Convergence of Three-Step Iteration Scheme for Common Fixed Point of Three Berinde Nonexpansive Mappings

Seyit Temir
Department of Mathematics, Art and Science Faculty, Adıyaman University, 02040, Adıyaman, Turkey e-mail : seyittemir@adiyaman.edu.tr

Abstract

The purpose of this paper is to establish weak and strong convergence theorems of three-step iterations for three Berinde nonexpansive mappings in Banach space. The results obtained in this paper extend and improve the recent ones announced by Phuengrattana and Suantai [6] and S. Kosol [7].

MSC: 47H09; 47H10.
Keywords: nonexpansive mappings; common fixed points; convergence theorems

Submission date: 04.11.2019 / Acceptance date: 03.11.2021

1. Introduction and Preliminaries

Throughout this paper, K be a nonempty convex subset of a Banach space X and $T: K \rightarrow K$ be a mapping. We denote by $F(T)$ the set of fixed points of T. We denote by $F=\overbrace{i=1}^{3} F\left(T_{i}\right)$ the set of common fixed points of $T_{i}: K \rightarrow K, i=1,2,3$.

A mapping T is called nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|
$$

for all $x, y \in X$.
T is called quasi-nonexpansive if $F(T) \neq \emptyset$ and

$$
\|T x-p\| \leq\|x-p\|
$$

for all $x \in X$ and $p \in F(T)$.
A mapping T is said to be Berinde nonexpansive if there exists $L \geq 0$ such that

$$
\|T x-T y\| \leq\|x-y\|+L\|y-T x\|
$$

for all $x, y \in K$.
In 2003, Berinde [1] introduced a new type of contraction as above, called weak contraction and proved a fixed point theorem for this type of mapping in a complete metric space by showing that Picard iteration $\left\{x_{n}\right\}$ by $x_{n+1}=T x_{n}$ for all $n \in \mathbb{N}$ converge strongly to its fixed point.

In 2000, Noor [2] introduced a three-step iterative scheme and studied the approximate solutions of variational inclusion in Hilbert spaces. Glowinski and Le Tallec [3] used threestep iterative schemes to find the approximate solutions of the elastoviscoplasticity problem, liquid crystal theory, and eigenvalue computation. It has been shown in [3] that the three-step iterative scheme gives better numerical results than the Mann-type(one-step) [4] and the Ishikawa-type (two-step)[5] approximate iterations. In 2013, Phuengrattana and Suantai [6] introduced the following iterative method for weak contraction.

$$
\left\{\begin{array}{l}
z_{n}=a_{n} T x_{n}+\left(1-a_{n}\right) x_{n} \tag{1.1}\\
y_{n}=b_{n} T z_{n}+\left(1-b_{n}\right) z_{n} \\
x_{n+1}=\alpha_{n} T y_{n}+\beta_{n} T z_{n}+\left(1-\alpha_{n}-\beta_{n}\right) x_{n}, \forall n \in \mathbb{N}
\end{array}\right.
$$

where $x_{1} \in K,\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{\alpha_{n}+\beta_{n}\right\}$ in $[0,1]$ satisfy certain conditions. Let $T_{i}: K \rightarrow$ $K, i=1,2,3$ be mappings.

By studying the following iteration process:

$$
\left\{\begin{array}{l}
z_{n}=a_{n} T_{1} x_{n}+\left(1-a_{n}\right) x_{n} \tag{1.2}\\
y_{n}=b_{n} T_{2} z_{n}+\left(1-b_{n}\right) x_{n} \\
x_{n+1}=\left(1-\alpha_{n}\right) T_{3} z_{n}+\alpha_{n} T_{3} y_{n}, \forall n \in \mathbb{N}
\end{array}\right.
$$

where $x_{1} \in K,\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{\alpha_{n}\right\}$ in $[0,1]$. S. Kosol [7] proved the weak and strong convergence theorems of the above iterative method for approximating a common fixed point of Berinde nonexpansive mappings in a Banach space.

Inspired and motiveted by these facts, we introduce and study a new class of iterative for three Berinde nonexpansive mappings in this paper. The scheme is defined as follows.

