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Abstract Suppose that X is an infinite set and I(X) is the symmetric inverse semigroup defined on

X. It is known that the semigroup A(X) consisting of all α ∈ I(X) such that |X\domα| = |X\ ranα|
is a factorisable inverse subsemigroup of I(X). In 2009, all maximal subsemigroups of A(X) has been

described when X is uncountable. So, it is an obvious question to ask what happens when X is countably

infinite. In this paper, we answer this question by classifying all prime ideals of A(X) and apply these

results to characterize all maximal subsemigroups of A(X) for an arbitrary infinite set X. Our results

generalize and simplify the results obtained in 2009.
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1. Introduction

Suppose X is a non-empty set, and let I(X) denote the symmetric inverse semigroup
on X under composition (see [1, p.29]): that is, the set of all injective mappings α whose
domain, domα, and range, Xα (or ranα) are subsets of X. We denote the composition
of maps by jutaposition, and we compose maps from left to right. As usual, |X| denotes
the cardinality of X and we write X\Y = {x ∈ X : x /∈ Y }, where Y is a set. We also
write

g(α) = |X\ domα|, d(α) = |X\Xα| and r(α) = |Xα|,
and refer to these cardinals as the gap, the defect and the rank of α, respectively. And,
as usual, G(X) denotes the group of permutations of X: that is, the set of all bijective
mappings from X to itself. We write

A(X) = {α ∈ I(X) : g(α) = d(α)}
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and call this the injective transformation semigroup with equal gap and defect defined
on X. We observe that, if α ∈ G(X), then α ∈ I(X) with g(α) = d(α) = 0. Hence,
G(X) ⊆ A(X) ⊆ I(X) and we also note that A(X) = I(X) when X is finite. In addition,
the set of all idempotents in I(X) and A(X) coincide, this set consists of all identity
transformations on a subset A of X, written as idA. In particular, idX is the identity of
I(X) and A(X), and ∅ denotes the empty (one-to-one) mapping, which acts as a zero for
I(X) and A(X).

The study of the semigroup A(X) goes back to a 1974 paper of Chen and Hsieh [2].
They showed that A(X) is a factorisable inverse semigroup (that is, A(X) = GE, where
G is a subgroup and E is the set of idempotents of A(X)) and any inverse semigroup can
be embedded in some A(X). In [3, p.238], Jampachon, Saichalee and Sullivan remarked
that, if α ∈ A(X) and αβ = idX for some β ∈ A(X) then g(α) = 0, therefore α ∈ G(X).
That is, G(X) is the group of units in A(X). They also showed that A(X) is not a locally
factorisable semigroup (a semigroup S is locally factorisable if eSe is factorisable for every
idempotent e of S).

The semigroup A(X) can be regarded as a model for all factorisable inverse semigroups
since any factorisable inverse semigroup S can be embedded in A(S), this was proved by
Sanwong and Sullivan in [4]. In the same paper, the authors also characterized Green’s
relations and ideals on A(X), and they used this to describe all maximal subsemigroups of
A(X) whenX is uncountable. In one case, they showed that some maximal subsemigroups
of A(X) are induced by maximal subsemigroups of G(X).

The purpose of this paper is to provide a description of all maximal subsemigroups of
A(X) when X is an arbitrary infinite set. In section 2, we describe all prime ideals of A(X).
In section 3, the results of section 2 are applied to determine all maximal subsemigroups
of A(X) for any infinite set X, this result is a generalization of [4, Theorem 13].

In this paper, all notations and terminologies will be from [1] and [5] unless specified
otherwise.

2. Prime Ideals

In this section, we give a characterization of prime ideals of A(X). We first recall
that, an ideal P of a semigroup S is termed prime if ab ∈ P implies a ∈ P or b ∈ P ,
equivalently, S\P is a semigroup. Let S be a semigroup and ∅ 6= T ⊆ S. Then 〈T 〉 denotes
the subsemigroup of S generated by T , and, recall that a proper non-empty subsemigroup
M of S is maximal in S if, whenever M ⊆ N ⊆ S for some subsemigroup N of S, we
have M = N or N = S. Throughout this paper, to demonstrate the maximality of M ,
we show 〈M,α〉 = S for all a ∈ S\M , or equivalently, select a, b ∈ S\M and show that a
can be expressed as a finite product of b and elements in M .

