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1. Introduction

Throughout of this paper, we suppose that H is a real Hilbert space with a norm ‖ · ‖
and an inner product 〈·, ·〉 and C ⊂ H is a nonempty, closed, and convex. The fixed point
problem is to find a point x ∈ C such that x = Tx where a mapping T : C → C. We denote
that F (S) is the set of fixed point of S where a mapping S : C → C. Mathematicians are
interesting the fixed point problem because there are many applications of this problem
such as variational inequality problems, saddle point problems, minimax problems (see
in [1–4]). In 1953, Mann [5] introduced an iteration scheme for finding the fixed point of
the mapping T :

xn+1 = (1− αn)xn + αnTxn (1.1)

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright © 2022 by TJM. All rights reserved.



1078 Thai J. Math. Vol. 20 (2022) /A. Arunchai et al.

where {αn} ⊂ (0, 1) and
∑∞
n=0 αn(1− αn) =∞. When T is a nonexpansive mapping, it

can prove that the sequence {xn} generated by (1.1) converges weakly to a fixed point of
T . Moreover, x which is a fixed point of the mapping PC(I − rA) when r > 0, I stands
for the identity mapping, A stands for the continuous mapping from C to H, and PC
stands for the metric projection iff a point x ∈ C such that

〈Ax, y − x〉 ≥ 0 ∀ y ∈ C (1.2)

It is known that the classical variational inequality problem (for short, V I(C,A)). Sup-
pose that SOL(C,A) is the solution of V I(C,A) and the solution set of the dual variational
inequality:

SOLD(C,A) := {x ∈ C|〈Ay, y − x〉 ≥ 0, ∀ y ∈ C}. (1.3)

Obviously, SOLD(C,A) ⊂ SOL(C,A) because A is continuous and C is convex. Many
authors attaches great importance to establish the projection type algorithms for find-
ing SOL(C,A) such as Goldstein-Levitin-Polyak projection methods [6, 7]; combined
relaxation methods [8–10]; proximal point methods [11]; extragradient projection meth-
ods [12–22]; double projection methods [23]. These methods have the common assump-
tion SOL(C,A) ⊂ SOLD(C,A). In the sense of Karamardian [24], this assumption is
a direct consequence of pseudomonotonicity of A. In 2015, Ye and He [25] presented a
double projection method for solving SOL(C,A) without monotonicity of A. They as-
sume only assumption SOLD(C,A) 6= ∅ and show that SOL(C,A) ⊂ SOLD(C,A) imply
SOLD(C,A) 6= ∅ (but not converse). Furthermore, the sequence {xn} generated by their
method conveges to SOL(C,A).

Recently, fixed point problem, variational inequalities, and zero point problems have
been investigated by authors besed on iterative methods (see in [26–31]). One of iterative
methods for solving the common solution was presented by Feng and Jing in [26]. They
proposed the projection methods base on a hybrid projection iterative algorithm and
proved strong convergence theorems without any compact assumptions. The methods
can find the common solution of fixed point problems of a nonexpansive mapping, mono-
tone variational inequality problems, and zero point problems of the sum of a maximal
monotone operator and an inverse-strongly monotone mapping in Hilbert spaces.

Inspired and motivated by [25] and [26], we propose a projection iterative algorithm
base on a projection method [26] and a double projection method [25] for finding the com-
mon solution of fixed point problems of a nonexpansive mapping, variational inequality
problems without a monotonicity of A, and zero point problems of the sum of a maximal
monotone operator and an inverse-strongly monotone mapping in Hilbert spaces. When
setting the solution set of the dual variational inequality is nonempty, the strong con-
vergence theorem of the proposed iterative algorithm is established under some suitable
control conditions. In addition, we reduce our main result to study several problems.

2. Preliminaries

In this section, we collect essential equipments for using in section 3. The projection
from x ∈ H onto C is defined by PC(x) := arg min{‖y−x‖ | y ∈ C}. The natural residual
function γµ(·) is defined by γµ(x) := x − PC(x − µAx) where µ > 0 is a parameter. If
µ = 1, we denote γ(x).

