Thai Journal of **Math**ematics Volume 20 Number 3 (2022) Pages 1031–1039

http://thaijmath.in.cmu.ac.th

On Statistical $\mathcal{A}^{\mathcal{I}}$ and Statistical $\mathcal{A}^{\mathcal{I}^*}$ – Summability

Osama H. H. Edely

Department of Mathematics, Tafila Technical University, P.O.Box 179, Tafila (66110) - Jordan e-mail : osamaedely@yahoo.com

Abstract In this paper we define statistical $\mathcal{A}^{\mathcal{I}}$ - summability of \mathfrak{x} , that is, \mathfrak{x} is said to be statistically $\mathcal{A}^{\mathcal{I}}$ - summable if $\mathcal{A}\mathfrak{x}$ is \mathcal{I} - statistically convergent. Moreover, we also introduce the concept of statistical $\mathcal{A}^{\mathcal{I}^*}$ - summability and find its relationship with statistical $\mathcal{A}^{\mathcal{I}}$ - summability. Also we prove that under what conditions $\mathcal{A}^{\mathcal{I}}$ - statistical convergence implies statistical $\mathcal{A}^{\mathcal{I}}$ - summability.

MSC: 40A35; 40G15; 40D25

Keywords: $\mathcal{A}^{\mathcal{I}}$ – summability; $\mathcal{A}^{\mathcal{I}^*}$ – summability; statistical $\mathcal{A}^{\mathcal{I}}$ – summability; statistical $\mathcal{A}^{\mathcal{I}^*}$ – summability

Submission date: 31.05.2020 / Acceptance date: 16.09.2020

1. INTRODUCTION AND PRELIMINARIES

The concept of statistical convergence based on the notion of natural density of subset of natural number \mathbb{N} was first introduced by Fast [1], which is a natural generalization of the usual convergence of sequences. In 1953 the concept arises as an example of convergence in density as introduced by Buck [2]. Schoenberg [3] studied statistical convergence as a summability method and Zygmund [4] established a relation between it and strong summability. Fridy [5], Salat [6], Connor [7], Kolk [8], Mursaleen and Edely [9] and many others studied it as a summability method. Let $\mathcal{K} \subseteq \mathbb{N}$, then the natural density of \mathcal{K} [10] is defined by

$$\delta(\mathcal{K}) = \lim_{n} \frac{1}{n} \mid \{k \le n : k \in \mathcal{K}\} \mid = \lim_{n} (\mathfrak{C}_1 \chi_{\kappa})_n,$$

if the limit exists, where the vertical bars denote the cardinality of the enclosed set. Recall that $\mathfrak{C}_1 = (\mathfrak{C}, 1)$ is the Cesàro matrix of order 1 and χ_{κ} denotes the characteristic sequence of \mathcal{K} . A sequence $\mathfrak{x} = (\mathfrak{x}_k)$ of real numbers \mathbb{R} is said to be statistically convergent to the number ℓ provided that for every $\epsilon > 0$, the set $\mathcal{K}(\epsilon) = \{k \in \mathbb{N} : |\mathfrak{x}_k - \ell| \ge \epsilon\}$ has natural density zero [1], and we write $st - \lim \mathfrak{x} = \ell$.

Let $\mathcal{A} = (\mathfrak{a}_{nk})_{n,k=1}^{\infty}$ be an infinite matrix and $\mathfrak{r} = (\mathfrak{x}_k)_{k=1}^{\infty}$ be a number sequence. By $\mathcal{A}\mathfrak{r} = (\mathcal{A}_n(\mathfrak{r}))$, we denote the \mathcal{A} - transform of the sequence $\mathfrak{r} = (\mathfrak{x}_k)$, where $\mathcal{A}_n(\mathfrak{r}) = \sum_{k=1}^{\infty} \mathfrak{a}_{nk}\mathfrak{x}_k$. Thus we say that \mathfrak{r} is \mathcal{A} -summable to ℓ if $\lim_n \mathcal{A}_n(\mathfrak{r}) = \ell$. A matrix \mathcal{A} is called regular i.e. $\mathcal{A} \in (c,c)_{reg}$ if $\mathcal{A} \in (c,c)$ and $\lim_n \mathcal{A}_n(\mathfrak{r}) = \lim_k \mathfrak{x}_k$ for all

 $\mathfrak{x} \in c$; the space of all convergent sequences. The well-known necessary and sufficient conditions (Silverman-Toeplitz) for \mathcal{A} to be regular are (i) $||\mathcal{A}|| = \sup_n \sum_k |\mathfrak{a}_{nk}| < \infty$, (ii) $\lim_n \mathfrak{a}_{nk} = 0$, for each k, (iii) $\lim_n \sum_k \mathfrak{a}_{nk} = 1$.

Let Ψ denote the class of all non-negative regular matrices. Freedmann and Sember [11] generalized the natural density by replacing C_1 with $\mathcal{A} \in \Psi$. A subset \mathcal{K} of \mathbb{N} has \mathcal{A} -density if $\delta_{\mathcal{A}}(\mathcal{K}) = \lim_{n} \sum_{k \in \mathcal{K}} \mathfrak{a}_{nk}$ exists. Kolk [8] and Connor [7] extended the idea of statistical convergence to \mathcal{A} -statistical convergence. A sequence \mathfrak{r} is said to be \mathcal{A} -statistically convergent to ℓ if $\delta_{\mathcal{A}}(\mathcal{K}(\epsilon)) = 0$ for every $\epsilon > 0$, which we write $st_{\mathcal{A}} - \lim_{k \to \infty} \mathfrak{r}_k = \ell$.

