cl(ps\text{-}int(ps\text{-}cl(P)))) \leq ps\text{-}scl(h(P))$.

 $(e) \Rightarrow (c)$ Let $Q \in ps\text{-}(s^c, V_{\sigma_2})$. Then, $h^{-1}(Q)$ is fuzzy set on U and taking $h^{-1}(Q) = P$, we have $h(P) \leq Q$. Now, $h(ps\text{-}cl(ps\text{-}int(ps\text{-}cl(h^{-1}(Q)))) \leq ps\text{-}scl(h(h^{-1}(Q))) \leq ps\text{-}scl(Q) = Q$. So, $h^{-1}(h(ps\text{-}cl(ps\text{-}int(ps\text{-}cl(h^{-1}(Q))))) \leq h^{-1}(Q)$ and $ps\text{-}cl(ps\text{-}int(ps\text{-}cl(h^{-1}(Q)))) \leq h^{-1}(Q)$, showing that $h^{-1}(Q) \in ps\text{-}(\alpha^c, U_{\sigma_1})$.

 $(c) \Rightarrow (f)$ Let P be any fuzzy set on U. Since, $P \leq h^{-1}(h(P)), P \leq h^{-1}(ps \cdot scl(h(P)))$. Since, $ps \cdot scl(h(P)) \in ps \cdot (s^c, V_{\sigma_2}), h^{-1}(ps \cdot scl(h(P))) \in ps \cdot (\alpha^c, U_{\sigma_1})$. Now, $ps \cdot \alpha cl(P) \leq h^{-1}(ps \cdot scl(h(P)))$ and $h(ps \cdot \alpha cl(P)) \leq h(h^{-1}(ps \cdot scl(h(P)))) \leq ps \cdot scl(h(P))$. So, $ps \cdot \alpha cl(P) \leq ps \cdot scl(h(P))$.

 $\begin{array}{ll} (f) \Rightarrow (c) \mbox{ Let } Q \in ps\text{-}(s^c, V_{\sigma_2}) \ . \ \mbox{Then, } ps\text{-}\alpha cl(h^{-1}(Q)) \leq ps\text{-}scl(h(h^{-1}(Q))) \leq ps\text{-}scl(Q) \\ scl(Q) = Q \ \mbox{and } ps\text{-}\alpha cl(h^{-1}(Q)) \leq h^{-1}(Q). \ \ \mbox{Now, } h^{-1}(Q) \leq ps\text{-}\alpha cl(h^{-1}(Q)). \ \ \mbox{So, } h^{-1}(Q) = ps\text{-}\alpha cl(h^{-1}(Q)) \ \ \mbox{which shows that } h^{-1}(Q) \in ps\text{-}(\alpha^c, V_{\sigma_2}). \end{array}$

 $(f) \Rightarrow (g)$ Let us take $P = h^{-1}(Q)$ corresponding to fuzzy set Q on V. Then, $h(ps-\alpha cl(h^{-1}(Q))) \leq ps-scl(h(h^{-1}(Q))) \leq ps-scl(Q)$. Now, $ps-\alpha cl(h^{-1}(Q)) \leq h^{-1}(h(ps-\alpha cl(h^{-1}(Q)))) \leq h^{-1}(ps-scl(Q))$. So, $ps-\alpha cl(h^{-1}(Q))) \leq h^{-1}(ps-scl(Q))$.

 $(g) \Rightarrow (f)$ Corresponding to every fuzzy set P on U, taking h(P) = Q, ps- $\alpha cl(h^{-1}(h(P))) \le h^{-1}(ps$ -scl(h(P))). So, ps- $\alpha cl(P) \le ps$ - $\alpha cl(h^{-1}(h(P))) \le h^{-1}(ps$ -scl(h(P))). Thus, $h(ps-\alpha cl(P)) \le ps$ -scl(h(P)).

 $(a) \Rightarrow (h)$ Corresponding to every fuzzy set Q on V, as $ps\text{-sint}(Q) \in ps\text{-}(s, V_{\sigma_2})$ and so, $h^{-1}(ps\text{-sint}(Q)) \in ps\text{-}(\alpha, U_{\sigma_1})$. Thus, $h^{-1}(ps\text{-sint}(Q)) = ps\text{-}\alpha int(h^{-1}(ps\text{-sint}(Q))) \leq ps\text{-}\alpha int(h^{-1}(Q))$. Therefore, $h^{-1}(ps\text{-sint}(Q)) \leq ps\text{-}\alpha int(h^{-1}(Q))$.