Lemma 2.1 ([26]). Let C be a nonempty, closed, and convex subset of H. Then

‖x− PCx‖2 + ‖y − PCx‖2 ≤ ‖x− y‖2, ∀x ∈ H, y ∈ C.
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We recall that a set-valued mapping M : H ⇒ H is said to be monotone iff, for every
x, y ∈ H, f ∈ Mx and g ∈ My imply 〈x − y, f − g〉 > 0. A monotone mapping M is
maximal iff the graph Graph(M) of R is not properly contained in the graph of any other
monotone mapping. It is known that a monotone mapping M is maximal if and only if,
for any (x, f) ∈ H ×H, 〈x− y, f − g〉 ≥ 0, for every (y, g) ∈ Graph(M) implies f ∈ Rx.

For a maximal monotone operator M on H and r > 0, we assume the single valued
resovent Jr : H → D(M), where D(M) denotes the domain of M. It is known that Jr is
firmly nonexpansive, and M−1(0) = F (Jr), where F (Jr) := {x ∈ D(M) : x = Jrx} and
M−1(0) := {x ∈ H : 0 ∈Mx}.

Lemma 2.2 ([26]). Let C be a nonempty, closed, and convex subset of H, B : C → H be
a mapping, and M : H ⇒ H be a maximal monotone operator. Then F (Jr(I − sB)) =
(B +M)−1(0).

Lemma 2.3 ([26]). Let C be a nonempty, closed, and convex subset of H. Let S : C → C
be a nonexpansive mapping. Then the mapping I − S is demiclosed at zero, that is, if
{xn} is a sequence in C such that xn ⇀ x̄ and xn − Sxn → 0, then x̄ ∈ F (S).

Lemma 2.4 ([15]). Let C be a closed convex subset of H, h be a real-valued function,
and K := {x ∈: h(x) ≤ 0}. If K is nonempty and h is Lipschitz continuous on C with
modolus θ > 0, then

dist(x,K) ≤ θ−1 max{h(x), 0}, ∀x ∈ C (2.1)

Remark 2.5. If we set K := K ∩ C and K ∩ C 6= ∅, then (2.1) holds. Note that
C and K ∩ C are closed, so there exist miny∈K∩C ‖x − y‖ and miny∈K ‖x − y‖ which
miny∈K∩C ‖x− y‖ ≤ miny∈K ‖x− y‖, that is, dist(x,K) ≤ dist(x,C ∩K)

Lemma 2.6. Let the function hn be defined by Step 5 and {xn} be generated by Algorithm
1. If SOLD(C,A) 6= ∅, then hn(xn) ≥ (1 − σ)‖rλn(xn)‖2 > 0 for every n. If x∗ ∈
SOLD(C,A), then hn(x∗) ≤ 0 for every n.

Lemma 2.7 ([15]). x∗ ∈ SOL(C,A) if and only if ‖rµ(x∗)‖ = 0.

Lemma 2.8. If x̃ is any accumulation point of {xn} which generated by Algorithm 1 ,
then x̃ ∈ ∩∞n=1Hn.

Proof. Suppose that l is nonnegative integer and x̃ is an accumulation point of {xn}. There
is a subsequence {xnm} of {xn} which limm→∞ xnm = x̃. We have xnm = PCni−1∩H̃nm−1

x1

and H̃nm−1 = ∩j=nm−1
j=1 Hj . It obtains that xnm ∈ Hl for every m ≥ l + 1. From Hl is

closed and limm→∞ xnm
= x̃, we get x̃ ∈ Hl. This completes the proof

3. Main results

In this section, we present our algorithms and reduce our strong convergence theorems
for studying several problems.