The idea of \mathcal{I} -convergence based on the notion of ideals of \mathbb{N} was introduced by Kostyrko et al. [12] as a generalization of statistical convergence. More generalization and recent work can be found in ([13], [14], [15], [16], [17], [18], [19], [20], [21]).

A non-empty class $\mathcal{I} \subseteq \mathcal{P}(\mathcal{S})$ of subsets of $\mathcal{S} \neq \emptyset$ is said to be an ideal in \mathcal{S} if (i) $\emptyset \in \mathcal{I}, (ii) \ \mathcal{G}, \mathcal{H} \in \mathcal{I} \Longrightarrow \mathcal{G} \cup \mathcal{H} \in \mathcal{I}, (iii) \ \mathcal{G} \in \mathcal{I}, \mathcal{H} \subseteq \mathcal{G} \Longrightarrow \mathcal{H} \in \mathcal{I}.$ An ideal \mathcal{I} is called a non-trivial if $\mathcal{I} \neq \emptyset$ and $\mathcal{S} \notin \mathcal{I}$. A non-trivial ideal \mathcal{I} in \mathcal{S} is called admissible if $\{\mathfrak{g}\} \in \mathcal{I},$ for each $\mathfrak{g} \in \mathcal{S}$. We denote the set of all non-trivial admissible ideal in \mathbb{N} by \Im

A non-empty class $\mathcal{F} \subseteq \mathcal{P}(\mathcal{S})$ of subsets of \mathcal{S} is said to be a filter in $\mathcal{S} \neq \emptyset$ if $(i) \emptyset \notin \mathcal{F}$, (*ii*) $\mathcal{G}, \mathcal{H} \in \mathcal{F} \Longrightarrow \mathcal{G} \cap \mathcal{H} \in \mathcal{F}$, (*iii*) $\mathcal{G} \in \mathcal{F}, \mathcal{H} \supseteq \mathcal{G} \Longrightarrow \mathcal{H} \in \mathcal{F}$. Let \mathcal{I} be a non-trivial ideal in \mathcal{S} , the filter $\mathcal{F}(\mathcal{I}) = \{\mathcal{M} = \mathcal{S} \setminus \mathcal{H} : \mathcal{H} \in \mathcal{I}\}$ is called the filter associated with the ideal \mathcal{I} .

In [12] defined \mathcal{I} -convergence and \mathcal{I}^* -convergence and gave a necessary and sufficient condition for the equivalency of both definitions.

Remark 1.1. Throughout the paper, $\mathcal{I} \in \mathfrak{F}$ and $\mathcal{A} \in \Psi$.

Definition 1.2. ([12]). A real sequence $\mathfrak{x} = (\mathfrak{x}_k)$ is said to be \mathcal{I} -convergent to $\ell \in \mathbb{R}$ if for every $\epsilon > 0$, the set $\mathcal{K}(\epsilon) = \{k : |\mathfrak{x}_k - \ell| \ge \epsilon\} \in \mathcal{I}$. In this case we write $\mathcal{I} - \lim \mathfrak{x}_k = \ell$.

Remark 1.3. (a) If $\mathcal{I} = \mathcal{I}_{fin} = \{\mathcal{K} \subseteq \mathbb{N} : \mathcal{K} \text{ is finite}\}, \text{ then } \mathcal{I}-\text{convergence coincide with the usual convergence.}$

(b) If $\mathcal{I} = \mathcal{I}_{\delta} = \{\mathcal{K} \subseteq \mathbb{N} : \delta(\mathcal{K}) = 0\}$, then \mathcal{I} -convergence coincide with the statistical convergence [1].

Definition 1.4. ([12]). A real sequence $\mathfrak{x} = (\mathfrak{x}_k)$ is said to be \mathcal{I}^* -convergent to $\ell \in \mathbb{R}$ if there is a set $\mathcal{H} \in \mathcal{I}$ such that for $\mathcal{M} = \mathbb{N} \setminus \mathcal{H} = {\mathfrak{m}_1, \mathfrak{m}_2, \ldots, } \in \mathcal{F}(\mathcal{I})$, where $\mathfrak{m}_1 < \mathfrak{m}_2 < \ldots$, we have $\lim_i \mathfrak{x}_{\mathfrak{m}_i} = \ell$. In this case we write $\mathcal{I}^* - \lim \mathfrak{x}_k = \ell$.

In [22], Savas et al. introduced the following definition.

Definition 1.5. ([22]). A real sequence $\mathfrak{r} = (\mathfrak{r}_k)$ is said to be $\mathcal{A}^{\mathcal{I}}$ -summable to $\ell \in \mathbb{R}$ if the sequence $(\mathcal{A}_n(\mathfrak{r}))$ is \mathcal{I} -convergent to ℓ , and we write $\mathcal{A}^{\mathcal{I}} - \lim \mathfrak{r}_k = \ell$.

Remark 1.6. If $\mathcal{I} = \mathcal{I}_{\delta}$, then $\mathcal{A}^{\mathcal{I}}$ – summability reduces to statistical \mathcal{A} – summability due to [23].

