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Abstract In this paper, we introduce intuitionistic fuzzy F-norm and study its relations with a-norms.
Intuitionistic fuzzy F-norm is a generalization of intuitionistic fuzzy pseudo norm. We show that intu-
itionistic fuzzy F-norm furnished with a topology satisfying some conditions is a topological vector space.
We also show that in an intuitionistic fuzzy F-space, an open ball with center at origin is balanced,
absorbing and convex. By illustrative examples we also explain that the topology induced by F-norm

and the topology induced by intuitionistic fuzzy F-norm are the same.
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1. INTRODUCTION

In the study of topological vector spaces J. van Neumann [1] has first studied the notion
of pseudo metric, which can be defined in locally convex topological spaces. It is real
valued function and has some properties of norm. D.H. Hyers proposed a pseudo norm
[2], which is generalization of the pseudo metric[l] and previously proposed pseudo norm
[3]. Fréchet spaces are the locally convex metrizable topological vector spaces, but F-
spaces are complete metrizable topological vector spaces. An F-norm can be the topology
of an F-space.

Definition 1.1. [4] A pseudo norm on a vector space V over the field K (field of
real/complex numbers) is a real function || - || : V — R defined on V such that for
any v1,v2 € V and for all c € K with |[¢| < 1,

(PN-1) [oa|| = 0

(PN.2) ||vi|| = 0if and only if v; =0

(PN3)[[cvr || < [lua

(PNA4) [lor +va| < Jloall + [Jozl-
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Definition 1.2. [4] Let 7 be a topology on a vector space V over a field K(field of
real/complex numbers). The pair (V,7) is said to be a topological vector space if the
following two axioms are satisfied:

(TVS.1) (v1,v2) = v1 + vy is continuous on V' x V into V,

(TVS.2) (k,v1) = kv is continuous on K x V into V.

Clearly, a given pseudo norm on V', generated by a translation-invariant metric d(vy,v9) =
|lv1 — v2]|, defines a topology on V satisfying (T'V'S.1); but (T'V S.2) may not be satisfied.

Definition 1.3. [4] Suppose the pseudo norm satisfies the following two extra conditions:
(PN.5) kyy, = 0 = ||kpv|| = 0, Yo e V.

(PN.6) |lon]l = 0 = ||kv,|| = 0, VE e K.

then (TV S.2) is satisfied and a topological vector space is obtained.

The pseudo norm which satisfies (PN.5) and (PN.6) is called F-norm on V.

After Zadeh’s introduction of fuzzy set [5]; many research investigations, by mathemati-
cians, engineers, scientists, computer and management scientists all over the world, have
been made in fuzzy set theory and its applications. The notion of fuzzy norm was studied

by many mathematicians, namely, A. Katsaras [0, 7], C. Felbin [8], Cheng-Moderson [9],
Bag-Samanta [10, 11], I. Golet [12], C. Alegre and S. Romaguera [13], etc. As a general-
ization of the works of Bag-Samanta [10, 11], S. Nad&ban introduced fuzzy pseudo-norm

[14].

An extension of fuzzy sets is known as intuitionistic fuzzy sets, developed by Krassimir T.
Atanassov in 1986 [15]. R. Saadati and J.H. Park [16] defined intuitionistic fuzzy norm
on a linear space. The study of intuitionistic fuzzy norm received a lot of interest in the
past years.

In this paper, a more extensive concept than intuitionistic fuzzy pseudo norm [17-21] has
been introduced as intuitionistic fuzzy F-norm. In section 3, we have introduced intu-
itionistic fuzzy F-norm as a generalization of intuitionistic fuzzy pseudo norm and studied
decomposition theorems of intuitionistic fuzzy F-norm into two family of a-norms. We
have also established that intuitionistic fuzzy F-normed spaces are intuitionistic fuzzy
topological vector spaces. In section 4, we have investigated some of the basic properties
of topological vector space in intuitionistic fuzzy F-normed space.