 $(h) \Rightarrow (a)$ Consider $Q \in ps \cdot (s, V_{\sigma_2})$. Then, $ps \cdot sint(Q) = Q$, $h^{-1}(ps \cdot sint(Q)) \leq ps \cdot \alpha int(h^{-1}(Q))$. So, $h^{-1}(Q) \leq ps \cdot \alpha int(h^{-1}(Q))$. Also, $ps \cdot \alpha int(h^{-1}(Q)) \leq h^{-1}(Q)$. Therefore, $h^{-1}(Q) = ps \cdot \alpha int(h^{-1}(Q))$, which shows that $h^{-1}(Q) \in ps \cdot (\alpha, U_{\sigma_1})$. Hence, h is $ps \cdot ro$ fuzzy strongly α -continuous.

Theorem 2.10. A bijective mapping h between fts (U, σ_1) and (V, σ_2) is ps-ro fuzzy strongly α -continuous iff for each fuzzy set P on U, ps-sint $(h(P)) \leq h(ps-\alpha int(P))$. Proof: Let $h: U \to V$ be a bijective ps-ro fuzzy strongly α -continuous. Let P be any fuzzy set on U. h(P) is also a fuzzy set on V and ps-sint $(h(P)) \in ps-(s, V_{\sigma_2})$. Again, $h^{-1}(ps-sint(h(P))) \in ps-(\alpha, U_{\sigma_1})$ and by Theorem (2.9), $h^{-1}(ps-sint(h(P))) \leq ps-\alpha int(h^{-1}(h(P)))$. Since, h is one-to-one, $ps-\alpha int(h^{-1}(h(P))) = ps-\alpha int(P)$, $h^{-1}(ps-sint(h(P))) \leq ps-\alpha int(P)$. Again, h being onto, $ps-sint(h(P)) = h(h^{-1}(ps-sint(h(P)))) \leq h(ps-\alpha int(P))$. Hence, $ps-sint(h(P)) \leq h(ps-\alpha int(P))$. Conversely, let $Q \in ps-(s, V_{\sigma_2})$. Then, ps-sint(Q) = Q and $h^{-1}(Q)$ is any fuzzy set on U. As, h is onto, $h(h^{-1}(Q)) = Q$ and $Q = ps-sint(Q) = ps-sint(h(h^{-1}(Q)))$. Thus, $ps-sint(h(h^{-1}(Q))) \leq h(ps-\alpha int(h^{-1}(Q)))$ which gives, $Q \leq h(ps-\alpha int(h^{-1}(Q)))$. Since, h is one-to-one, $ps-\alpha int(h^{-1}(Q)) = h^{-1}(h(ps-\alpha int(h^{-1}(Q))))$. Therefore, $h^{-1}(Q) \leq h^{-1}(h(ps-\alpha int(h^{-1}(Q))) = ps-\alpha int(h^{-1}(Q))$. As, $ps-\alpha int(h^{-1}(Q)) \leq h^{-1}(Q)$, $h^{-1}(Q) = ps-\alpha int(h^{-1}(Q))$, thus $h^{-1}(Q) \in ps-(\alpha, U_{\sigma_1})$. Hence, h is ps-ro fuzzy strongly α -continuous.

Theorem 2.11. Let (U, σ_1) , (V, σ_2) and (W, σ_3) be fts and $h : U \to V$, $g : V \to W$ be two functions then the following holds:

(a) If h is ps-ro fuzzy α -irresolute and g is ps-ro strongly α -continuous then $g \circ h$ is ps-ro fuzzy strongly α -continuous.

(b) If h is ps-ro strongly α -continuous and g is ps-ro fuzzy irresolute then $g \circ h$ is ps-ro

fuzzy strongly α -continuous.

Proof: (a) For $P \in ps$ - (s, W_{σ_3}) , $g^{-1}(P) \in ps$ - (α, V_{σ_2}) . Now, $(g \circ h)^{-1}(P) = h^{-1}(g^{-1}(P))$. Since, $g^{-1}(P) \in ps$ - (α, V_{σ_2}) , $h^{-1}(g^{-1}(P)) \in ps$ - (α, U_{σ_1}) i.e., $(g \circ h)^{-1}(P) \in ps$ - (α, U_{σ_1}) . So, $g \circ h$ is ps-ro fuzzy strongly α -continuous.