Recently, Edely [24] introduced the notion of $\mathcal{A}^{\mathcal{I}^*}$ – summability and gave some relations with $\mathcal{A}^{\mathcal{I}}$ -summability.

Definition 1.7. ([24]). A real sequence $\mathfrak{x} = (\mathfrak{x}_k)$ is $\mathcal{A}^{\mathcal{I}^*}$ - summable to ℓ if there is a set $\mathcal{H} \in \mathcal{I}$ such that $\mathcal{M} = \mathbb{N} \setminus \mathcal{H} = {\mathfrak{m}_1, \mathfrak{m}_2, \ldots, } \in F(\mathcal{I})$, and $\lim_i \sum_k \mathfrak{a}_{\mathfrak{m}_i k} \mathfrak{x}_k = \lim_i y_{\mathfrak{m}_i} = \ell$.

In this case we write $\mathcal{A}^{\mathcal{I}^*} - \lim \mathfrak{x}_k = \ell$.

Definition 1.8. ([12]). A set $\mathcal{I} \in \mathfrak{S}$ satisfies the condition (AP), if for every sequence (\mathcal{C}_n) of pairwise disjoint sets from \mathcal{I} there are sets $\mathcal{D}_n \subset \mathbb{N}$, $n \in \mathbb{N}$ such that the symmetric difference $\mathcal{C}_n \Delta \mathcal{D}_n$ is finite for every n and $\bigcup \mathcal{D}_n \in \mathcal{I}$.

Theorem 1.9 ([24]). (a) If $\mathcal{A}^{\mathcal{I}^*} - \lim \mathfrak{x}_k = \ell$ then $\mathcal{A}^{\mathcal{I}} - \lim \mathfrak{x}_k = \ell$.

(b) If \mathcal{I} satisfies the condition (AP), then whenever $\mathcal{A}^{\mathcal{I}} - \lim \mathfrak{g}_k = \ell$ we have $\mathcal{A}^{\mathcal{I}^*} - \lim \mathfrak{g}_k = \ell$.

In [21], Savas at el. introduced the notion of \mathcal{I} -statistical convergence which is a natural generalization of the concept of statistical convergence.

Definition 1.10. ([21]). A real sequence $\mathfrak{x} = (\mathfrak{x}_k)$ is \mathcal{I} -statistically convergent to $\ell \in \mathbb{R}$ if for each $\epsilon > 0$ and $\nu > 0$, the set

$$\left\{n: \frac{1}{n} |\{k \le n: |\mathfrak{x}_k - \ell| \ge \epsilon\}| \ge \nu\right\} \in \mathcal{I}.$$

In this case we write $\mathcal{I} - st \lim \mathfrak{x}_k = \ell$.

Remark 1.11. If $\mathcal{I} = \mathcal{I}_{fin}$, then \mathcal{I} -statistically convergent coincide with the statistical convergence due to Fast [1].

The notion of $\mathcal{A}^{\mathcal{I}}$ -statistical convergence introduced by [22], and gave a relation with $\mathcal{A}^{\mathcal{I}}$ - summability.

Definition 1.12. ([22]). A real sequence $\mathfrak{x} = (\mathfrak{x}_k)$ is said to be $\mathcal{A}^{\mathcal{I}}$ -statistically convergent to $\ell \in \mathbb{R}$ if for every $\epsilon > 0$ and $\nu > 0$, the set $\left\{ n : \sum_{k \in \mathcal{K}(\epsilon)} \mathfrak{a}_{nk} \ge \nu \right\} \in \mathcal{I}$, where $\mathcal{K}(\epsilon) = \{k \le n : |\mathfrak{x}_k - \ell| \ge \epsilon\}$. In this case we write $\mathcal{I} - st_{\mathcal{A}} \lim \mathfrak{x}_k = \ell$.

Remark 1.13. (a) If $\mathcal{I} = \mathcal{I}_{fin}$, then $\mathcal{A}^{\mathcal{I}}$ -statistical convergence becomes \mathcal{A} -statistical convergence due to Kolk [8].

(b) If $\mathcal{A} = (\mathfrak{C}, 1)$, then $\mathcal{A}^{\mathcal{I}}$ -statistically convergent becomes \mathcal{I} -statistical convergence due to [21].

2. Statistical $\mathcal{A}^{\mathcal{I}}$ and statistical $\mathcal{A}^{\mathcal{I}^*}$ – summability

In this section we introduce the following concepts of statistically $\mathcal{A}^{\mathcal{I}}$ – summability and statistically $\mathcal{A}^{\mathcal{I}^*}$ – summability and find some relations.

Definition 2.1. A real sequence $\mathfrak{x} = (\mathfrak{x}_k)$ is said to be statistically $\mathcal{A}^{\mathcal{I}}$ - summable to ℓ if for each $\epsilon > 0$ and every $\nu > 0$, the set

$$\left\{n \in \mathbb{N} : \frac{1}{n} \left| \{j \le n : |y_j - \ell| \ge \epsilon\} \right| \ge \nu \right\} \in \mathcal{I},$$

where $y_j = \mathcal{A}_j(\mathfrak{x})$. Thus \mathfrak{x} is statistically $\mathcal{A}^{\mathcal{I}}$ - summable to ℓ iff the sequence (y_j) is \mathcal{I} statistically convergent to ℓ . In this case we write $(\mathcal{A}^{\mathcal{I}})_{st} - \lim \mathfrak{x} = \mathcal{I} - st \lim \mathcal{A}\mathfrak{x}$.