Let K be a nonempty convex subset of a Banach space X and $T_{i}: K \rightarrow K, i=1,2,3$ be mappings. Then for arbitrary $x_{1} \in K$, the following iteration scheme is studied:

$$
\left\{\begin{array}{l}
z_{n}=a_{n} T_{1} x_{n}+\left(1-a_{n}\right) x_{n} \tag{1.3}\\
y_{n}=b_{n} T_{2} z_{n}+c_{n} T_{2} x_{n}+\left(1-b_{n}-c_{n}\right) x_{n} \\
x_{n+1}=\alpha_{n} T_{3} y_{n}+\beta_{n} T_{3} z_{n}+\gamma_{n} T_{3} x_{n}+\left(1-\alpha_{n}-\beta_{n}-\gamma_{n}\right) x_{n}
\end{array}\right.
$$

$\forall n \in \mathbb{N}$, where $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{b_{n}+c_{n}\right\},\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ and $\left\{\alpha_{n}+\beta_{n}+\gamma_{n}\right\}$ in $[0,1]$ satisfy certain conditions.

The aim of this paper is to introduce and study convergence problem of the three-step iterative sequence (1.3) for three Berinde type nonexpansive mappings in a real Banach space. The results presented in this paper generalize and extend some recent Phuengrattana and Suantai [6] and S.Kosol [7].

The following lemma will be needed in proving our main results.
A Banach space X is said to be uniformly convex if the modulus of convexity of X

$$
\delta(\varepsilon)=\inf \left\{1-\frac{\|x+y\|}{2}:\|x\|=\|y\|=1,\|x-y\|=\varepsilon\right\}>0 .
$$

for all $0<\varepsilon \leq 2$ (i.e., $\delta(\varepsilon)$ is a function $(0,2] \rightarrow(0,1))$.

Recall that a Banach space X is said to satisfy Opial's condition [8] if, for each sequence $\left\{x_{n}\right\}$ in X, the condition $x_{n} \rightarrow x$ weakly as $n \rightarrow \infty$ and for all $y \in X$ with $y \neq x$ imply that

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|
$$

A mapping $T: K \rightarrow X$ is said to be demiclosed with respect to $y \in X$ if, for for each sequence $\left\{x_{n}\right\}$ in K and each $x \in X, x_{n} \rightarrow x$ weakly and $T x_{n} \rightarrow y$ strongly imply that $x \in K$ and $T x=y$.

A mapping $T: K \rightarrow X$ is said to be semi-compact if, for any sequence $\left\{x_{n}\right\}$ in K such that $\left\|x_{n}-T x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\{x_{n_{k}}\right\}$ converges strongly $x^{*} \in K$.

In what follows, the following lemmas will be needed in proving our main results.
Lemma 1.1 ([9]). Let $k>1$ be a fixed numbers and X be a uniformly convex Banach space and $B_{r}:=\{x \in X:\|x\| \leq r\}, r>0$. Then there exists a continuous strictly increasing convex function $g:[0, \infty) \longrightarrow[0, \infty)$ with $g(0)=0$ such that

$$
\|\lambda x+(1-\lambda) y\|^{k} \leq \lambda\|x\|^{k}+(1-\lambda)\|y\|^{k}-\omega_{k}(\lambda) g(\|x-y\|)
$$

for all $x, y \in B_{r}$ and $\lambda \in[0,1]$.
Lemma 1.2 ([10]). Let X be a uniformly convex Banach space and $B_{r}:=\{x \in X$: $\|x\| \leq r\}, r>0$. Then there exists a continuous strictly increasing convex function $g:[0, \infty) \longrightarrow[0, \infty)$ with $g(0)=0$ such that

$$
\|\lambda x+\beta y+\gamma z\|^{2} \leq \lambda\|x\|^{2}+\beta\|y\|^{2}+\gamma\|z\|^{2}-\lambda \beta g(\|x-y\|)
$$

for all $x, y, z \in B_{r}$ and $\lambda, \beta, \gamma \in[0,1]$ with $\lambda+\beta+\gamma=1$.
Lemma 1.3 ([11]). Let X be a uniformly convex Banach space and $B_{R}:=\{x \in X$: $\|x\| \leq R\}, R>0$. Then there exists a continuous strictly increasing convex function $g:[0, \infty) \longrightarrow[0, \infty)$ with $g(0)=0$ such that