2. PRELIMINARIES

Definition 2.1. [17] Let V be linear space over the field K (field of real/complex num-
bers). An intuitionistic fuzzy subset (i, v) of (V xR, V x R) is said to be an intuitionistic
fuzzy pseudo norm on V if Vuy,v € V

(IFP.1) Vs € R, p(vy,s) + v(vi,s) < 1,

(IFP.2) Vs € Rwith s < 0, u(v1,s) = 0;

(IFP.3) Vs € RY, p(vy,s) = 1 if and only if v; = 6;

(IFP.4) Vs € RY, p(cvy,s) > p(v,s) if|c|< 1,Ve €K;

(IFP.5) pu(vy + va, s +t) > min{u(vi,s), p(va, t)}, Vs, t € R

(IFP.6) Sllmoo w(v, s)=1;

(IFP.7) if there exists a € (0,1) such that p(vi, s) > a, Vs € RT then vy = 6;
(IFP.8) Vv, € V, p(wvy, ) is left continuous on R;

(IFP.9) Vs € Rwiths < 0, v(vy,s) = 1;

(IFP.10) Vs € R*, v(wv1, s) = 0 if and only if v; = 6;
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(IFP.11) Vs € RT, v(cv1,s) < v(vy,s)if|c|< 1, Ve €K;
(IFP.12) v(v1 + va,s +t) < max{v(vi,s),v(ve,t)}, Vs, t € RT;
(IFP.13) lim v(wv,s)=0;

S — o0
(IFP.14) if there exists « € (0,1) such that v(v1, s) < a, Vs € RT then v; = 6;
(IFP.15) Vv € V, v(vy, -) is left continuous on R.

Here (V, u,v) is called intuitionistic fuzzy pseudo normed linear space.

Remark 2.2. [22] If * is a t-norm and diamond is a t-co-norm then a * a = a and
ao a=a,Vae€ [0,1] is satisfied only when a * b = min{a, b} and a ¢ b = max{a, b}.

Definition 2.3. [17] A sequence {a,},ecn in an intuitionistic fuzzy pseudo normed lin-
ear space (V,u,v) is said to be a-convergent if there exists a € V such that Vs > 0,

lim wp(a, —a,s) > a, lim v(a, —a,s) < a. Then a is called a-limit of a,, in (V, u,v).
n — 0o n—o00

From [16] and Remark 2.2 the definition of intuitionistic fuzzy metric space is as follows:

Definition 2.4. [16] Let V be an arbitrary set. An intuitionistic fuzzy subset (M, N)
of (VxV xRt V xV xRT) is said to be intuitionistic fuzzy metric on V, Vv, va, v3 €
Vi s,t > 0 if the following conditions hold: Vv, ve, v3 € V and for each s,t > 0,
(ifm.I) M(v1,v2,8) + N(v1,v2,8) < 1;

(ifm.IT) M(v1,v2,0) = 0;

(ifm.IIT) M(vy,v9,s) =1 iff. vy = wvy;

(ifm.IV) M(v1,v2,s) = M(va,v1,5);

(ifm. V) M(v1,vs3, 8+ t) > min{ M (v1, v, s), M(va,vs,t)};

(ifm.VI) M(v1,ve,-) : RY — [0, 1] is left-continuous;

(ifm. VII) N (vq,v2,0) = 1;

(ifm. VIII) NV (v1,v2,5) =0 iff. v = wvg;

(ifm.IX) N (v, va, 8) = N(va,v1, 8);

(ifm.X) N (v1,vs, 5 +t) < max{N (vi,vs,s), N(va,v3,t)};

(ifm.XT) NV (v1,vg,-) : RT — [0, 1] is left-continuous.

3. INTUITIONISTIC FUZZY F-SPACE

Definition 3.1. Let V be a linear space over the field K (field of real/complex numbers)
and {v,} and {k,} be two sequences in V' and K respectively. An Intuitionistic fuzzy
pseudo norm (u,r) on V is said to be an intuitionistic fuzzy F-norm if Yo € V and
Vs € Rt the following conditions satisfy :

(IFP.16) k, — 0 = nleoo w(kpv,s)=1

(IFP.17) nlem p(vn,s)>a = nlem plkv,,s)>a, Vke K, ae€ (0,1).
(IFP.18) k, — 0 = nli_}moo v(kpv,s)=0.