The following result has been proved in [6, Lemma 3.1] which may be rewritten as
follows.

Lemma 2.1 ([6], Lemma 3.1). Let S be a semigroup and suppose that P is a prime ideal
of S. Then the following statements hold:

(a) for any maximal subsemigroup M of S\P , M ∪ P is a maximal subsemigroup of
S;

(b) for any maximal subsemigroup N of S such that (S\P )\N 6= ∅ and (S\P )∩N 6= ∅,
(S\P ) ∩N is a maximal subsemigroup of S\P .
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From Lemma 2.1, in order to determine some maximal subsemigroups of A(X), we
first classify all of its prime ideals. To do this, we recall from [4, Theorem 5] that, for
|X| = n ≥ ℵ0 and for each cardinal p, let p′ denote the successor of p (note that, when p
is finite, p′ = p+ 1). Then the ideals of A(X) are precisely the sets

A(r, d) = {α ∈ A(X) : r(α) < r and d(α) ≥ d}

where 1 ≤ r ≤ n′ and 0 ≤ d ≤ n. The authors also showed in [4, p.331] that, these ideals
form a chain and each of these containment is proper as follows:

{∅} = A(1, n) ⊂ A(2, n) ⊂ ... ⊂ A(n, n) ⊂

A(n′, n) ⊂ ... ⊂ A(n′,ℵ0) ⊂ ... ⊂ A(n′, 1) ⊂ A(n′, 0) = A(X).

In what follows, for any subset Y of X, we write Y = A ∪̇B for Y is a disjoint union
of A and B. We also need the fact: if α ∈ I(X) and Y,Z ⊆ X, then α−1 ∈ I(X) and
(Y \Z)α = Y α\Zα (as usual, we interpret Y α as (Y ∩ domα)α), this fact will be used
without further mention. We may now describe all the prime ideals of A(X).

Theorem 2.2. Suppose that |X| = n ≥ ℵ0. The proper prime ideals of A(X) are precisely
the sets A(n′, k) where k = 1 or ℵ0 ≤ k ≤ n.

Proof. If k = 1, then A(n′, 1) = {α ∈ A(X) : d(α) ≥ 1}. Thus,

A(X)\A(n′, 1) = {α ∈ A(X) : d(α) = 0} = G(X),

which is a subsemigroup (also a subgroup) of A(X). Hence A(n′, 1) is a prime ideal of
A(X). Next, suppose that ℵ0 ≤ k ≤ n and let α, β ∈ A(X)\A(n′, k). We note that

A(X)\A(n′, k) = {α ∈ A(X) : d(α) < k}.

Then g(α) < k and g(β) < k. Thus,

|Xα \ domβ| ≤ |X \ domβ| = g(β) < k.

Consequently,

|domα \ dom(αβ)| = |[Xα \ (Xα ∩ domβ)]α−1|
= |(Xα \ domβ)α−1|
= |Xα \ domβ| < k.

Hence,

d(αβ) = g(αβ) = |X \ dom(αβ)| = |X \ domα|+ |domα \ dom(αβ)| < k,

that is, A(X)\A(n′, k) is a subsemigroup of A(X). Therefore, A(n′, k) is a prime ideal.
Conversely, suppose that A(r, d) is a proper prime ideal of A(X). If r < n′, then a
subsemigroup A(X)\A(r, d) contains all transformatons of A(X) with rank n. We write
X = C ∪̇D where |C| = |D| = n. Then idC , idD ∈ A(X)\A(r, d), and thus ∅ = idC · idD ∈
A(X)\A(r, d), which is a contradiction since every ideal of A(X) always contains ∅. Hence
r = n′. Now, if d = 0, then A(r, d) = A(n′, 0) = A(X), a contradiction, so, we deduce
that d 6= 0. Suppose that d is finite and d ≥ 2. We write X = E ∪̇F where |E| =
n, |F | = d and choose distinct x, y ∈ F . Then d(idE∪{x}) = d(idE∪{y}) = d − 1, that is,
idE∪{x}, idE∪{y} ∈ A(X)\A(n′, d). Therefore, idE = idE∪{x} · idE∪{y} ∈ A(X)\A(n′, d),
a contradiction since d(idE) = d. Hence, d = 1 or d is infinite.
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In view of Theorem 2.2, when n = ℵ0, there are only two proper prime ideals of A(X),
which are A(n′, 1) and A(n′,ℵ0). On the other hand, when n > ℵ0, if there exist cardinals
r, s such that ℵ0 < r < s < n, then we have a chain of all proper prime ideals of A(X) as
follows:

A(n′, n) ⊂ ... ⊂ A(n′, s) ⊂ A(n′, r) ⊂ ... ⊂ A(n′,ℵ0) ⊂ A(n′, 1),

these ideals play an important role in characterizing all maximal subsemigroups of A(X),
which will be shown in the next section.

To close this section, we prove following simple result, which establishes a relation
between an ideal and a maximal subsemigroup of an arbitrary semigroup. This will be
useful when we determine the maximal subsemigroups of A(X).

Lemma 2.3. Let S be a semigroup and suppose that I is a proper ideal of S. If M is a
maximal subsemigroup of S, then either I ⊆M or S\I ⊆M .

Proof. Suppose that I 6⊆ M . Then there exists α ∈ I\M . It follows that 〈M,α〉 = S
by the maximality of M . Thus, for each β ∈ S\I, we can write β = γ1γ2...γk where
γi ∈ M ∪ {α} for all i = 1, ..., k. Since β /∈ I, we have γi 6= α for all i. Therefore
β = γ1γ2...γk ∈M , that is S\I ⊆M .

3. Maximal Subsemigroups

In what follows, if α ∈ I(X) is non-zero, then we write

α =

(
ai
xi

)
and take as understood that the subscript i belongs to some (unmentioned) index set I,
that the abbreviation {xi} denotes {xi : i ∈ I}, and that ranα = {xi}, xiα−1 = {ai} and
domα = {ai : i ∈ I}.

Refer to a remark in [7, p.157] that, there are infinitely many maximal subsemigroups
of G(X) which is not a group. In [4], the authors showed that, when X is uncountable,
these maximal subsemigroups of G(X) give rise to a class of maximal subsemigroups of
A(X). It is not surprising that, this result also holds for an arbitrary infinite set X, which
is shown as follows.

Lemma 3.1. Suppose that |X| = n ≥ ℵ0. Then each one of the following types M1, M2

and M3 is a maximal subsemigroup of A(X).

(a) M1 = A(n′, 1) ∪ T , where T is a maximal subsemigroup of G(X);
(b) M2 = (A(X)\A(n′, d)) ∪A(n′, d′), where d = 1 or ℵ0 ≤ d < n;
(c) M3 = (A(X)\A(n′, n)) ∪A(n, n).

Proof. (a) Since A(n′, 1) is a prime ideal of A(X) and its complement equals G(X), it is
a direct consequent from Lemma 2.1(a) that A(n′, 1) ∪ T is a maximal subsemigroup of
A(X) for each maximal subsemigroup T of G(X).

(b) Suppose that d = 1 or ℵ0 ≤ d < n. Then, by Theorem 2.2, A(n′, d) is a prime
ideal. So, A(X)\A(n′, d) is a subsemigroup of A(X). Since A(n′, d′) is an ideal of A(X),
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it is easily seen that M2 = (A(X)\A(n′, d)) ∪ A(n′, d′) is a subsemigroup of A(X). To
show the maximality of M2, we let δ, ε ∈ A(X)\M2. Here, note that

M2 = {α ∈ A(X) : d(α) 6= d},
so d(δ) = g(δ) = d(ε) = g(ε) = d. Since d < n, we have r(δ) = r(ε) = n. We now write

δ =

(
ai
xi

)
, ε =

(
bi
yi

)
where i ∈ I, |I| = n

and suppose X\ dom δ = {pj}, X\Xδ = {qj}, X\ dom ε = {uj} and X\Xε = {vj} where
|J | = d. Then define γ, µ ∈ G(X) ⊆M2 by

γ =

(
bi uj
ai pj

)
, µ =

(
xi qj
yi vj

)
.