$$
\begin{aligned}
& \|\lambda x+\mu y+\xi z+\nu w\|^{2} \leq \lambda\|x\|^{2}+\mu\|y\|^{2}+\xi\|z\|^{2}+\nu\|w\|^{2} \\
& -\frac{1}{3} \nu(\lambda g(\|x-w\|)+\mu g(\|y-w\|)+\xi g(\|z-w\|))
\end{aligned}
$$

for all $x, y, z, w \in B_{r}$ and $\lambda, \mu, \xi, \nu \in[0,1]$ with $\lambda+\mu+\xi+\nu=1$.
Lemma 1.4 ([12], Lemma 2.7). Let X be a Banach space which satisfies Opial's condition and let x_{n} be a sequence in X. Let $q_{1}, q_{2} \in X$ be such that $\lim _{n \rightarrow \infty}\left\|x_{n}-q_{1}\right\|$ and $\lim _{n \rightarrow \infty}\left\|x_{n}-q_{2}\right\|$ exist. If $\left\{x_{n_{k}}\right\},\left\{x_{n_{j}}\right\}$ are the subsequences of $\left\{x_{n}\right\}$ which converge weakly to $q_{1}, q_{2} \in X$, respectively. Then $q_{1}=q_{2}$.

2. MAIN RESULTS

In this section, we prove the three-step iterative scheme given in (1.3) to converge to a common fixed point for Berinde nonexpansive mappings in uniformly convex Banach space.

Lemma 2.1. Let K be a nonempty closed convex subset of a uniformly convex Banach space $X, T_{i}: K \rightarrow K, i=1,2,3$ be quasi-nonexpansive mappings. Assume that $F=$ $\stackrel{n}{i=1}_{3} F\left(T_{i}\right) \neq \emptyset$ and let $\left\{x_{n}\right\}$ be a sequence generated by (1.3). Then for each $p \in F$, $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exits.

Proof. For any $p \in F$, using (1.3) and $T_{i}: K \rightarrow K, i=1,2,3$ are quasi-nonexpansive mappings,

$$
\begin{align*}
\left\|z_{n}-p\right\| & =\left\|a_{n} T_{1} x_{n}+\left(1-a_{n}\right) x_{n}-p\right\| \\
& \leq\left\|a_{n}\left(T_{1} x_{n}-p\right)+\left(1-a_{n}\right)\left(x_{n}-p\right)\right\| \\
& \leq a_{n}\left\|T_{1} x_{n}-p\right\|+\left(1-a_{n}\right)\left\|x_{n}-p\right\| \\
& \leq\left\|x_{n}-p\right\| . \tag{2.1}
\end{align*}
$$

$$
\begin{align*}
\left\|y_{n}-p\right\| & =\left\|b_{n} T_{2} z_{n}+c_{n} T_{2} x_{n}+\left(1-b_{n}-c_{n}\right) x_{n}-p\right\| \\
& \leq\left\|b_{n}\left(T_{2} z_{n}-p\right)+c_{n}\left(T_{2} x_{n}-p\right)+\left(1-b_{n}-c_{n}\right)\left(x_{n}-p\right)\right\| \\
& \leq b_{n}\left\|T_{2} z_{n}-p\right\|+c_{n}\left\|T_{2} x_{n}-p\right\|+\left(1-b_{n}-c_{n}\right)\left\|x_{n}-p\right\| \\
& \leq\left\|x_{n}-p\right\| . \tag{2.2}
\end{align*}
$$

$$
\begin{align*}
\left\|x_{n+1}-p\right\|= & \left\|\alpha_{n} T_{3} y_{n}+\beta_{n} T_{3} z_{n}+\gamma_{n} T_{3} x_{n}+\left(1-\alpha_{n}-\beta_{n}-\gamma_{n}\right) x_{n}-p\right\| \\
\leq & \| \alpha_{n}\left(T_{3} y_{n}-p\right)+\beta_{n}\left(T_{3} z_{n}-p\right)+\gamma_{n}\left(T_{3} x_{n}-p\right) \\
& +\left(1-\alpha_{n}-\beta_{n}-\gamma_{n}\right)\left(x_{n}-p\right) \| \\
\leq & \alpha_{n}\left(\left\|T_{3} y_{n}-p\right\|\right)+\beta_{n}\left(\left\|T_{3} z_{n}-p\right\|\right)+\gamma_{n}\left(\left\|T_{3} x_{n}-p\right\|\right) \\
& +\left(1-\alpha_{n}-\beta_{n}-\gamma_{n}\right)\left\|x_{n}-p\right\| \\
\leq & \alpha_{n}\left\|y_{n}-p\right\|+\beta_{n}\left\|z_{n}-p\right\|+\gamma_{n}\left\|x_{n}-p\right\| \\
& +\left(1-\alpha_{n}-\beta_{n}-\gamma_{n}\right)\left\|x_{n}-p\right\| . \tag{2.3}
\end{align*}
$$