Remark 2.2. (a) If \mathcal{A} is the identity matrix, then Definition 2.1 becomes \mathcal{I} -statistical convergence due to [21].

(b) If $\mathcal{I} = \mathcal{I}_{fin}$, then statistical $\mathcal{A}^{\mathcal{I}}$ – summable coincide with the statistical \mathcal{A} – summable due to Edely and Mursaleen [23].

(c) Let $\mathcal{A} = (\mathfrak{C}, 1) = (\mathfrak{a}_{jk})$ be a Cesàro matrix defined as

$$\mathfrak{a}_{jk} = \begin{cases} \frac{1}{j} & , \text{ if } j \ge k \\ 0 & , \text{ otherwise }, \end{cases}$$

then we say \mathfrak{r} is statistically $(\mathfrak{C}, 1)^{\mathcal{I}}$ -summable. In case $\mathcal{I} = \mathcal{I}_{fin}$ it is reduced to statistical $(\mathfrak{C}, 1)$ -summable due to Moricz [25].

Definition 2.3. A real sequence $\mathfrak{x} = (\mathfrak{x}_k)$ is said to be statistically $\mathcal{A}^{\mathcal{I}^*}$ – summable to ℓ if there is a set $\mathcal{M} = \{\mathfrak{m}_i\}$, where $\mathfrak{m}_1 < \mathfrak{m}_2 < \ldots$, and $\mathcal{M} \in F(\mathcal{I}), \delta(\mathcal{M}) = 1$, such that

$$st - \lim_{i} \mathcal{A}_{\mathfrak{m}_i} \mathfrak{x} = st - \lim_{i} y_{\mathfrak{m}_i} = \ell_{\mathfrak{m}_i}$$

where $y_{\mathfrak{m}_i} = \sum_k \mathfrak{a}_{\mathfrak{m}_i k} \mathfrak{x}_k$ i.e. $(\mathcal{A}_{\mathfrak{m}_i} \mathfrak{x})$ is statistically convergent to ℓ . In this case we write $(\mathcal{A}^{\mathcal{I}^*})_{st} - \lim \mathfrak{x} = \mathcal{I}^* - st \lim \mathcal{A} \mathfrak{x} = \ell$.

Remark 2.4. (a) If $(\mathcal{A}^{\mathcal{I}^*})_{st} - \lim \mathfrak{x}$ exists, then it is unique.

(b) If \mathcal{A} is the identity matrix, then we say that \mathfrak{x} is \mathcal{I}^* -statistical convergence.

We give analogue results for statistically $\mathcal{A}^{\mathcal{I}}$ – summability and statistically $\mathcal{A}^{\mathcal{I}^*}$ – summability as in [12]. For this we define (*APO*) condition which is given by [12] and [26].

Definition 2.5. We say that \mathcal{I} satisfies (APO) condition, if for every sequence (\mathcal{C}_n) of (pairwise disjoint) sets from \mathcal{I} such that $\delta(\mathcal{C}_n) = 0$ for each n, then there exist sets $\mathcal{D}_n \in \mathcal{I}, n \in \mathbb{N}$ such that the symmetric difference $\mathcal{C}_n \Delta \mathcal{D}_n$ is finite for every $n, \bigcup_n \mathcal{D}_n \in \mathcal{I}, \delta(\bigcup \mathcal{D}_n) = 0$.

The following Proposition can be directly obtained by Proposition 1 of [13] and properties of density.

Proposition 2.6. \mathcal{I} satisfies (APO) iff for every sequence (\mathcal{C}_n) of (pairwise disjoint) sets from \mathcal{I} such that $\delta(\mathcal{C}_n) = 0$ for each n, then there exists $\mathcal{C} \in \mathcal{I}$ with $\mathcal{C}_n \setminus \mathcal{C}$ is finite for every n, $\delta(\mathcal{C}) = 0$.

Theorem 2.7. (a) If $(\mathcal{A}^{\mathcal{I}^*})_{st} - \lim \mathfrak{g}_k = \ell$ then $(\mathcal{A}^{\mathcal{I}})_{st} - \lim \mathfrak{g}_k = \ell$.

(b) If \mathcal{I} satisfies the condition (APO), then whenever $(\mathcal{A}^{\mathcal{I}})_{st} - \lim \mathfrak{r}_k = \ell$ we have $(\mathcal{A}^{\mathcal{I}^*})_{st} - \lim \mathfrak{r}_k = \ell$.