(b) Corresponding to $P \in ps$ - (s, W_{σ_3}) , $g^{-1}(P) \in ps$ - (s, V_{σ_2}) . Now, $(g \circ h)^{-1}(P) = h^{-1}(g^{-1}(P))$. Since, $g^{-1}(P) \in ps$ - (s, V_{σ_2}) , $(g \circ h)^{-1}(P) \in ps$ - (α, U_{σ_1}) . Hence, $g \circ h$ is ps-ro fuzzy strongly α -continuous.

Theorem 2.12. Let (U, σ_1) , (V, σ_2) and (W, σ_3) be fts and $h: U \to V$, $g: V \to W$ be two functions. If h is ps-ro fuzzy strongly α -continuous and g is ps-ro fuzzy semicontinuous, then $g \circ h$ is ps-ro fuzzy α -continuous.

Proof: Let $Q \in ps$ - (o, W_{σ_3}) then $g^{-1}(Q) \in ps$ - (s, V_{σ_2}) . Now, $(g \circ h)^{-1}(Q) = h^{-1}(g^{-1}(Q))$. Since, $g^{-1}(Q) \in ps$ - (s, V_{σ_2}) , $(g \circ h)^{-1}(Q) \in ps$ - (α, U_{σ_1}) . Hence, $g \circ h$ is ps-ro fuzzy α -continuous.

Corollary 2.13. Let (U, σ_1) , (V, σ_2) and (W, σ_3) be fts and $h : U \to V$, $g : V \to W$ be two functions. If h is ps-ro fuzzy strongly α -continuous and g is ps-ro fuzzy continuous, then $g \circ h$ is ps-ro fuzzy α -continuous.

Theorem 2.14. Let U_i and V_i ; i = 1, 2 be fts such that U_1 is a product related to U_2 and V_1 is a product related to V_2 . If $h_1 \times h_2 : U_1 \times U_2 \to V_1 \times V_2$ is ps-ro fuzzy strongly α -continuous, then $h_1 : U_1 \to U_2$ and $h_2 : V_1 \to V_2$ are ps-ro fuzzy strongly α -continuous. Proof: Let Q be any ps-ro semiopen fuzzy set on V_1 . Then, $Q \times 1$ is ps-ro semiopen fuzzy set on $V_1 \times V_2$ as V_1 is a product related to V_2 . Since, $h_1 \times h_2$ is ps-ro fuzzy strongly α continuous, $(h_1 \times h_2)^{-1}(Q \times 1)$ is ps-ro α -open fuzzy set on U i.e., $(h_1 \times h_2)^{-1}(Q \times 1) \leq ps$ int(ps-cl(ps-int($(h_1 \times h_2)^{-1}(Q \times 1))))$. Now, $(h_1 \times h_2)^{-1}(Q \times 1) = h_1^{-1}(Q) \times 1$. As U_1 is a product related to U_2 , we have ps-int(ps-cl(ps-int($h_1^{-1}(Q) \times 1)))) = ps-int(ps-cl(ps$ $int(<math>h_1^{-1}(Q)))) \times 1 \geq h_1^{-1}(Q) \times 1$. So, $h_1^{-1}(Q) \times 1 \leq ps-int(ps-cl(ps-int(<math>h_1^{-1}(Q)))) \times 1$. $h_1^{-1}(Q)$ is ps-ro α -open fuzzy set on U_1 . Hence, h_1 is ps-ro fuzzy strongly α -continuous. Similarly, it can be shown that h_2 is ps-ro fuzzy strongly α -continuous.

Theorem 2.15. Let a function h between $fts(U, \sigma_1)$ and (V, σ_2) be ps-ro fuzzy strongly α -continuous, then ps-cl(ps-int(ps-cl $(h^{-1}(Q)))) \leq h^{-1}(ps$ -cl(Q)) and ps- α cl $(h^{-1}(Q)) \leq h^{-1}(ps$ -cl(Q)), for every fuzzy set Q on V.

