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1. INTRODUCTION AND PRELIMINARIES

The concept of statistical convergence based on the notion of natural density of subset
of natural number N was first introduced by Fast [1], which is a natural generalization of
the usual convergence of sequences. In 1953 the concept arises as an example of conver-
gence in density as introduced by Buck [2]. Schoenberg [3] studied statistical convergence
as a summability method and Zygmund [4] established a relation between it and strong
summability. Fridy [5], Salat [6], Connor [7], Kolk [¢], Mursaleen and Edely [9] and many
others studied it as a summability method. Let K C N, then the natural density of IC [10]
is defined by

oK) = lim% [{k<n:keK}|=1lm(C1x,)n,

if the limit exists, where the vertical bars denote the cardinality of the enclosed set. Recall
that €; = (€, 1) is the Cesaro matrix of order 1 and x, denotes the characteristic sequence
of K. A sequence ¢ = (r) of real numbers R is said to be statistically convergent to the
number ¢ provided that for every e > 0, the set K(¢) = {k € N: [t — £] > €} has natural
density zero [1], and we write st — limy = /.

Let A = (ank), y—; be an infinite matrix and r = (x);—, be a number sequence. By
Ar = (A, (), we denote the A— transform of the sequence r = (rx), where A, () =
> e nklk. Thus we say that r is A—summable to ¢ if lim, A, (r) = ¢. A matrix
A is called regular ie. A € (¢,¢)req if A € (¢,¢) and lim,, A, (r) = limyr, for all
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r € c; the space of all convergent sequences. The well-known necessary and sufficient
conditions (Silverman-Toeplitz) for A to be regular are (i) [|A|| = sup, Y, |ank| < o0,
(t7) lim,, apg = 0, for each k, (44d) limy, Y, app = 1.

Let W denote the class of all non-negative regular matrices. Freedmann and Sember
[L1] generalized the natural density by replacing C; with A €¥. A subset K of N has
A—density if §4(KC) = lim, ), anr exists. Kolk [5] and Connor [7] extended the
idea of statistical convergence to A—statistical convergence. A sequence ¢ is said to be
A—statistically convergent to ¢ if 6 4(K(e)) = 0 for every € > 0, which we write st4 —
lim ey = L.

The idea of Z—convergence based on the notion of ideals of N was introduced by
Kostyrko et al. [12] as a generalization of statistical convergence. More generalization
and recent work can be found in ([13], [14], [L5], [16], [17], [18], [19], [20], [21]).

A non-empty class Z C P(S) of subsets of S # & is said to be an ideal in S if (7)
e, (i) G HeET=GUHET, (iti) G€IT,HC G = H €. Anideal T is called a
non-trivial if Z # & and S ¢ Z. A non-trivial ideal Z in § is called admissible if {g} € Z,
for each g € S. We denote the set of all non-trivial admissible ideal in N by &

A non-empty class F C P(S) of subsets of S is said to be a filter in S # @ if (i) @ ¢ F,
(i) GHeEF=GNHEeF, (iit) GE€ F,H 2 G = H € F. Let T be a non-trivial
ideal in S, the filter F(Z) = {M =S\ H : H € I} is called the filter associated with the
ideal Z.

In [12] defined Z—convergence and Z*—convergence and gave a necessary and sufficient
condition for the equivalency of both definitions.

Remark 1.1. Throughout the paper, Z € & and A €V.

Definition 1.2. ([12]). A real sequence r = (rj) is said to be Z—convergent to ¢ € R if
for every € > 0, the set K(e) = {k : |z — ¢| > €} € Z. In this case we write Z — limyj, = £.

Remark 1.3. (a) If 7 =7, = {K C N: K is finite}, then Z—convergence coincide with
the usual convergence.

(b)) T =75 = {K CN:06(K) =0}, then T—convergence coincide with the statistical
convergence [1].

Definition 1.4. ([12]). A real sequence r = (xj) is said to be Z*—convergent to £ € R
if there is a set H € Z such that for M = N\ H = {my,mq,.....} € F(I), where
mp <mg < ... , we have limry,, = ¢. In this case we write 7% — limpy, = 4.

7

In [22], Savas et al. introduced the following definition.

Definition 1.5. ([22]). A real sequence ¢ = (1) is said to be AL —summable to ¢ € R if
the sequence (A, (r)) is Z—convergent to £, and we write AL — limyy = /.