(IFP.19) nleOO vizpy,t)<a = nli_}moo vikvy,s)<a, Vke K, ae (0,1).
Here (V, u,v) is called intuitionistic fuzzy F-normed linear space.

Remark 3.2. An intuitionistic fuzzy F-norm is an intuitionistic fuzzy pseudo norm.

Example 3.3. Let (V, || - ||) be a F-normed linear space. Define p,v: V xR — [0, 1] by
1 if s> ||v],
p(v.s) = { ezl

0 if s<| vl



984 Thai J. Math. Vol. 20 (2022) /B. Dinda et al.

0 if
u(v,s):{ if s> ol

1 if s<|v].

Then (u, v) is an intuitionistic fuzzy F-norm on V' and (V, i, v) is an intuitionistic fuzzy
F-normed linear space.

Proof. (IFP.16,IFP.18) If k,, — 0 then ||k,v| — 0, [by Definition 1.3].
Therefore, 3mgy € N such that ||k,v| <s, Vn > mg, Vs> 0.
Thus u(knv,s) =1 and v(kyv,s) =0, Vn > my.
Hence lim p(kpv,s) =1and lim v(k,v,s) =0.
n — o0 n— oo
(IFP.17,IFP.19) If lim p(v,,s) > o and lim v(v,,s) < a, then 3Imy € N such that
n — o0 n — o0

w(vn,s)> aand v(v,,s) <a, Vn> mg, Vs> 0.

Therefore, pu(v,,s) =1 and v(v,,s) =0, Yn > mg, Vs > 0.

Hence |lv,|| < s, Vn > mg, ¥s > 0. Therefore ||v,|| — 0 as n — oo, hence ||kv,| —
0 as n — oo, Vk € K, [by Definition 1.3].

Thus 3mg € N such that ||kv,| < s, Yn > mg, Vs > 0. Therefore 3my € N such that
w(kvy,s) =1 >« and v(kv,,s) =0 < «a, Vn > mg, Vs > 0. Hence nlem wlkop, s) > «

and lim v(kv,,t) <a, Vs> 0. m

n— oo

Example 3.4. Let (V, || - ||) be a F-normed linear space. Define p,v: V x R — [0, 1] by

1 if s> |vl,s>0,
S .
n(vys) =3 55700 if s < |oll,s>0,
0 if s <O0.
0 if s> |vl,s>0,
viv,s) = o] if s <|v|,s>0,
s+ vll
1 if s <0.

Then (u, v) is an intuitionistic fuzzy F-norm on V and (V| u,v) is an intuitionistic fuzzy
F-normed linear space.

Proof. (IFP.16, IFP.18) If k,, — 0 then ||k,v|| — 0 [by Definition 1.3].
Therefore, 3mg € N such that ||k,v|| < s, Vn > mg, Vs> 0.
Thus pu(knv,s) =1 and v(kyv,s) =0, Yn > mg.
Hence lim p(kpv,s) =1and lim v(kyv,s) =0.
n — o0 n — o0
(IFP.17,IFP.19) If lim p(vy,s) > a and lim v(v,,s) < a, then Img € N such that
n — o0

n— oo
pw(vp,s) > aand v(v,,s) < a, Vn > mg, Vs> 0. Hence two cases arises.
Case-1: p(vy,s) =1 and v(v,, s) = 0. Then the proof is same as proof of Example 3.3.

Case-2: p(vy,s) = ot and v(vp, ) = sJ”rTIUJH' Therefore,

dmg € N such that m>a, V'n > mg and s > 0.

= Jmg € N such that [jv,|| < s(1=2), Vn > mg, Vs > 0.

Since s is arbitrary [|v,|| — 0 = |kv,|| = 0, Yk € K, [by Definition 1.3].
and dmg € N such that SHZU‘ <a,Vn > mgand s> 0.