Algorithm 1. Setting Jsn = (I + snM)−1, {ρn} ∈ (0, 1
α ), {sn} ∈ (0, 2β), {αn} ∈ (0, 1),

σ ∈ (0, 1) and λ ∈ (0, 1). Choose x1 ∈ C and C1 = C as an initial point. Set n = 1.
Step 1. Compute zn := PC(Jsn(xn − snBxn)− ρnAJsn(xn − snBxn)).
Step 2. Compute γ(xn) = xn − zn. If γ(xn) = 0, stop. Otherwise, go to Step 3.
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Step 3. Compute un = xn−ηnγ(xn) where ηn = λmn withmn is the smallest nonnegative
integer satisfying

〈A(xn)−A(xn − λmγ(xn)), γ(xn)〉 ≤ σ ‖γ(xn)‖2 . (3.1)

Step 4. Compute yn = αnxn + (1− αn)SPC(Jsn(xn − snBxn)− ρnAzn).
Step 5. Compute xn+1 = PCn+1∩H̃n+1

(x1), where

Cn+1 = {v ∈ Cn : ‖yn − v‖ ≤ ‖xn − v‖}

and H̃n+1 := ∩j=n+1
j=1 Hj with Hj := {v : hj(v) ≤ 0} is a half space defined by the function

hj(v) := 〈A(uj), v − uj〉 .

Theorem 3.1. Let A : C → H be an α-Lipschitz continuous mapping, S : C → C be a
nonexpansive mapping with a nonempty fixed point set, B : C → H be a β-inverse strongly
monotone mapping, and M : H ⇒ H be a maximal monotone operator with D(M) ⊂ C.
Suppose that SOLD(C,A) and Θ := SOL(C,A) ∩ F (S) ∩ (B + M)−1(0) are nonempty
sets. Then {xn} which a sequence generated by Algorithm 1 converges strongly to PΘx1

where a, b, c, d, and e are real constants and satisfy
(A) 0 < a ≤ ρn ≤ b < 1

α ,
(B) 0 < c ≤ sn ≤ d < 2β, and
(C) 0 ≤ αn ≤ e < 1.

Proof. We are going to show that Cn ∩ H̃n is closed and convex for every n ≥ 1. By
hypothesis, we have C1 = C which is closed and convex. Thus C1 ∩ H̃1 is closed and
convex. Assume that Ck ∩ H̃k is closed and convex for some k ≥ 1. We show that
Ck+1 ∩ H̃k+1 is closed and convex for some k. Let v1, v2 ∈ Ck+1 ∩ H̃k+1. Suppose that
v = tv1 + (1− t)v2 where t ∈ (0, 1). By hk+1(v1) ≤ 0 and hk+1(v2) ≤ 0, we have

hk+1(v) = 〈A(uk+1), tv1 + v2 − tv2 − uk+1 + tuk+1 − tuk+1〉
= 〈A(uk+1), v2 − uk+1〉+ t̄〈A(uk+1), v1 − uk+1〉 − t̄〈A(uk+1), v2 − uk+1〉
≤ 0

and

‖yk − v‖ ≤ ‖xk − v‖ ⇐⇒ ‖yk‖2 − ‖xk‖2 − 2〈v, yk − xk〉 ≥ 0. (3.2)

It can obtain that v ∈ Ck+1∩H̃k+1. Therefore Cn∩H̃n is closed and convex for every k ≥ 1.

Hereon, we will show that Θ ⊂ Cn ∩ H̃n for every n ≥ 1. Set wn = PC(vn− ρnAzn) when

vn = Jsn(xn − snBxn). By the assumption and SD 6= ∅, we obtain that Θ ⊂ C1 ∩ H̃1.

Assume that Θ ⊂ Ck ∩ H̃k for some k ≥ 1. From Lemma 2.1, we see that for every
p ∈ Θ ⊂ Ck ∩ H̃k,

‖wn − p‖ ≤ ‖vk − ρkAzk − p‖2 − ‖vk − ρkAzk − wk‖2

= ‖vk − p‖2 − ‖vk − wk‖2 + 2ρk〈Azm, p− wk〉
= ‖vk − p‖2 − ‖vk − wk‖2 + 2ρk(〈Azk −Ap, p− zm〉+ 〈Ap, p− zk〉