Proof. (a) Let $(\mathcal{A}^{\mathcal{I}^*})_{st} - \lim \mathfrak{x}_k = \ell$, then there exists $\mathcal{H} \in \mathcal{I}$ such that $\mathcal{M} = {\mathfrak{m}_i} = \mathbb{N} \setminus \mathcal{H} \in F(\mathcal{I}), \, \delta(\mathcal{M}) = 1$, and

$$st - \lim_{i} \sum_{k} \mathfrak{a}_{\mathfrak{m}_{i}k} \mathfrak{x}_{k} = \ell,$$

i.e. for every $\epsilon > 0$, we have

$$\lim_{n} \frac{1}{n} \left| \left\{ \mathfrak{m}_{i} \leq n : |y_{\mathfrak{m}_{i}} - \ell| \geq \epsilon \right\} \right| = 0.$$

Therefore for each $\nu > 0$, there exists N such that $\frac{1}{N} < \nu$, so the set

$$\mathcal{G} = \left\{ n : \frac{1}{n} \left| \{ j \le n : |y_j - \ell| \ge \epsilon \} \right| \ge \nu \right\} \subseteq \mathcal{H} \cup \{\mathfrak{m}_1, \mathfrak{m}_2, ..., \mathfrak{m}_N \}.$$

Since $\mathcal{H} \in \mathcal{I}$ and $\{\mathfrak{m}_1, \mathfrak{m}_2, ..., \mathfrak{m}_N\} \in \mathcal{I}$, we have $\mathcal{G} \in \mathcal{I}$. Hence $(\mathcal{A}^{\mathcal{I}})_{st} - \lim \mathfrak{x}_k = \ell$.

(b) Let
$$(\mathcal{A}^{\mathcal{I}})_{st} - \lim \mathfrak{x}_k = \ell$$
, then for every $\epsilon > 0$ and for each $\nu > 0$, we have
 $\left\{ n : \frac{1}{n} |\mathcal{K}(\epsilon)| \ge \nu \right\} \in \mathcal{I},$

where $\mathcal{K}(\epsilon) = \{j \le n : |y_j - \ell| \ge \epsilon\}$. Therefore for every *i*, define the sequence (\mathcal{C}_i) of sets as

$$\mathcal{C}_1 = \left\{ n : \frac{1}{n} \left| \mathcal{K}(\epsilon) \right| \ge 1 \right\}, \ \mathcal{C}_i = \left\{ n : \frac{1}{i-1} > \frac{1}{n} \left| \mathcal{K}(\epsilon) \right| \ge \frac{1}{i} \right\}, \ \forall i > 1, i \in \mathbb{N}.$$

It is easy to see that each $C_i \in \mathcal{I}$ and $\delta(C_i) = 0, \forall i$. Since \mathcal{I} satisfies the condition (*APO*) by Proposition 2.6, there exists a set $C \in \mathcal{I}$ such that $\delta(C) = 0$ and $C_i \setminus C$ is finite for each *i*. Let $\mathcal{M} = \mathbb{N} \setminus C = \{\mathfrak{m}_1, \mathfrak{m}_2, \ldots, \}$, so $\delta(\mathcal{M}) = 1$. Now for any $\eta > 0$, there is $N \in \mathbb{N}$ such that $\frac{1}{N} < \eta$, therefore the set

$$C_N = \left\{ n : \frac{1}{N-1} > \frac{1}{n} |\mathcal{K}(\epsilon)| \ge \frac{1}{N} \right\} \in \mathcal{I}.$$

Then

$$\mathcal{D} = \left\{ n : \frac{1}{n} |\mathcal{K}(\epsilon)| < \frac{1}{N} \right\} \bigcup \left\{ n : \frac{1}{n} |\mathcal{K}(\epsilon)| \ge \frac{1}{N-1} \right\} \setminus \mathcal{C} \in F(\mathcal{I}), \delta(\mathcal{D}) = 1.$$

Hence we have

$$\frac{1}{n} |\mathcal{K}(\epsilon)| < \eta, \ \forall n > N, \ n \in \mathcal{D},$$

i.e.

$$\lim_{n} \frac{1}{n} |\{j \le n : |y_j - \ell| \ge \epsilon\}| = 0, \quad n \in \mathcal{D}.$$

Hence $st - \lim_{k \to \infty} y_j = \ell, \ j \in \mathcal{D}, \ \delta(\mathcal{D}) = 1$, i.e. $(\mathcal{A}^{\mathcal{I}^*})_{st} - \lim_{k \to \infty} \mathfrak{r}_k = \ell.$

Remark 2.8. The converse of Theorem 2.7(a) is not true in general.

Example 2.9. Let $\mathcal{D}_i = \{2^{i-1}(2k-1) : k \in \mathbb{N}\}$ be mutually disjoint infinite sets such that $\mathbb{N} = \bigcup_{i=1}^{\infty} \mathcal{D}_i$. Let \mathcal{I} be the class defined as

 $\mathcal{I} = \left\{ \mathcal{D} \subset \mathbb{N} : \ \mathcal{D} \text{ intersects only finite numbers of } \mathcal{D}'_i s \right\},$

then $\mathcal{I} \in \mathfrak{S}$. Define $\mathfrak{x} = (\mathfrak{x}_k)$ as

$$\mathfrak{x}_k = \frac{1}{i}, \ k \in \mathcal{D}_i,$$

and $\mathcal{A} = (\mathfrak{a}_{jk})$ defined as

$$\mathfrak{a}_{jk} = \begin{cases} 1 & , \text{ if } k = j^2 \\ 0 & , \text{ otherwise,} \end{cases}$$

so, we have

$$y_j = \sum_k \mathfrak{a}_{jk} \mathfrak{x}_k = \frac{1}{t}, \ j^2 \in \mathcal{D}_t.$$