Proof: Let h be ps-ro fuzzy strongly α -continuous and Q be any fuzzy set on V. Then, ps- $cl(Q) \in ps$ - (s^c, V_{σ_2}) and $h^{-1}(ps$ - $cl(Q)) \in ps$ - (α^c, U_{σ_1}) . Thus, ps-cl(ps-int(ps- $cl(h^{-1}(ps-cl(Q)))) \leq h^{-1}(ps$ -cl(Q). Since, $P \leq ps$ -cl(P) for any fuzzy set P on U, ps-cl(ps-int(ps- $cl(Q)))) \leq h^{-1}(ps$ -cl(Q)). Again, for any fuzzy set Q on V, $Q \leq ps$ -cl(Q) and $h^{-1}(Q) \leq h^{-1}(ps$ -cl(Q)). So, ps- $\alpha cl(h^{-1}(Q)) \leq ps$ - $\alpha cl(h^{-1}(ps)-cl(Q))) = h^{-1}(ps$ -cl(Q)) (as $h^{-1}(ps$ - $cl(Q)) \in ps$ - (α^c, U_{σ_1}) . Hence, ps- $\alpha cl(h^{-1}(Q)) \leq h^{-1}(ps$ -cl(Q)).

Theorem 2.16. Let a function h between fts (U, σ_1) and (V, σ_2) be ps-ro fuzzy strongly α -continuous, then $h(ps\text{-}cl(ps\text{-}int(ps\text{-}cl(P)))) \leq ps\text{-}cl(h(P))$ and $h(ps\text{-}\alpha cl(P)) \leq ps\text{-}cl(h(P))$, for every fuzzy set P on U.

Proof: For any fuzzy set P on U, taking h(P) = Q, $P \leq h^{-1}(Q)$. From Theorem (2.15), $ps\text{-}cl(ps\text{-}int(ps\text{-}cl(P))) \leq ps\text{-}cl(ps\text{-}int(ps\text{-}cl(h^{-1}(Q)))) \leq h^{-1}(ps\text{-}cl(Q)) = h^{-1}(ps\text{-}cl(h(P)))$. So, $h(ps\text{-}cl(ps\text{-}int(ps\text{-}cl(P)))) \leq h(h^{-1}(ps\text{-}cl(h(P)))) \leq ps\text{-}cl(h(P))$ and $h(ps\text{-}cl(ps\text{-}int(ps\text{-}cl(P)))) \leq ps\text{-}cl(h(P))$. Again, $P \leq h^{-1}(h(P)) \leq h^{-1}(ps\text{-}cl(h(P)))$. Now,

 $ps\text{-}cl(h(P)) \in ps\text{-}(s^c, V_{\sigma_2}), \ h^{-1}(ps\text{-}cl(h(P))) \in ps\text{-}(\alpha^c, U_{\sigma_1}) \text{ and } ps\text{-}\alpha cl(P)) \leq h^{-1}(ps\text{-}cl(h(P))), \ h(ps\text{-}\alpha cl(P)) \leq h(h^{-1}(ps\text{-}cl(h(P)))) \leq ps\text{-}cl(h(P)).$ So, $h(ps\text{-}\alpha cl(P))) \leq ps\text{-}cl(h(P)).$

Theorem 2.17. Let a function h between $fts(U, \sigma_1)$ and (V, σ_2) be ps-ro fuzzy strongly α -continuous, then $h^{-1}(ps\text{-int}(Q)) \leq ps\text{-}\alpha int(h^{-1}(Q))$, for every fuzzy set Q on V.

Proof: Let a function h be ps-ro fuzzy strongly α -continuous and Q be a fuzzy set on V. Then, ps- $int(Q) \in ps$ - (s, V_{σ_2}) , $h^{-1}(ps$ - $int(Q)) \in ps$ - (α, U_{σ_1}) . Now, $h^{-1}(ps$ -int(Q)) = ps- $\alpha int(h^{-1}(ps)) \leq ps$ - $\alpha int(h^{-1}(Q))$, since ps- $int(Q) \leq Q$. Hence, $h^{-1}(ps$ - $int(Q)) \leq ps$ - $\alpha int(h^{-1}(Q))$.

Lemma 2.18. : Let $g: U \to U \times V$ be the graph of a function $h: U \to V$.i.e. $g(u) = (u, h(u)), \forall u \in U$. If P and Q are fuzzy sets on U and V, then, $g^{-1}(P \times Q) = P \wedge h^{-1}(Q)$.