+〈Azk, zk − wk〉)
≤ ‖vk − p‖2 − ‖vk − zk + zk − wm‖2 + 2ρk〈Azk, zk − wk〉
= ‖vk − p‖2 − ‖vk − zk‖2 − ‖zm − wm‖2

+2〈vk − zk − ρkAzk, wk − zk〉. (3.3)
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Since A is Lipschitz continuous and zk = PC(vk − ρkAvk), it can imply

〈vk − zk − ρkAzk, wk − zm〉 = 〈vk − zk − ρkAvk, wk − zm〉
+〈ρkAvk − ρkAzk, wk − zm〉

≤ ρkα‖vk − zm‖‖wk − zk‖. (3.4)

Thank to (3.3) and (3.4), we see that

‖wk − p‖2 ≤ ‖vk − p‖2 − ‖vk − zk‖2 − ‖zk − wk‖2 + 2ρkα‖vk − zk‖‖wk − zk‖
≤ ‖vk − p‖2 − (1− ρ2

kα
2)‖vk − zk‖2.

According to (A), we have

‖yk − p‖2 ≤ αk‖xk − p‖2 + (1− αk)‖Swk − p‖2

≤ αk‖xk − p‖2 + (1− αk)‖wk − p‖2

≤ αk‖xk − p‖2 + (1− αk)(‖vk − p‖2 − (1− ρ2
kα

2)‖vk − zk‖2)

≤ ‖xk − p‖2 − (1− αk)(1− ρ2
kα

2)‖vk − zk‖2

≤ ‖xk − p‖2. (3.5)

This implies that p ∈ Ck+1 ∩ H̃k+1. So Θ ⊂ Cn ∩ H̃n for all n ≥ 1. We denote that
xn = PCn∩H̃n

x1. Thus ‖x1 − xn‖ ≤ ‖x1 − p‖ for all p ∈ Θ. Since B is inverse-strongly

monotone and Lemma 2.2, it can obtain that (B +M)−1(0) is closed and convex. Since
A is Lipschitz continuous, we obtain that V I(C,A) is closed and convex. Obviously, Θ is
also closed and convex. Thus

‖x1 − xn‖ ≤ ‖x1 − PΘx1‖. (3.6)

We conclude that {xn} is bounded. Since xn = PCn∩H̃n
x1 and xn+1 = PCn+1∩H̃n+1

x1,
we get

0 ≤ 〈x1 − xn, xn − xn+1〉
= 〈x1 − xn, xn − x1 + x1 − xn+1〉
≤ −‖x1 − xn‖2 + ‖x1 − xn‖‖x1 − xn+1‖.

Therefore ‖xn−x1‖ ≤ ‖xn+1−x1‖. This implies that limn→∞ ‖xn−x1‖ exists. We note
that

‖xn − xn+1‖ = ‖xn − x1‖2 + 2〈xn − x1, x1 − xn+1〉+ ‖x1 − xn+1‖2

= ‖xn − x1‖2 − 2‖xn − x1‖2 + 2〈xn − x1, xn − xn+1〉
+‖x1 − xn+1‖2

≤ ‖x1 − xn+1‖2 − ‖xn − x1‖2.

Then limn→∞ ‖xn − xn+1‖ = 0. By xn+1 = PCn+1∩H̃n+1
x1 ∈ C ∩ H̃n+1, we have

‖yn − xn+1‖ ≤ ‖xn − xn+1‖. (3.7)

So ‖yn − xn‖ ≤ ‖yn − xn+1‖+ ‖xn − xn+1‖ ≤ 2‖xn − xn+1‖.
We know that limn→∞ ‖xn − xn+1‖ = 0. It can obtain

lim
n→∞

‖xn − yn‖ = 0. (3.8)
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Since B is β- inverse strongly monotone and (B), we have

‖(I − snB)x− (I − snB)y‖2 = ‖x− y‖2 − 2sn〈x− y,Bx−By〉+ s2
n‖Bx−By‖2

≤ ‖x− y‖2 − sn(2β − sn)‖Bx−By‖2

≤ ‖x− y‖2,

for every x, y ∈ C. According to (3.5), we get

‖yn − p‖2 ≤ αn‖xn − p‖2 + (1− αn)‖vn − p‖2

= αn‖xn − p‖2 + (1− αn)‖Jsn(p− snBp)‖2

≤ ‖xn − p‖2 − (1− αn)sn(2β − sn)‖Bxn −Bp‖2.