= dmg € N such that [Jv,]| < s(125), Vn > mo, Vs> 0.

Since s is arbitrary ||v,|| — 0 = ||kv,|| = 0, Vk € K, [by Definition 1.3].
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Hence 3my € N such that || k,v| < s, Vn > mg, Vs> 0.

= Img € N such that p(kv,,s) =1 >« and v(kv,,s) =0< a,Vn >mg,Vs >0

= lim p(kvy,,s) >« and lim v(kv,,s) <o, Vs> 0. n
n— oo n— oo

Proposition 3.5. Let (V,u,v) be an intuitionistic fuzzy F-normed linear space. If a
sequences {vp}n € V converges to v then it is also a-convergent to v.

Proof. Here v, (€ V) converges to v in an intuitionistic fuzzy F-normed linear space.
Therefore for any o € (0,1) we have lim p(v, —v,s) =1> o and lim v(v, —v,s) =
n — o0 n — o0

0 < a, Vs > 0. Hence the proof. [

Theorem 3.6. Let (V, u,v) be a intuitionistic fuzzy F-normed linear space. Now for any
a € (0,1) the functions |||, , |5 :V —[0,00) defined by

folly = ALs>0: u(v.s) > a}
ol = /\{s>0 cv(v,s) < al

Then the family of functions ||- ||, : V — [0,00) with a varying in (0,1) is an ascending
family of F-norms on V. And the family of functions |- ||%, : V — [0,00) with o varying
in (0,1) is a descending family of F-norms on V.

These norms are called a-F-norms.

Proof. For proving the theorem we have only to verify (PN.5) and (PN.6) of Definition
1.3.
(PN.1), (PN.2), (PN.3), (PN.4), ascending property, and descending property follows
from Theorem 3.2 of [17].
(PN.5) Let k,, — 0, then ||k,v|| — 0,Yv e V.
ie, lim p(k,v,s)=1and lim v(k,v,s)=0, Vs>D0.
n — o0 n — o0
= Img € N such that p(k,v,s) > a and v(k,v,s) < a, ¥n > mg, Vs >0, Va e (0,1).
= Img € Nsuch that ||k, v, <sand | k,v]|] < s, Vn> my,Vs>0, Vae (0,1).
= |k,v]|, = Oand |k, v ]|, — 0 asn — oo, for any a € (0,1).
(PN.6) We take a fixed a. Let v, — 0 then we have v, = 0.
ie, lim p(z,,s)>aand lim v(v,,s) <o
n — o0 n — oo
Then form (IFP.17) and (IFP.19) we have
lim p(kvp,t) > aand lim v(kv,,s) < a,VkeK, s> 0.
n — 0o n — oo
Hence 3mg € N such that |kv, |, < sand |[kv, | <s, Vn> mg,Vs>0, Va €
(0,1).
= kv, ||, — Oand |[kv,|, — 0 asn — oo, for any a € (0,1). m

Theorem 3.7. Let |||, . |- ||} be a-F-norms defined in Theorem 3.6. Now p'', v'' :
V xR — [0, 1] be defined by

' _JV{ae (0,1) : v, < s}, if s> 0.
FEE =0, if s <0

/) B /\{ozE(O,l):||v||Z<s}7 if s>0.
vi(vys) =47 if s <0.
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Then (i) (p'', v'") is an intuitionistic fuzzy F-norm on V.
(@) p'" = p and v’ =v.

Proof. From Theorem 3.10 of [14] it follows that (u’’, v’’) is an intuitionistic fuzzy
pseudo-norm on V' and we have only to verify (IFP.16) to (IFP.19).

(IFP.16,IFP.18) Let k,, — 0 then |k,v|| — 0 [by Definition 1.3], therefore, ||k, v|, — 0
and ||k, v — 0.

Hence 3mg € N such that ||k, v|, < s and ||k,v]||), <s, Vo> mg, Vs >0, Va €
(0,1).