Remark 1.6. If 7 = T;, then A”— summability reduces to statistical A— summability
due to [23].

Recently, Edely [24] introduced the notion of AT — summability and gave some rela-
tions with AZ —summability.

Definition 1.7. ([24]). A real sequence ¢ = (r3) is A% — summable to £ if there is a set
H € T such that M = N\ H = {my,mo,......} € F(Z), and lim > ap,xkx = limy,, = £.
7 k 3

In this case we write AZ" — limyy, = £.
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Definition 1.8. ([12]). A set Z € & satisfies the condition (AP), if for every sequence
(Cy) of pairwise disjoint sets from Z there are sets D,, C N, n € N such that the symmetric
difference C,, AD,, is finite for every n and |JD,, € T.

n

Theorem 1.9 ([24]). (a) If AT —limy = ¢ then AT —limy, = /.
(b) If T satisfies the condition (AP), then whenever AT —limy, = ¢ we have AT —
lim e = £.

In [21], Savas at el. introduced the notion of Z—statistical convergence which is a
natural generalization of the concept of statistical convergence.

Definition 1.10. ([21]). A real sequence r = (xr)) is Z—statistically convergent to £ € R
if for each € > 0 and v > 0, the set

1
{n:|{k§n:|xk—£|26}zu} eT.
n
In this case we write Z — stlimg; = /.

Remark 1.11. If 7 = Z4;,, then Z—statistically convergent coincide with the statistical
convergence due to Fast [1].

The notion of A% —statistical convergence introduced by [22], and gave a relation with
AT — summability.

Definition 1.12. ([22]). A real sequence r = (1) is said to be AT —statistically convergent

to £ € R if for every e > 0 and v > 0, the set < m: > apk > 1/} € 7, where K(e) =
keK(e)

{k <n:|tx —£] > €}. In this case we write Z — st 4 limyy = .
Remark 1.13. (a) If Z = Zy;,, then AT —statistical convergence becomes .A—statistical
convergence due to Kolk [8].

(b) If A = (€, 1), then AT —statistically convergent becomes Z—statistical convergence
due to [21].

2. STATISTICAL A% AND STATISTICAL A% — SUMMABILITY

In this section we introduce the following concepts of statistically AZ— summability
and statistically A7 — summability and find some relations.

Definition 2.1. A real sequence r = (x3) is said to be statistically A% — summable to £
if for each € > 0 and every v > 0, the set

1
{neN:n{jgn:|yj—£26}|21/}€l',

where y; = A;(r). Thus r is statistically A% — summable to ¢ iff the sequence (y;) is Z—
statistically convergent to £. In this case we write (A%)y — limy = T — st lim Ag.

Remark 2.2. (a) If A is the identity matrix, then Definition 2.1 becomes Z—statistical
convergence due to [21].

(b) If T = Ty, then statistical AZ— summable coincide with the statistical A—summable
due to Edely and Mursaleen [23].



1034 Thai J. Math. Vol. 20 (2022) /O.H.H. Edely

(c) Let A= (€, 1) = (a;i) be a Cesaro matrix defined as
[ itk
ik = 0 , otherwise ,

then we say r is statistically (€, 1) —summable. In case T = Zy;, it is reduced to statistical
(¢, 1)—summable due to Moricz [25].

Definition 2.3. A real sequence ¢ = (r;) is said to be statistically AZ" — summable to ¢
if there is a set M = {m;}, where m; <mg < ... , and M € F(Z), 6( M) = 1, such that

st —lim Am,r = st — limym, = ¢,
K3 (2
where ym, = D Om,kkr 1.6. (Am,) is statistically convergent to ¢. In this case we write
k
(A7) g —limp = Z* — st lim Ax = £.

Remark 2.4. (a) If (A?"),; — limy exists, then it is unique.
(b) If A is the identity matrix, then we say that r is Z*—statistical convergence.

We give analogue results for statistically AZ— summability and statistically AL —
summability as in [12] . For this we define (APO) condition which is given by [12] and

[26] -

Definition 2.5. We say that Z satisfies (APO) condition, if for every sequence (C,) of

(pairwise disjoint) sets from Z such that 6(C,) = 0 for each n, then there exist sets

D,, € Z, n € N such that the symmetric difference C,, AD,, is finite for every n, | JD,, € Z,
n

5(UDn) =0.
The following Proposition can be directly obtained by Proposition 1 of [13] and prop-
erties of density.