This implies that

(1− αn)sn(2β − sn)‖Bxn −Bp‖2 ≤ ‖xn − p‖2 − ‖yn − p‖2

≤ ‖xn − yn‖(‖xn − p‖+ ‖yn − p‖).

By means of (B) and (C), we receive

lim
n→∞

‖Bxn −Bp‖ = 0. (3.9)

Since Jsn is firmly nonexpansive, it can imply that

‖vn − p‖2 = ‖Jsn(xn − snBxn)− Jsn(p− snBp)‖2

≤ 〈vn − p, (xn − snBxn)− (p− snBp)〉

=
1

2
‖vn − p‖2 + ‖(xn − snBxn)− (p− snBp)‖2

−‖(vn − p)− ((xn − snBxn)− (p− snBp))‖2

≤ 1

2
(‖vn − p‖2 + ‖xn − p‖2 − ‖vn − xn + sn(Bxn −Bp)‖2)

=
1

2
(‖vn − p‖2 + ‖xn − p‖2 − ‖vn − xn‖2 − s2

n‖Bxn −Bp‖2

−2sn〈vn − xn, Bxn −Bp〉)

≤ 1

2
(‖vn − p‖2 + ‖xn − p‖2 − ‖vn − xn‖2 + 2sn‖vn − xn‖‖Bxn −Bp‖).

Therefore,

‖vn − p‖2 ≤ ‖xn − p‖2 − ‖vn − x0‖2 + 2sn‖vn − xn‖‖Bxn −Bp‖. (3.10)

Combining (3.5) with (3.10), the previous inequality becomes

‖vn − p‖2 = αn‖xn − p‖2 + (1− αn)‖vn − p‖2

≤ ‖xn − p‖2 − (1− αn)‖vn − xn‖2 + 2sn‖vn − xn‖‖Bxn −Bp‖.

It obtains that

(1− αn)‖vn − xn‖2 = ‖xn − p‖2 − ‖yn − p‖2 + 2sn‖vn − xn‖‖Bxn −Bp‖
≤ ‖xn − yn‖(‖xn − p‖+ ‖yn − p‖) + 2sn‖vn − xn‖‖Bxn −Bp‖.

By (3.8), (3.9), and (C), we have

lim
n→∞

‖vn − xn‖ = 0. (3.11)
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As a consequence of (3.5), we find that

(1− αn)(1− ρ2
nα

2)‖vn − zn‖2 ≤ ‖xn − p‖2 − ‖yn − p‖2

≤ ‖xn − yn‖(‖xn − p‖+ ‖yn − p‖).
From (A), (C), and (3.8), it obtains

lim
n→∞

‖vn − zn‖ = 0. (3.12)

We denote that

‖wn − zn‖2 = ‖PC(vn − rAzn)− PC(vn − ρnAvn)‖2

≤ ‖(vn − ρnAzn)− (vn − ρnAvn)‖2

≤ ρ2
nα

2‖zn − vn‖2.
By (3.12), it implies

lim
n→∞

‖un − zn‖ = 0. (3.13)

Note that

‖xn − Sxn‖ ≤ ‖xn − Swn‖+ ‖Swn − Sxn‖

≤ ‖xn − yn‖
1− αn

+ ‖wn − xn‖

≤ ‖xn − yn‖
1− αn

+ ‖wn − zn‖+ ‖zn − vn‖+ ‖vn − xn‖.

Thank to (3.8), (3.11), (3.12), (3.13), and (C), we get

lim
n→∞

‖xn − Sxn‖ = 0. (3.14)

Since {xn} is bounded, there exists a subsequence {xni
} of {xn} which xni

⇀ q ∈ C. By
Lemma 2.3, we can conclude that q ∈ F (S).