Theorem 2.19. Let h be a function between $fts(U, \sigma_1)$ and (V, σ_2) . h is ps-ro fuzzy strongly α -continuous if the graph $g: U \to U \times V$ is ps-ro fuzzy strongly α -continuous. Proof: Let $Q \in ps-(s, V_{\sigma_2})$, by Lemma (2.18), $h^{-1}(Q) = 1 \wedge h^{-1}(Q) = g^{-1}(1 \times Q)$. As, $1 \in ps-(s, U_{\sigma_1})$ and $Q \in ps-(s, V_{\sigma_2})$ we have $(1 \times Q)$ is ps-ro semiopen fuzzy set on $U \times V$. Now, $g^{-1}(1 \times Q) \in ps-(\alpha, U_{\sigma_1})$ and $h^{-1}(Q) \in ps-(\alpha, U_{\sigma_1})$. Hence, h is ps-ro fuzzy strongly α -continuous.

Theorem 2.20. Let (U, σ_1) and (V, σ_2) be two fts and if a function h from (U, σ_1) to (V, σ_2) be ps-ro fuzzy strongly α -continuous then for any nowhere ps-ro fuzzy dense set P on V, preimage of $P \in ps-(\alpha^c, U_{\sigma_1})$.

Proof: For any any nowhere *ps-ro* fuzzy dense set P on V, 1 - ps-int(ps-cl(P)) = 1. So, ps-cl(1 - (ps-cl(P))) = 1 and ps-cl(ps-int(1 - P)) = 1 Hence, $1 - P \leq ps\text{-}cl(ps\text{-}int(1 - P))$, proving that $(1 - P) \in ps\text{-}(s, V_{\sigma_2})$. Now, $h^{-1}(1 - P) = 1 - h^{-1}(P) \in ps\text{-}(\alpha, U_{\sigma_1})$. Thus, $h^{-1}(P) \in ps\text{-}(\alpha^c, U_{\sigma_1})$.

Theorem 2.21. For a function h between fts (U, σ_1) and (V, σ_2) , the following are equivalent:

(a) h is ps-ro fuzzy strongly α -continuous.

(b) For each x_t on U, the preimage of each ps-ro fuzzy semi-nbd Q of $h(x_t)$ on V is a ps-ro fuzzy α -nbd of x_t on U.

(c) For each x_t on U and each ps-ro fuzzy semi-nbd Q of $h(x_t)$ on V, \exists a ps-ro fuzzy α -nbd P of x_t on U such that $h(P) \leq Q$.

(d) For each x_t on U and each $Q \in ps$ - (s, V_{σ_2}) with $h(x_t) \leq Q, \exists P \in ps$ - (α, U_{σ_1}) with $x_t \leq P$ and $h(P) \leq Q$.

Proof: (a) \Rightarrow (b) For x_t on U and *ps-ro* fuzzy semi-nbd Q of $h(x_t)$ on V, $\exists W \in ps-(s, V_{\sigma_2})$ with $h(x_t) \leq W \leq Q$. Now, $h^{-1}(W) \in ps-(\alpha, U_{\sigma_1})$ with $x_t \leq h^{-1}(W)$. Then, $x_t \leq h^{-1}(W) \leq h^{-1}(Q)$, which shows that $h^{-1}(Q)$ is a *ps-ro* α -nbd of x_t on U.

 $(b) \Rightarrow (c)$ For x_t on U and ps-ro fuzzy semi-nbd Q of $h(x_t)$ on V, $h^{-1}(Q)$ is a ps-ro fuzzy α -nbd of x_t on U. Let $h^{-1}(Q) = P$. Then $h(h^{-1}(Q)) = h(P)$. Since, $h(h^{-1}(Q)) \leq Q$, $h(P) \leq Q$.

 $(c) \Rightarrow (d)$ For x_t on U and $Q \in ps$ - (s, V_{σ_2}) such that $h(x_t) \leq Q$, \exists a *ps-ro* fuzzy α -nbd W of x_t on U such that $h(W) \leq Q$. So, $\exists P \in ps$ - (α, U_{σ_1}) such that $x_t \leq P \leq W$, which gives $h(x_t) \leq h(P) \leq h(W) \leq Q$. Hence, $h(P) \leq Q$.