Proposition 2.6. Z satisfies (APO) iff for every sequence (C,) of (pairwise disjoint)
sets from T such that 6(C,,) = 0 for each n, then there exists C € T with C,, \ C is finite
for every n, §(C) = 0.

Theorem 2.7. (a) If (A% )s — limyg = £ then (A%)g — limyy, = £.
(b) If I satisfies the condition (APO), then whenever (A*)  —limyy = ¢ we have
(.AI*) . lim;k =/.

S

Proof. (a) Let (AT )g— limgg = ¢, then there exists H € Z such that M = {m;} =
N\H € F(Z), 6( M) =1, and

st — li?lz O
E
i.e. for every € > 0, we have
1
lim— {m; <n:|ym, — € > €} =0.
nn
Therefore for each v > 0, there exists IV such that % < v, so the set
1 .
G = {n - H{i<n:ly;—¥€ >e}t > 1/} CHU{my,mg,....,my}.

Since H € Z and {my,my,...,my} € Z, we have G € Z. Hence (AT)y — limy;, = 4.
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(b) Let (AI) o — limzg = £, then for every € > 0 and for each v > 0, we have

{n: @Iz v} ez

where K(e) = {j < n:|y; — £ > €} . Therefore for every 4, define the sequence (C;) of sets
as

1—1
It is easy to see that each C; € T and 4 (C;) = 0,Vi. Since T satisfies the condition
(APO) by Proposition 2.6, there exists a set C € Z such that 6(C) = 0 and C; \ C is finite
for each i. Let M =N\ C = {my,mq,......}, so 6(M) = 1. Now for any n > 0, there is
N € N such that ﬁ < n, therefore the set

1 1 1

1 1 1 1
Cl—{n:nUC(e)Zl},Ci—{n: >n|lC(e)|Zi},W>1,i€N.

N -1
Then

D= {n:i|l€(e)| < ;/_}U{n:ilC(eﬂ > Nl_l}\CeF(I),(S(D):l.

Hence we have

1
—|K(e)| <m, ¥n >N, neD,
i.e.
.1
hmg|{1§”¢|yj—£|26}|=0, n e D.

Hence st —limy; = ¢, j € D, 6 (D) = 1, ie. (AT) , —limg = L. n
J

Remark 2.8. The converse of Theorem 2.7 (a) is not true in general.
Example 2.9. Let D; = {2ii1(2k —1:ke N} be mutually disjoint infinite sets such
that N = |J D;. Let Z be the class defined as

i=1

Z ={D C N: D intersects only finite numbers of D}s},

then Z € §. Define ¢ = (rx) as
1
w=-, keD,
i

and A = (a;;,) defined as

1L ifk=47
%k =7 0 , otherwise,

so, we have

1
yj =Dtk =, j* €Dy
k
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Here 1 is statistically AZ —summable to zero, since for any ¢ > 0 and for every v > 0,
the set
1 n
{neN:{jgn:|yjZe}|2y}g{n6N:IZV}EI.
n n
Now to show that r is not statistically A2 —summable to zero. Suppose if it is pos-
sible that r is statistical A7 —summable to zero, then there exists a set M = N\ H =
{my, mg,.....}, where H € Z, §(M) = 1, and st — limyn, = 0. Since H € Z, then there
K3

exists 7 € N such that r is odd and H € D1 UDs U ....UD,. So D41 CN\H = M.
Therefore ym, = i for infinitely many ¢ ’s. Now let us choose 1 > 0 such that n < T}rl.
Hence the set

1
ZU}:W7AO,

i.e. (A7) —limx, # 0, which is a contradiction, hence t is not statistically AZ" —summable
to zero.

d{m; € Dyry1 ¢ [Ym,

In [21], proved that if r is bounded and A% —statistically convergent to £, then r is
AZ —summable to ¢, and by Theorem 1.9 (b), if Z satisfied the condition (AP), then z is
AT" —summable to £. Let T satisfied the condition (AP), and let us define the set

I‘:{:C €log : T —sty—limz=¢IM={m;} € F(I), 6(M) =1,limy,,, = f}.
Then we have the following relation between A% —statistical convergence and statisti-
cally A% —summable.
Theorem 2.10. If x € T, then x is statistically AT —summable.