Afterwards, we are going to show that q ∈ SOL(C,A). Since A and γ are continuous,
it can imply that {zn}, {γ(xn)} and {yn} are bounded. Furthermore, the continuity of A
implies that {Ayn} is bounded, that is, for some W > 0

‖Ayn‖ ≤W, ∀n. (3.15)

Form the definition of H̃n+1, we note that H̃n+1 ⊆ Hn+1 for every n. Therefore

dist(xn+1, Cn+1 ∩ H̃n+1) ≥ dist(xn+1, Cn+1 ∩Hn+1). (3.16)

Taking the limit n→∞ in (3.16), we have

lim
n→∞

dist(xn+1, Cn+1 ∩Hn+1) = 0. (3.17)

Obviously, every hn+1 is Lipschitz continuous on C with modulus W. By using Lemma
2.4 and Lemma 2.2, we get that

dist(xn+1, Cn+1 ∩Hn+1) ≥W−1hn+1(xn+1) ≥W−1(1− σ)ηn‖γ(xn+1)‖2. (3.18)

Thank to (3.17) and (3.18), it follows that limn→∞ ηn‖γ(xn+1)‖2 = 0.
If lim supn→∞ ηn > 0, then lim infn→∞ ‖γ(xn)‖ = 0. Since {xn} is bounded and γ

is continuous, there is an accumulation point q of {xn} which γ(q) = 0. According to
Lemma 2.7 and Lemma 2.8, it implies q ∩∞n=1 (Hn ∩ SOL(C,A)). Thus q ∈ SOL(C,A).

If lim supn→∞ ηn = 0, then limn→∞ ηn = 0. We suppose that q̄ is any accumulation
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point of {xn}. There is a subsequence xnj which converges to q̄. By the condition of ηn,
3.1 is not satisfied for mn − 1. So

〈Axnj −A(xnj − λ−1ηnjγ(xnj )), γ(xnj )〉 ≥ σ‖γ(xnj )‖2. (3.19)

Taking the limit in (3.19), we have

0 ≥ σ‖γ(q̄)‖2 ≥ 0. (3.20)

It obtains γ(q̄) = 0. Thus q̄ ∈ ∩∞n=1(Hn ∩ SOL(C,A)). We can conclude that q̄ ∈
SOL(C,A).

Later, we will prove that q ∈ (B+M)−1(0). We denote that xn−snBxn ∈ vn+snMvn.
Thus

xn − vn
sn

−Bxn ∈Mvn. (3.21)

Let τ ∈Mv. We know that M is monotone. From (3.21), it follows that

〈xn − vb
sn

−Bxn − τ, vn − v〉 ≥ 0. (3.22)

By dint of (B), we have 〈−Bq − τ, q − v〉 ≥ 0. So −Bq ∈ Mq. This means that q ∈
(B+M)−1(0). We conclude that q ∈ Θ. Suppose that there is another subsequence {xnj

}
of {xn} which xnj

⇀ q̃ ∈ Θ. By Opial’s condition, q̃ = q.
Eventually, we will show that q = PΘx1 and xn → q. From (3.6) and the lower

semicontinuity of norm, we find that

‖x1 − PΘx1‖ ≤ ‖x1 − q‖ ≤ lim inf
n→∞

‖x1 − xn‖ ≤ lim sup
n→∞

‖x1 − xn‖ ≤ ‖x1 − PΘx1‖.

(3.23)

This implies that limn→∞ ‖x1−xn‖ = ‖x1−PΘx1‖ = ‖x1−q‖. Hence, the sequence {xn}
converges strongly to PΘx1.

Theorem 3.1 is reduced by setting B = 0. We receive the following algorithm.