= Img € N such that g’ (k,v,s) > a and v’ (k,v,8) < o, Vn > mg, Vs >0, Va €
(0,1).

= 1i_>m w' (kpv,s)=1and lim v’ (k,v,s) =0, s> 0.

n— oo

(IFP.17,IFP.19) Let lim u'' (vp,s) > e and lim v’/ (v,,s) < a.
n — o0

n — o0

= JImg € N such that u'’ (v,,s) > @ and v’/ (v,,8) < @, Vn > mpy, Vs >0, Va €
(0,1).

= Img € N such that ||v, ||, <sand [jv, | <s, Vo> mg, Vs >0, Va € (0,1).

= ||, = 0and |jv, | — 0.

Since || ||, and |- ||} are F-norms on V, from (PN.6) of Definition 1.3, we have

| kv, ||, = 0and [[kv, ||, — 0, Vk € K.

= Img € N such that ||kv, |, <sand ||kv, |} <s, Vn > mg, Vs >0, Va € (0,1).
= Jmg € N such that p’' (kvp,s) > aand v"’ (kvy,s) < a, YVn > mg, Vs> 0, Va €
(0,1).

= nlem w' (kv,,s) > o and nlem v (kvy,s) < a. n
Theorem 3.8. Let (V,u,v) be an intuitionistic fuzzy F-normed linear space. Then
(V,p,v) furnished with the topology T satisfying the following conditions:

(1) (v,u) = v+ u is continuous from V x V to V.

(i) (k,v) = kv is continuous from K x V to V.

is a topological vector space.

Proof. Let {v,} and {u,} be two sequences in V' converges to a and b respectively. Then

lim wp(v, —a,s) =1, lim v(v, —a,s) =0and lim p(u, —b,t) =1, lim v(u, —
n — 0o n — 0o n — 0o n— oo
b,t) = 0.
Now, p((vy + up) — (@ +b),s +t) > min{u(v, —a,s), p(u, —b,t)}.
Hence lim p((vy +upn) — (a+0d),s+t) =1.

n— oo

Also v((vn + up) — (a+b),s+t) < max{v(v, —a,s), v(u, — b, t)}.
Hence le v((vp + up) — (a+b),s+t) =0.
Therefore, v, + un, — a+0b. Thus (v,u) — v+ u is continuous with respect to p and v.
Let v, = a in V and k, — k in K. Then li_>m wlv, —a,s) =1, li_>m v(v, —a,s) =0
and le wlkn, —k,s8) =1, li_>m v(k, — k,s) =0.
Now, ky, v, — ka = (k, — k)(v, — a) + a(k, — k) + (v, — a)k. Therefore,

lim p(k, v, — ka, so + s1 + s2)
n— oo
> min{ lim wp(k, — k)(vn —a),s0), lim p(a(k, —k),s1), lim p(k(v, —a),s2}

n— oo n — oo n— oo
lim v(k, v, — ka, so + 51 + $2)

n — oo

< max{ lim v(k, — k)(v, —a),s0), lim v(a(k,—k),s1), lim v(k(v, —a),s2}.
n — o0 n — o0 n — o0
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Since k,, — k we have (k, —k)a — 0. ie., lim p(a(k,—k),s1) =1and lim v(a(k,—
n— o0 n — oo

k),sl) = O, Vs1 > 0.

v, — a therefore v, = a.

= lim p(v, —a,s2) >aand lim v(v, —a,s3) <o, Va € (0,1).
n— oo n — oo

= lim u(k(v, —a),s2) > aand lim v(k(v, —a),s2) <o, Va € (0,1). [by (IFP.17)
n — o0 n — o0
and (IFP.19)].
= lim p(k(vy, —a),s2) =1and lim v(k(v, —a),s2) =0.
n — 0o n— oo
Now p((kn — k)(vn, — a), s0) > p(vn — a, o) and v((k, — k) (v, — a), 80) < v(v, — a, Sp),
by (IFP.4) and (IFP.11)].
Therefore, lim p((k, —k)(vn, —a),s9) =1 and lim v((k, — k)(vn, —a),sp) = 0.
n — o0 n — oo