Proof. Let x € T, so there exists M = {m;}, M € F(Z) and 6(M) = 1, such that
lim Ym; = £. Hence

st —limym, =¥, §(M) =1,
i.e. 1 is statistically AT" —summable to . Now by Theorem 2.7 (a), we have ¢ is statisti-
cally AZ —summable to ¢. n

Remark 2.11. The converse of Theorem 2.10 is not true in general.

Example 2.12. Let Z be the class defined in Example 2.9. Define ¢ = (z3) as

1 ; ke Dla
=< 2 , k¢D, kissquare,
1 ,k ¢ Dy, k is nonsquare,

and A = (a;z) be defined as

1 ’ ] € D17 ] =k
a, =4 1 , j ¢ D1, j =k square,
* 7Y 1, j¢Di, j=knonsquare,
0 , otherwise,
then
1, jeDy,
Yi = Zajk?k =4{ 2 , j¢ Dy, jissquare,
k 1 , j ¢ Dy, jis nonsquare.
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Therefore for e = %7 and for any £ € R, the set

. 1
{is-0z3} ez

i.e. ris not AT —summable to any number and hence  is not A% — statistically convergent
to any number. Now for any choice of € > 0 and for every v > 0, there exists N € N,

such that the set
1
{nEN:|{j§n:|yj—1|26}|2u} {TLENZ\/EZV}
n n

N

i.e. ¢ is statistically AZ— summable to 1.
Example 2.13. Let Z be the class defined in Example 2.9 and ¢ = (r) defined as

o 2 ,if ke Dy,
=190 , otherwise,

and let us defined A = (€,1) = (a;z) , then y; = Y a;xrx = 1. It is obvious that r is AT —
k

summable to 1 and r is also statistically .AZ— summable to 1.
Now for e = 1 and for any £ € R, the set K(3) = {k: [tx — €| > 1} contains either D;

(the set of odd ) or the set of even or both. So 3> ajz = 3 or 1. Therefore for v =
kek(L)

1
3)
the set
j A5k > 1 =N ¢ I,
J 3
kek(3)

since T € 3, we have 1 is not A% —statistically convergent to any number. Note that p is
Z—convergent to zero but not I—statistically convergent.

Remark 2.14. The notions of Z—convergence, A% —summable, Z—statistical conver-
gence, AT —statistical convergence and statistical AL — summable are not comparable in
general.

The next result of this section is an analogous result for continuity as in [27] and [12].

Theorem 2.15. A real valued function f: R — R is continuous if and only if whenever
(AI)st —limyy, = ¢, we have T — stlim f(y;) = f(£).

Proof. Let (A*)_, —limy = ¢, i.e. T— stlimy; = £. Therefore for any e > 0 and for each
v > 0, the set

1
{nEN:n{jgn:|yj(26}|2V}€I.

Since f is continuous, then for each ¥ > 0 there exists n > 0 such that if [ —¢| < 7
implies | f(x) — f(£)| < 9. Therefore, we have
{J:lys =t =0y 245 f(y;) = (O] = 9},

hence

sl — =2 < nf) — 7O 2 9}
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Therefore for each v > 0 and for any 9 > 0,

1 .
mo= {nsnisnsly -0zl

> {ns <0 1)~ £ 2 0} 2 v} =G

Since H € Z, we have G € Z. Hence 7 — stlim f(y;) = f(¢).
Conversely, let us assume that f is not continuous at ¢ € R, then there exist a sequence
(rx) converges to £ and n > 0 such that |f(rx) — f(£)| > n for k € N. So that the set

{k:1f() = f(O)] Zzn} =N.

Hence for any 0 < v < 1, the set

{ws 2tk <0 1w = 10120 2 v =1

Since limyy, = ¢, and A is regular, we have 7 — stlimy; = ¢. Now let A = (a,;) be the
identity matrix, then the set

{n: Ll <ns1f) - 5012l 2 v} =1 g T

since Z € & . Hence we have a contradiction, i.e. Z—stlim f(y;) = Z—st lim f(rx) # f(¥).
Hence f is continuous. L]
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