 $(d) \Rightarrow (a)$ Let $Q \in ps \cdot (s, V_{\sigma_2}) x_t$ be a fuzzy point on $h^{-1}(Q)$. Then, $x_t \leq h^{-1}(Q)$ and $h(x_t) \leq h(h^{-1}(Q)) \leq Q$. Now, $\exists P \in ps \cdot (\alpha, U_{\sigma_1})$ such that $x_t \leq P$ and $h(P) \leq Q$ which gives $P \leq h^{-1}(Q)$. As, $P \in ps \cdot (\alpha, U_{\sigma_1}), P \leq ps \cdot int(ps \cdot cl(ps \cdot int(P)))$. So,

 $x_t \leq P \leq ps\text{-int}(ps\text{-}cl(ps\text{-}int(P))) \leq ps\text{-}int(ps\text{-}cl(ps\text{-}int(h^{-1}(Q))))$. Now, x_t being arbitrary, taking union, $h^{-1}(Q) = \vee \{x_t : x_t \in h^{-1}(Q)\} \leq \vee \{P : x_t \in h^{-1}(Q)\} \leq h^{-1}(Q)$. So, $\vee \{P : x_t \in h^{-1}(Q)\} = h^{-1}(Q)$. Thus, $h^{-1}(Q) \in ps\text{-}(\alpha, U_{\sigma_1})$, proving h is ps-ro fuzzy strongly α -continuous.

Acknowledgements

We sincerely thank the referees for their valuable comments and suggestions on the manuscript.

References

- [1] L.A. Zadeh, Fuzzy Sets, Information and Control 8 (1965) 338-353.
- [2] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190.
- [3] A. Deb Ray, P. Chettri, On pseudo δ-open fuzzy sets and pseudo fuzzy δ-continuous functions, International Journal of Contemporary Mathematical Sciences 5 (29) (2010) 1403-1411.
- [4] A. Deb Ray, P. Chettri, Fuzzy pseudo nearly compact spaces and ps-ro continuous functions, The Journal of Fuzzy Mathematics 19 (3) (2011) 737-746.
- [5] A. Deb Ray, P. Chettri, Further on fuzzy pseudo near compactness and *ps-ro* fuzzy continuous functions, Theory and Applications of Mathematics and Computer Science 6 (2) (2016) 96-102.
- [6] P. Chettri, S. Gurung, S. Halder, On ps-ro Semiopen Fuzzy Set and ps-ro Fuzzy Semicontinuous, Semiopen functions, Tbilisi Mathematical Journal 7 (1) (2014) 87-97.
- [7] P. Chettri, K. Katwal, S. Gurung, On ps-ro fuzzy irresolute function, The Journal of Fuzzy Mathematics 24 (4) (2016) 815-824.
- [8] P. Chettri, A. Chettri, *ps-ro* fuzzy strongly α -irresolute function, Acta Univ. Sapientiae, Mathematica 9 (1) (2017) 260-268.
- [9] P. Chettri, A. Chettri, On ps-ro fuzzy α-irresolute functions, Songklanakarin Journal of Science and Technology 40 (5) (2018) 1055-1060.
- [10] P. Chettri, U. Chettri, A. Chettri, On *ps-ro* fuzzy semi α -irresolute functions, Accepted for publication in Ganita.
- [11] P. Chettri, S. Gurung, K. Katwal, ps-ro fuzzy open(closed) functions and ps-ro fuzzy semi-homeomorphism, International Journal of Analysis and Applications 9 (2) (2015) 121-128.
- [12] R.K. Saraf, S. Mishra, Govindappa Navalagi, On fuzzy strongly α -continuous, Bulletin Greek Math. Society 47 (1) (2003) 13-18.
- [13] N. Velicko, H-closed topological spaces, Amer. Soc. Transl. 78 (2) (1968) 103-118.
- [14] K.K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981) 41-32.
- [15] P. Chettri, S. Gurung, On *ps-ro* fuzzy α -continuous functions, Annals of Fuzzy Mathematics and informatics 12 (1) (2016) 83-92.
- [16] M.K. Singal, N. Rajvanshi, Fuzzy alpha-sets and alpha-continuous maps, Fuzzy Sets and Systems 48 (1992) 383-390.