Here \mathfrak{r} is statistically $\mathcal{A}^{\mathcal{I}}$ -summable to zero, since for any $\epsilon > 0$ and for every $\nu > 0$, the set

$$\left\{n \in \mathbb{N} : \frac{1}{n} \left| \{j \le n : |y_j| \ge \epsilon\} \right| \ge \nu \right\} \subseteq \left\{n \in \mathbb{N} : \frac{\sqrt{n}}{n} \ge \nu \right\} \in I.$$

Now to show that \mathfrak{x} is not statistically $\mathcal{A}^{\mathcal{I}^*}$ -summable to zero. Suppose if it is possible that \mathfrak{x} is statistical $\mathcal{A}^{\mathcal{I}^*}$ -summable to zero, then there exists a set $\mathcal{M} = \mathbb{N} \setminus \mathcal{H} = {\mathfrak{m}_1, \mathfrak{m}_2, \ldots}$, where $\mathcal{H} \in \mathcal{I}$, $\delta(\mathcal{M}) = 1$, and $st - \lim_i y_{\mathfrak{m}_i} = 0$. Since $\mathcal{H} \in \mathcal{I}$, then there exists $r \in \mathbb{N}$ such that r is odd and $\mathcal{H} \subseteq \mathcal{D}_1 \cup \mathcal{D}_2 \cup \ldots \cup \mathcal{D}_r$. So $\mathcal{D}_{r+1} \subseteq \mathbb{N} \setminus \mathcal{H} = \mathcal{M}$. Therefore $y_{\mathfrak{m}_i} = \frac{1}{r+1}$ for infinitely many i 's. Now let us choose $\eta > 0$ such that $\eta < \frac{1}{r+1}$. Hence the set

$$\delta\left\{\mathfrak{m}_{i}\in\mathcal{D}_{r+1}:|y_{\mathfrak{m}_{i}}|\geq\eta\right\}=\frac{1}{2^{r+1}}\neq0,$$

i.e. $(\mathcal{A}^{\mathcal{I}^*})_{st} - \lim \mathfrak{x}_k \neq 0$, which is a contradiction, hence \mathfrak{x} is not statistically $\mathcal{A}^{\mathcal{I}^*}$ -summable to zero.

In [21], proved that if \mathfrak{x} is bounded and $\mathcal{A}^{\mathcal{I}}$ -statistically convergent to ℓ , then \mathfrak{x} is $\mathcal{A}^{\mathcal{I}}$ -summable to ℓ , and by Theorem 1.9 (b), if \mathcal{I} satisfied the condition (AP), then x is $\mathcal{A}^{\mathcal{I}^*}$ -summable to ℓ . Let \mathcal{I} satisfied the condition (AP), and let us define the set

$$\Gamma = \left\{ x \in \ell_{\infty} : \mathcal{I} - st_{\mathcal{A}} - \lim x = \ell, \exists \mathcal{M} = \{m_i\} \in \mathcal{F}(\mathcal{I}), \ \delta(\mathcal{M}) = 1, \lim_i y_{m_i} = \ell \right\}$$

Then we have the following relation between $\mathcal{A}^{\mathcal{I}}$ -statistical convergence and statistically $\mathcal{A}^{\mathcal{I}}$ -summable.

Theorem 2.10. If $x \in \Gamma$, then x is statistically $\mathcal{A}^{\mathcal{I}}$ -summable.

Proof. Let $x \in \Gamma$, so there exists $\mathcal{M} = \{\mathfrak{m}_i\}, \ \mathcal{M} \in \mathcal{F}(\mathcal{I}) \text{ and } \delta(\mathcal{M}) = 1$, such that $\lim y_{\mathfrak{m}_i} = \ell$. Hence

$$st - \lim y_{\mathfrak{m}_i} = \ell, \ \delta(\mathcal{M}) = 1,$$

i.e. \mathfrak{x} is statistically $\mathcal{A}^{\mathcal{I}^*}$ -summable to ℓ . Now by Theorem 2.7 (a), we have \mathfrak{x} is statistically $\mathcal{A}^{\mathcal{I}}$ -summable to ℓ .

Remark 2.11. The converse of Theorem 2.10 is not true in general.

Example 2.12. Let \mathcal{I} be the class defined in Example 2.9. Define $\mathfrak{x} = (\mathfrak{x}_k)$ as

$$\mathfrak{x}_k = \begin{cases} 1 & , \ k \in \mathcal{D}_1, \\ 2 & , \ k \notin \mathcal{D}_1, \ k \text{ is square,} \\ 1 & , k \notin \mathcal{D}_1, \ k \text{ is nonsquare.} \end{cases}$$

and $\mathcal{A} = (\mathfrak{a}_{ik})$ be defined as

$$\mathfrak{a}_{jk} = \begin{cases} 1 & , j \in \mathcal{D}_1, \ j = k \\ 1 & , j \notin \mathcal{D}_1, \ j = k \text{ square,} \\ 1 & , j \notin \mathcal{D}_1, \ j = k \text{ nonsquare,} \\ 0 & , \text{ otherwise,} \end{cases}$$

then

$$y_j = \sum_k \mathfrak{a}_{jk} \mathfrak{x}_k = \begin{cases} 1 & , \ j \in \mathcal{D}_1, \\ 2 & , \ j \notin \mathcal{D}_1, \ j \text{ is square,} \\ 1 & , \ j \notin \mathcal{D}_1, \ j \text{ is nonsquare.} \end{cases}$$