Clearly, ε = γδµ and hence M2 is maximal in A(X).
(c) Similar to the proof of (b), since A(n′, n) is a prime ideal and A(n, n) is an ideal of

A(X), we have M3 = (A(X)\A(n′, n)) ∪A(n, n) is a subsemigroup of A(X) and we note
that, in fact,

M3 = {α ∈ A(X) : d(α) < n or r(α) < n}.
To prove the maximality of M3, we let δ, ε ∈ A(X)\M3. Thus, d(δ) = r(δ) = d(ε) =
r(ε) = n. The rest of the proof follows in a manner similar to the proof of (b), the
mappings δ, ε, γ and µ can be written in the same way as we did in the proof of (b),
except that, in this case, we let |J | = |I| = n. Then γ, µ ∈ G(X) ⊆ M3 and ε = γδµ,
which proves maximality of M3.

In order to prove our main theorem, we also need the following two lemmas.

Lemma 3.2. Suppose that |X| = n ≥ ℵ0. Let M be a maximal subsemigroup of A(X).
Then A(n′, 2)\A(n′,ℵ0) = {α ∈ A(X) : 2 ≤ d(α) < ℵ0} ⊆M .

Proof. If A(n′, 2) ⊆M , then A(n′, 2)\A(n′,ℵ0) ⊆ A(n′, 2) ⊆M , and the lemma is proved.
On the other hand, if A(n′, 2) 6⊆M , then Lemma 2.3 implies that

A(X)\A(n′, 2) = {α ∈ A(X) : d(α) < 2} ⊆M.

Now, let α ∈ A(n′, 2)\A(n′,ℵ0), say d(α) = t where 2 ≤ t < ℵ0. Since t is finite, it follows
that r(α) = n. We write

α =

(
ai
xi

)
, i ∈ I and |I| = n,

and suppose
X\ domα = {b1, b2, ..., bt} and X\Xα = {y1, y2, ..., yt}.

Now, we define

σ =

(
ai b1
xi y1

)
, τ =

(
xi y2
xi y2

)
and ensure that σ, τ ∈ A(X) with d(σ) = d(τ) = t − 1. If t − 1 = 1, then σ, τ ∈
A(X)\A(n′, 2) ⊆ M . Thus, α = στ ∈ M . Otherwise, if t − 1 ≥ 2, then the above
argument can be repeated a finite number of times to show that σ = σ1σ2...σr and
τ = τ1τ2...τr for some positive integer r and d(σj) = d(τj) = 1 for all j = 1, ..., r. Thus,
α = στ = σ1...σrτ1...τr ∈M . That is, A(n′, 2)\A(n′,ℵ0) ⊆M as required.
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By using some ideas of the proof of Lemma 3.2, we can prove the following result.

Lemma 3.3. Suppose that |X| = n ≥ ℵ0. Let M be a maximal subsemigroup of A(X).
Then A(n, n) ⊆M .

Proof. Suppose that A(X)\A(n, n) ⊆ M and let β ∈ A(n, n). Then r(β) < n and
d(β) = n. We write

β =

(
ai
xi

)
, i ∈ I and |I| = r(β).

We also write

X\ domβ = {cj} ∪̇ {dj} and X\Xβ = {ej} ∪̇ {fj} where |J | = n,

and define

λ =

(
ai cj
xi ej

)
, µ =

(
xi fj
xi fj

)
.

Now, g(λ) = d(λ) = g(µ) = d(µ) = n and r(λ) = r(µ) = n, so λ, µ ∈ A(X)\A(n, n) ⊆
M . It follows that β = λµ ∈M , and thus A(n, n) ⊆M . Hence,

A(X) = (A(X)\A(n, n)) ∪A(n, n) ⊆M,

which is a contradiction. Therefore, A(X)\A(n, n) 6⊆ M and it follows by Lemma 2.3
that A(n, n) ⊆M .

Now, we are in a position to state and prove the main result of this paper.

Theorem 3.4. Suppose that |X| = n ≥ ℵ0. If M is a maximal subsemigroup of A(X),
then M equals one of the following sets:

(a) M1 = A(n′, 1) ∪ T , where T is a maximal subsemigroup of G(X);
(b) M2 = (A(X)\A(n′, d)) ∪A(n′, d′), where d = 1 or ℵ0 ≤ d < n;
(c) M3 = (A(X)\A(n′, n)) ∪A(n, n).