Hence lim p(k,v, —ka,so+ 1 +s2) =1and lim v(k,v, — ka,sq+ s1 + s2) =0.
— 00 n — oo

n
Thus (k,v) — kv is continuous. L]

4. SOME PROPERTIES OF TOPOLOGICAL VECTOR SPACES IN INTUITIONIS-
TIC FUZZY F-NORMED SPACES

Theorem 4.1. Let (V,u,v) be an intuitionistic fuzzy pseudo normed linear space, then
(V, M, N) is an intuitionistic fuzzy metric space, where M, N are defined by M(v1,vs,5) =
w(vy — ve,8) and N(vy,v2,8) = v(vy —v9,8), Vui,ve €V, s> 0.

Proof. (ifm.I) M(v1,va,8) + N (v1,v2,8) = p(vy — ve, 8) + v(vy —ve,s) < 1.
(ifm.ILifm. VII) M(v1,v2,0) = p(v — v2,0) = 0 and N(v1,v2,0) = v(v1 — v2,0) = 1.
(ifm ILifm. VIIT) M(vy,v9,8) =1 < p(v; —ve,8) =1 & vy —vy =0 & vy = vy and
N(vi,v9,8) =0 & v(vy —v2,8) =0 & v1 —ve =60 & v] = va.

(ifm.IV,ifm.IX) From (IFP.4) and (IFP.11) taking ¢ = —1 we obtain pu(—v1,s) > pu(v1, )
and v(—v1,s) < v(v1,s). Swaping v; with —v; we have p(vi,s) > p(—wv1,s) and
v(vy,s) < v(—wvy1,s). Hence p(—v1,s) = p(v1,s) and v(—vy1,8) = v(v1,s). Therefore
w(vy — va,8) = p(vg — vy,8) and v(vy — ve,8) = v(vy — v1,8). Thus M(vy,ve,s) =
M(vs,v1,8) and N (vq,v2,8) = N (va,v1,8), Yui,ve € V, s € RT.

(ifm. V,ifm.X) M(vy,vs,s +t) = p(vy — vz, s +1) > min{p(vy — ve, s), u(vy —vs, 1)}

= min{M(v1, v, 5), M(ve,vs,t)} and N (vy,vs, s +t) = v(vy —vs,s +1t) < max{v(vy —
v, 8), v(vg — vz, t)} = max{ N (vi,vs,s), N(ve,v3,t)}, Vui,va,v3 € V, Vs, t > 0.
(ifm.VLifm.XI) From (IFP.8) and (IFP.15) we have p(vy — va, ) and v(vy — ve, -) are left
continuous on R respectively. Therefore M (vy,vs,-) and N (v1,vs,-) are left continuous
on R. (]

Definition 4.2. Let (V, u, ) be an intuitionistic fuzzy F-normed linear space. An open
ball B(v,r,s) with center at v, radius 0 < r < 1 and s € R" is defined by B(v,r,s) =
{lae V:plw—a,s)>1—r v(v—a,s) <r}

Theorem 4.3. Let (V,u,v) be an intuitionistic fuzzy F-normed linear space. Then
B(0,r,s) is balanced for all s > 0 and r € (0,1).

Proof. Let v € B(0,r,s) then 359 > 0 such that pu(v,s) >1—r and v(v,s) <r, Vs> sg
and 0 < r < 1. Then by (IFP.4) and (IFP.11) we have u(cv,s) > u(v,s) > 1 —r and
v(ev,s) < v(v,s) <1, Ve e Ksuch that |¢] < 1. Thus cv € B(0,r,s),V|c| < 1. L]

Theorem 4.4. Let (V,u,v) be an intuitionistic fuzzy F-normed linear space. Then
B(0,r,s) is absorbing for all s >0 and r € (0,1).
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Proof. From the Theorem 4.3 if we take a positive real number A such that A > 1 then
cv € B(0,r,8),V|c| < A n

Theorem 4.5. Let (V,p,v) be an intuitionistic fuzzy F-normed linear space and let B
be the family of open balls with center at origin. Then

(1) If Y € B then there is X € B such that X + X C Y.