Therefore for $\epsilon = \frac{1}{2}$, and for any $\ell \in \mathbb{R}$, the set

$$\left\{j: |y_j - \ell| \ge \frac{1}{2}\right\} \notin \mathcal{I},$$

i.e. \mathfrak{x} is not $\mathcal{A}^{\mathcal{I}}$ -summable to any number and hence \mathfrak{x} is not $\mathcal{A}^{\mathcal{I}}$ -statistically convergent to any number. Now for any choice of $\epsilon > 0$ and for every $\nu > 0$, there exists $N \in \mathbb{N}$, such that the set

$$\begin{cases} n \in \mathbb{N} : \frac{1}{n} |\{j \le n : |y_j - 1| \ge \epsilon\}| \ge \nu \\ \subseteq \mathcal{D}_1 \cup \mathcal{D}_2 \cup \dots \cup \mathcal{D}_N \in \mathcal{I}, \end{cases}$$

i.e. \mathfrak{x} is statistically $\mathcal{A}^{\mathcal{I}}$ - summable to 1.

Example 2.13. Let \mathcal{I} be the class defined in Example 2.9 and $\mathfrak{x} = (\mathfrak{x}_k)$ defined as

$$\mathfrak{x}_k = \begin{cases} 2 & , \text{ if } k \in \mathcal{D}_1, \\ 0 & , \text{ otherwise,} \end{cases}$$

and let us defined $\mathcal{A} = (\mathfrak{C}, 1) = (\mathfrak{a}_{jk})$, then $y_j = \sum_k \mathfrak{a}_{jk} \mathfrak{x}_k = 1$. It is obvious that \mathfrak{x} is $\mathcal{A}^{\mathcal{I}}$ -summable to 1 and \mathfrak{x} is also statistically $\mathcal{A}^{\mathcal{I}}$ -summable to 1.

Now for $\epsilon = \frac{1}{4}$ and for any $\ell \in \mathbb{R}$, the set $\mathcal{K}(\frac{1}{4}) = \{k : |\mathfrak{r}_k - \ell| \ge \frac{1}{4}\}$ contains either \mathcal{D}_1 (the set of odd) or the set of even or both. So $\sum_{k \in \mathcal{K}(\frac{1}{4})} \mathfrak{a}_{jk} = \frac{1}{2}$ or 1. Therefore for $\nu = \frac{1}{3}$,

the set

$$\left\{j:\sum_{k\in\mathcal{K}(\frac{1}{4})}\mathfrak{a}_{jk}\geq\frac{1}{3}\right\}=\mathbb{N}\notin\mathcal{I}$$

since $\mathcal{I} \in \mathfrak{F}$, we have \mathfrak{x} is not $\mathcal{A}^{\mathcal{I}}$ -statistically convergent to any number. Note that \mathfrak{x} is \mathcal{I} -convergent to zero but not I-statistically convergent.

Remark 2.14. The notions of \mathcal{I} -convergence, $\mathcal{A}^{\mathcal{I}}$ -summable, \mathcal{I} -statistical convergence, $\mathcal{A}^{\mathcal{I}}$ -statistical convergence and statistical $\mathcal{A}^{\mathcal{I}}$ - summable are not comparable in general.

The next result of this section is an analogous result for continuity as in [27] and [12].

Theorem 2.15. A real valued function $f : \mathbb{R} \to \mathbb{R}$ is continuous if and only if whenever $(\mathcal{A}^{\mathcal{I}})_{st} - \lim \mathfrak{g}_k = \ell$, we have $\mathcal{I} - st \lim f(y_j) = f(\ell)$.

Proof. Let $(\mathcal{A}^{\mathcal{I}})_{st} - \lim \mathfrak{x}_k = \ell$, i.e. $\mathcal{I} - st \lim y_j = \ell$. Therefore for any $\epsilon > 0$ and for each $\nu > 0$, the set

$$\left\{n \in \mathbb{N} : \frac{1}{n} \left| \{j \le n : |y_j - \ell| \ge \epsilon\} \right| \ge \nu \right\} \in \mathcal{I}.$$

Since f is continuous, then for each $\vartheta > 0$ there exists $\eta > 0$ such that if $|\mathfrak{x} - \ell| < \eta$ implies $|f(\mathfrak{x}) - f(\ell)| < \vartheta$. Therefore, we have

$$\{j: |y_j - \ell| \ge \eta\} \supseteq \{j: |f(y_j) - f(\ell)| \ge \vartheta\},\$$

hence

$$\frac{1}{n} |\{j \le n : |y_j - \ell| \ge \eta\}| \ge \frac{1}{n} |\{j \le n : |f(y_j) - f(\ell)| \ge \vartheta\}|.$$

Therefore for each $\nu > 0$ and for any $\vartheta > 0$,

$$\mathcal{H} = \left\{ n : \frac{1}{n} |\{j \le n : |y_j - \ell| \ge \eta\}| \ge \nu \right\}$$
$$\supseteq \left\{ n : \frac{1}{n} |\{j \le n : |f(y_j) - f(\ell)| \ge \vartheta\}| \ge \nu \right\} = \mathcal{G}.$$

Since $\mathcal{H} \in \mathcal{I}$, we have $\mathcal{G} \in \mathcal{I}$. Hence $\mathcal{I} - st \lim f(y_j) = f(\ell)$.