Proof. From Lemma 3.1, we have proved that M1,M2 and M3 are maximal subsemigroups
of A(X). To complete the proof of the theorem, let M be a maximal subsemigroup of
A(X). Since A(n′, 1) is a prime ideal, by Lemma 2.3, we have either A(n′, 1) ⊆ M
or G(X) = A(X)\A(n′, 1) ⊆ M . If A(n′, 1) ⊆ M , then G(X) ∩ M 6= ∅ (otherwise,
M = A(n′, 1), which is not a maximal subsemigroup of A(X) by Lemma 3.1(a)) and
G(X)\M 6= ∅ (otherwise, M = A(X), which is a contradiction). Then, Lemma 2.1(b)
implies that G(X) ∩M is a maximal subsemigroup of G(X). Now we can write

M = A(n′, 1) ∪ (G(X) ∩M).

It follows that M is a maximal subsemigroup of type M1. In the latter case, when
G(X) ⊆ M , there exists α ∈ A(X)\M and g(α) 6= 0. Furthermore, Lemma 3.2 showed
that M contains all transformations of A(X) such that their gap are finite and are greater
than 1, this implies g(α) = 1 or ℵ0 ≤ g(α) ≤ n. Then we consider the following cases:

Case 1: g(α) = d (say) where d = 1 or ℵ0 ≤ d < n. Then α ∈ A(n′, d)\M and
it follows by Lemma 2.3 that A(X)\A(n′, d) ⊆ M . In addition, g(α) = d also implies
α ∈ (A(X)\A(n′, d′))\M . Using Lemma 2.3 again, we have that A(n′, d′) ⊆M . We now
see that (A(X)\A(n′, d)) ∪ A(n′, d′) ⊆ M and equality follows by Lemma 3.1(b). Thus,
M is a maximal subsemigroup of type M2.
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Case 2: g(α) = n. Similar to case 1, we see that α ∈ A(n′, n)\M . Consequently,
A(X)\A(n′, n) ⊆ M by Lemma 2.3. Moreover, since M always contains A(n, n) (by
Lemma 3.3), it follows that (A(X)\A(n′, n)) ∪ A(n, n) ⊆ M and equality follows by
Lemma 3.1(c). Hence, in this case, we deduce that M is a maximal subsemigroup of type
M3. This completes the proof.

In [4, p.333], for the cardinals d and e such that 0 ≤ d ≤ e ≤ n = |X|, the authors
defined the sets

S[d, e] = {α ∈ A(X) : d ≤ d(α) ≤ e} and

S[d, e) = {α ∈ A(X) : d ≤ d(α) < e}.
Furthermore, S(d, e] and S(d, e) were defined in a similar way. They showed in [4, Theo-
rem 13] that, when n > ℵ0, there are only four types of maximal subsemigroups of A(X),
which are:

(1) T ∪ S[1, n], where T is a maximal subsemigroup of G(X);
(2) G(X) ∪ S(1, n];
(3) G(X) ∪ S[1, d) ∪ S(d, n], where ℵ0 ≤ d < n;
(4) G(X) ∪ S[1, n) ∪A(n, n).

In view of Theorem 3.4, our result is a generalization of [4, Theorem 13] since (1) is
the maximal subsemigroups of type M1, (2) and (3) are the maximal subsemigroups of
type M2 when d = 1 and ℵ0 ≤ d < n, respectively, and (4) is equal to M3. Moreover,
as a specialization of Theorem 3.4 by letting n = ℵ0, the infinite cardinal d in Theorem
3.4(b) does not exist (as it depends on infinite cardinals less than n). Then the following
corollary is immediate.

Corollary 3.5. Suppose that |X| = ℵ0. Then the maximal subsemigroups of A(X) are
precisely the sets:

(a) M1 = A(ℵ0′, 1) ∪ T , where T is a maximal subsemigroup of G(X);
(b) M2 = (A(X)\A(ℵ0′, 1)) ∪A(ℵ0′, 2) = {α ∈ A(X) : d(α) 6= 1};
(c) M3 = (A(X)\A(ℵ0′,ℵ0)) ∪A(ℵ0,ℵ0) = {α ∈ A(X) : d(α) < ℵ0 or r(α) < ℵ0}.
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