Algorithm 2. Setting Jsn = (I + snM)−1, {ρn} ∈ (0, 1
α ), {sn} ∈ (0,∞), {αn} ∈ (0, 1),

σ ∈ (0, 1) and λ ∈ (0, 1). Choose x1 ∈ C and C1 = C as an initial point. Set n = 1.
Step 1. Compute zn := PC(Jsnxn − ρnAJsnxn).
Step 2. Compute γ(xn) = xn − zn. If γ(xn) = 0, stop. Otherwise, go to Step 3.
Step 3. Compute un = xn−ηnγ(xn) where ηn = λmn withmn is the smallest nonnegative
integer satisfying

〈A(xn)−A(xn − λmγ(xn)), γ(xn)〉 ≤ σ ‖γ(xn)‖2 .
Step 4. Compute yn = αnxn + (1− αn)SPC(Jsnxn − ρnAzn).
Step 5. Compute xn+1 = PCn+1∩H̃n+1

(x1), where

Cn+1 = {v ∈ Cn : ‖yn − v‖ ≤ ‖xn − v‖}

and H̃n+1 := ∩j=n+1
j=1 Hj with Hj := {v : hj(v) ≤ 0} is a half space defined by the function

hj(v) := 〈A(uj), v − uj〉 .

Corollary 3.2. Let A : C → H be an α-Lipschitz continuous mapping, S : C → C be a
nonexpansive mapping with a nonempty fixed point set, and M : H ⇒ H be a maximal
monotone operator with D(M) ⊂ C. Suppose that SOLD(C,A) and κ := SOL(C,A) ∩
F (S)∩ (M)−1(0) are nonempty sets. Then the sequence {xn}, generated by Algorithm 2,
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converges strongly to PΘx1 where a, b, c, d, and e are real constants and satisfy
(A) 0 < a ≤ ρn ≤ b < 1

α ,
(B) 0 < c ≤ sn ≤ d <∞, and
(C) 0 ≤ αn ≤ e < 1.

When setting M = 0 and Jsn = I, Corollary 3.2 can reduce to the following algorithm.

Algorithm 3. Setting Jsn = (I + snM)−1, {ρn} ∈ (0, 1
α ), {αn} ∈ (0, 1), σ ∈ (0, 1) and

λ ∈ (0, 1). Choose x1 ∈ C and C1 = C as an initial point. Set n = 1.
Step 1. Compute zn := PC(xn − ρnAxn).
Step 2. Compute γ(xn) = xn − zn. If γ(xn) = 0, stop. Otherwise, go to Step 3.
Step 3. Compute un = xn−ηnγ(xn) where ηn = λmn

withmn is the smallest nonnegative
integer satisfying

〈A(xn)−A(xn − λmγ(xn)), γ(xn)〉 ≤ σ ‖γ(xn)‖2 .

Step 4. Compute yn = αnxn + (1− αn)SPC(xn − ρnAzn).
Step 5. Compute xn+1 = PCn+1∩H̃n+1

(x1), where

Cn+1 = {v ∈ Cn : ‖yn − v‖ ≤ ‖xn − v‖}

and H̃n+1 := ∩j=n+1
j=1 Hj with Hj := {v : hj(v) ≤ 0} is a half space defined by the function

hj(v) := 〈A(uj), v − uj〉 .

Corollary 3.3. Let A : C → H be an α-Lipschitz continuous mapping, S : C → C be a
nonexpansive mapping with a nonempty fixed point set, and M : H ⇒ H be a maximal
monotone operator with D(M) ⊂ C. Suppose that SOLD and ψ := SOL(C,A)∩F (S) are
nonempty sets. Then {xn} which a sequence generated by Algorithm 1 converges strongly
to PΘx1 where a, b and c are real constants and satisfy

(A) 0 < a ≤ ρn ≤ b < 1
α and

(B) 0 ≤ αn ≤ c < 1.

4. Conclusions

In this work, we propose projection iterative algorithms combining both a projection
iterative algorithm and a double projection iterative algorithm to solve the common solu-
tion of variational inequality problem without monotonicity of A, fixed point problem of
a nonexpansive mapping, and zero point problem of the sum of two monotone mappings
in Hilbert spaces. Furthermore, the strong convergence theorem is generated by the pro-
posed algorithm under some suitable control conditions. Finally, we use our main result
to solve the several problems by reducing some mappings.
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