Conversely, let us assume that f is not continuous at $\ell \in \mathbb{R}$, then there exist a sequence (\mathfrak{x}_k) converges to ℓ and $\eta > 0$ such that $|f(\mathfrak{x}_k) - f(\ell)| \ge \eta$ for $k \in \mathbb{N}$. So that the set

$$\{k: |f(\mathfrak{x}_k) - f(\ell)| \ge \eta\} = \mathbb{N}.$$

Hence for any $0 < \nu < 1$, the set

$$\left\{n: \frac{1}{n} \left| \{k \le n: |f(\mathfrak{x}_k) - f(\ell)| \ge \eta\} \right| \ge \nu \right\} = \mathbb{N}.$$

Since $\lim \mathfrak{x}_k = \ell$, and \mathcal{A} is regular, we have $\mathcal{I} - st \lim y_j = \ell$. Now let $\mathcal{A} = (\mathfrak{a}_{jk})$ be the identity matrix, then the set

$$\left\{n: \frac{1}{n} \left| \{j \le n: |f(y_j) - f(\ell)| \ge \eta\} \right| \ge \nu \right\} = \mathbb{N} \notin \mathcal{I},$$

since $\mathcal{I} \in \mathfrak{F}$. Hence we have a contradiction, i.e. $\mathcal{I} - st \lim f(y_j) = \mathcal{I} - st \lim f(\mathfrak{x}_k) \neq f(\ell)$. Hence f is continuous.

References

- [1] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241–244.
- [2] R.C. Buck, Generalized asymptotic density, American Journal of Mathematics 75 (2) (1953) 335–346.
- [3] I.J. Schoenberg, The integrability of certain functions and related summability methods, The American Mathematical Monthly 66 (5) (1959) 361–775.
- [4] A. Zygmund, Trigonometric series, Cambridge University Press, 2002.
- [5] J.A. Fridy, On statistical convergence, Analysis 5 (1985) 301-313.
- [6] T.Salát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980) 139–150.
- [7] J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989) 194–198.
- [8] E. Kolk, Matrix summability of statistically convergent sequences, Analysis 13 (1-2) (1993) 77–84.
- M. Mursaleen, O.H.H. Edely, Generalized statistical convergence, Information Sciences 162 (3-4) (2004) 287–294.
- [10] I. Niven, H.S. Zuckerman, An Introduction to the Theory of Numbers, John Wiley and Sons, New York, 1980.
- [11] A.R. Freedman, I.J. Sember, Densities and summability, Pacific Journal of Mathematics 95 (2) (1981) 293–305.
- [12] P. Kostyrko, T. Šalát, W. Wilczyńki, I-convergence, Real Anal. Exchange 26 (2) (2000/2001) 669–686.

- [13] M. Balcerzak, K. Dems, A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328 (1) (2007) 715–729.
- [14] K. Demirci, I-limit superior and limit inferior, Math. Commun, 6 (2) (2001) 165–172.
- [15] H. Gümüş, Ö. Kişi, E. Savas, Some results about ΔI -statistically pre-Cauchy sequences with an orcilz function, Journal of Computational Analysis and Applications 28 (1) (2020) 180–188.
- [16] M. Mursaleen, A. Alotaibi, On I-convergence in random 2-normed spaces, Math. Slovaca 61 (6) (2011) 933–940.
- [17] M. Mursaleen, S.A. Mohiuddine, O.H.H. Edely, On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Computers and Mathematics with Applications 59 (2) (2010) 603–611.
- [18] M. Mursaleen and S.A. Mohiuddine, On ideal convergence in probabilistic normed spaces, Math. Slovaca 62 (2012) 49–62.
- [19] M. Mursaleen, S. Debnath, D. Rakshit, I-statistical limit superior and I-statistical limit inferior, Filomat 31 (7) (2017) 2103–2108.
- [20] T.Salát, B.C. Tripathy, M. Ziman, On I-convergence field. Ital. J. Pure Appl. Math. 17 (5) (2005) 1–8.
- [21] E. Savas, P. Das, A generalized statistical convergence via ideals, Applied Mathematics Letters 24 (6) (2011) 826–830.
- [22] E. Savas, P. Das, S. Dutta, A note on some generalized summability methods, Acta Math. Univ. Comenianae 82 (2) (2013) 297-304.
- [23] O.H.H. Edely, M. Mursaleen, On statistical A-summability, Mathematical and Computer Modelling 49 (3) (2009) 672–680.
- [24] O.H.H. Edely, On some properties of A^{I} summability and $A^{I^{*}}$ summability, Azerbaijan Journal of Mathematics 11 (1) (2021) 189–200.
- [25] F. Moricz, Tauberian conditions under which statistical convergence follows from statistical summability (C, 1), Journal of Mathematical Analysis and Applications 275 (1) (2002) 277–287.
- [26] J. Connor, Two valued measures and summability, Analysis 10 (4) (1990) 373–386.
- [27] R.G. Bartle, J.I. Joichi, The preservation of convergence of measurable functions under composition, Proceedings of the American Mathematical Society 12 (1) (1961) 122–126.