(#9) If X, Y € B then there is Z € B such that Z C Y N X.

Proof. (i) Let x +y € X + X then z,y € X(€ B).

Therefore u(x,s) >1—r, v(z,s) <rand u(y,t) >1—7r, v(y,t) < r. Now,

w(x +y,s+t) > min{u(z,s), u(y,t)} >1—r and

vz +y,s+t) < max{v(z,s),v(y,t)} <r.

Hence z+y € B(0,7,s+t). Thusz+ye Y.

(ii) Let » = min{ry,r2}. Then

B(0,r,s)={z eV :pu(z,s)>1—r v(z,s) <r}
ClzxeV:pulx,s)>1—r,vix,s)<rm}tN{zeV:pulxs)>1—ry viz,s) <ry}

= B(0,71,s) N B(0,rs,s).

Again since u(z,-) is non-decreasing and v(z, -) is non-increasing therefore by taking s =
min{si, sz} we have B(0,r,s) C B(0,r,s1) N B(0,r,s2). Hence B(0,r,s) C B(0,71,81) N
B(O,?‘Q,Sg). L

Theorem 4.6. Let (V, u,v) be an intuitionistic fuzzy F-normed linear space and then the
open balls with center at origin are conver.

Proof. Let vi,v2 € B(0,7r,s) and A € [0,1]. Then sy > 0 such that p(vy,s) > 1 —
r, w(va,8) > 1 —r and v(v1,s) <r, v(ve,s) <r, Vs> sp.

w(Avr + (1= Nwg, )

=pAvy + (1 =XNvg, As+ (1—XN)s)

> min{u(Avs, As), 1((1 = Ava, (1-A)s)}, [by (IFP.5)]

> min{pu(or, As), ju(vs, (1-A) )}, [by (IFP.4)]

= min{p(v1, $1), p(va, s2)}, where s; = As > 59 and s3 = (1 —A)s > s¢ for some 593 > 0
> min{l — 7,1 —r}, since Jsy > 0 such that s; > sp and s3 > s

=1-—r. and

v(Avr + (1 = Nwg, s)

=v(Avr+ (1= ANvg, As+ (1 —A)s)

< max{v(Avy, As), v((1 =N, (1 —=X)s)}, [by (IFP.12)]

< max{v(v1, As), v(ve, (1 =XN)s)}, [by (IFP.11)]

= max{v(v1, s1),v(ve, $2)}, where s1 =As > spand s2 = (1 — A)s > sg for some 53 >0
< max{r,r}, since Isg > 0 such that s; > sg and s2 > s

=r.

Thus, Avy + (1 — A)ve € B(0,r,s). m

Remark 4.7. Let 7, ={ACV :ve A B(v,r,s) C A}. Then 7,, is a topology
on V.

Proof. From the Theorem 4.1 and Theorem 3.3 of [23] the remark follows. n
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Remark 4.8. Let (V] - ||) be a F-normed linear space. Define p, v: V x R — [0,1] by

1 if s> |lvl],s>0,
s .
n(v,8) =95l if s <|of,s>0,
0 if s <O0.
0 if s> |vl,s>0,
v, s) =4 ol if s < |v|,s>0,
s+ [|v
1 if s<0.

Then the topology 7 induced by the F-norm || - || and the topology 7., induced by the
intuitionistic fuzzy F-norm are equivalent.

Proof. We first show that '€ 7 = T € 7,,. i.e, Vv e T, s > 0,30 <r <1 such that
B(v,r,s) C T.
Let v € T then Je > 0 such that B(v,e) C T. Let r = %-i-e € (0,1) and s = 1.
If a € B(v,r,s) then
€ 1 1 1

= = > = |lv—al <,
T4 T7c Txfo_a] Txe ~ lvmall<e

plv—a,t) >1—r=1-—

(v—a,t) < ¢ o Mv=dl e lo—al <
vViv—a T = v—a €.
’ 1+e 1+ v—al ~1+e¢

Hence a € B(v,e) C T.
Conversely, we show that T' € 7,, = T € 71ie., Vv € T, 3e > 0 such that B(v,e) C T.
Let veT. Since T € 7,,, s> 0,30 <r <1 such that B(v,r,s) C T.

Let e = —— >0.
1—r
Let a € B(v,¢€) then ||[v — a|| < e. Now,

1—
wv—a,s) = > > =5 :3( T)zl—r
s+lv—al = s+e s+ 75 s
( ) ||11—a|| < € % ST
viv—a,s) = = = =r.
s+lv—all 1+e s+ 7% S — ST+ sr
Hence a € B(v,r,s) C T. ]

Theorem 4.9. Let (V, u,v) be an intuitionistic fuzzy F-normed linear space then (V, M, N')
is an intuitionistic fuzzy metrizable topological vector space, where (M, N) are defined by
Theorem 4.1.

Proof. Let M, N : V x V x RT — [0,1] be defined by M(v1,vs,8) = p(vy — v2,5) and
N (v1,v2,8) = v(v; —vg,s). Then (M, N) is a intuitionistic fuzzy metric by Theorem 4.1,
and this metric is compatible with the topology of V, by Theorem 3.8. Also, M(v1 +
v3, v + v3,8) = p(vy — ve,8) = M(vi,v9,s) and N(vy + v3,v2 + v3,8) = v(vy — va,s) =
N (v1,v9,5). Therefore (M, N) is translation-invariant intuitionistic fuzzy metric. m
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Example 4.10. Let [, be the linear space of all sequence {a,,} such that
Yoo llan||P < oo, for a, € K(=R or C). Let a,, b, € I, and take s > 0.
Let d(an,bn) =Y ooy llan — bu|/P, and

(ian, s) = S (an, §) = > ome llanll?
ny - oo ) ns - o0 *
s+ 2 llan]l? s+ 1 llanl?
Then by Example 3.3 of [17], (u, V) is an intuitionistic fuzzy F-norm. And the topology

74 induced by the invariant metric d and the topology 7, induced by the intuitionistic
fuzzy F-norm (u,v) are the same.

Proof. Let a, € A(1g). Then Je > 0 such that B(a,,e) C A. Let r =

and s = 1.
If b, € B(an,r,s) then

€
e (0,1
1+e¢ (0,1)

€ 1
M(an nS) " 1+e 1+e

1 1
= >
T+3,0 llan = bulP ~ 1+e

o0
= Z lan — bu | <,
n=1

=

€
1+e

>ooey llan = bu P €
14307 [lan —bull? ~ 1+€

(oo}
= Z lan — bp||P <e.
n=1

v(ap —bp,s) <r=

=

Hence b, € B(ap,e€).
Conversely, let a,, € A(7,,). Then s >0, 30 < r < 1 such that B(a,,r,s) C A. Let us

take € = li > 0. Let b, € B(ap,€) then > | |ja, — b,||P < e. Therefore
r

s s s s(1—r)
ap — by, s) = > = — =1-—r,
Hlon =8 = S bl 54¢ 5y T s
1—r
sr
o — by |P —
Pan—bps) = —2nmtlan =bal? € a-r s
S+ 2o llan —bullP ~1+e 54 §—sr+sr
Hence b, € B(an,T,5). n

5. CONCLUSION

Intuitionistic fuzzy F-norm is a generalization of intuitionistic fuzzy norm as well as
intuitionistic fuzzy pseudo norm. In this paper, we characterize metrizable topological
vector space by intuitionistic fuzzy F-norm. It is observed that a topological vector space
is intuitionistic fuzzy metrizable iff. it is metrizable.

Even though the structure of intuitionistic fuzzy F-norm is more complected (than the
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structure of intuitionistic fuzzy norm), it is a very rich and more general structure. With
a suitable adaptation, the notion of intuitionistic fuzzy F-norm deserves the attention in
the extension of classical functional analysis in fuzzy environment.
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