Substituting (2.1) and (2.2) into (2.3) and simplifying, we have $\left\|x_{n+1}-p\right\| \leq\left\|x_{n}-p\right\|$. This implies that $\left\{\left\|x_{n}-p\right\|\right\}$ is bounded and nonincreasing for all $p \in F$. Hence we have that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exits.

Lemma 2.2. Let K be a nonempty closed convex subset of a uniformly convex Banach space $X, T_{i}: K \rightarrow K, i=1,2,3$ be Berinde nonexpansive and quasi-nonexpansive mappings, p is a common fixed point of $T_{i}, i=1,2,3$ and let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ be real sequences in $[0,1]$, such that $\left\{b_{n}+c_{n}\right\}$ and $\left\{\alpha_{n}+\beta_{n}+\gamma_{n}\right\}$ in $[0,1]$ for all $n \in \mathbb{N}$. Let $\left\{x_{n}\right\}$ be a sequence in K defined by (1.3), and parameters satisfy one of the following conditions:
(1) If $0<\liminf _{n} \alpha_{n} \leq \limsup \sup _{n}\left(\alpha_{n}+\beta_{n}+\gamma_{n}\right)<1$,
(2) If $0<\liminf _{n} \alpha_{n}$ and $0 \leq \limsup b_{n} \leq \limsup { }_{n}\left(b_{n}+c_{n}\right)<1$,
(3) If $0<\liminf _{n} \beta_{n} \leq \lim \sup _{n}\left(\alpha_{n}+\beta_{n}+\gamma_{n}\right)<1$,
(4) If $0<\liminf _{n} \gamma_{n} \leq \lim \sup _{n}\left(\alpha_{n}+\beta_{n}+\gamma_{n}\right)<1$,
(5) If $0<\liminf _{n}\left(\alpha_{n} b_{n}+\beta_{n}\right)$, and $0<\liminf _{n} a_{n} \leq \limsup _{n} a_{n}<1$
then $\lim _{n \rightarrow \infty}\left\|T_{1} x_{n}-x_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|T_{2} z_{n}-x_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|T_{3} z_{n}-x_{n}\right\|=0, \lim _{n \rightarrow \infty} \| T_{3} y_{n}-$ $x_{n}\left\|=0, \lim _{n \rightarrow \infty}\right\| z_{n}-x_{n}\left\|=0, \lim _{n \rightarrow \infty}\right\| y_{n}-x_{n}\left\|=0, \lim _{n \rightarrow \infty}\right\| T_{2} x_{n}-x_{n}\left\|=0, \lim _{n \rightarrow \infty}\right\| T_{3} x_{n}-$ $x_{n} \|=0$.

Proof. By Lemma 2.1, we know that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exits for any $p \in F$. Then the sequence $\left\{\left\|x_{n}-p\right\|\right\}$ is bounded. By quasi-nonexpansiveness of $T_{i}: K \rightarrow K, i=1,2,3$, there exists $R>0$ such that $\left\{x_{n}-p\right\},\left\{T_{1} x_{n}-p\right\},\left\{T_{2} z_{n}-p\right\},\left\{T_{3} y_{n}-p\right\},\left\{T_{3} z_{n}-p\right\},\left\{T_{3} x_{n}-p\right\} \subset B_{R}$. By (1.3) and Lemma 1.2, we have

$$
\begin{aligned}
\left\|z_{n}-p\right\|^{2} & \left.=\| a_{n} T_{1} x_{n}+\left(1-a_{n}\right) x_{n}-p\right) \|^{2} \\
& \left.\leq \| a_{n} T_{1} x_{n}+\left(1-a_{n}\right) x_{n}-p\right) \|^{2} \\
& \leq\left\|a_{n}\left(T_{1} x_{n}-p\right)+\left(1-a_{n}\right)\left(x_{n}-p\right)\right\|^{2} \\
& \leq a_{n}\left\|T_{1} x_{n}-p\right\|^{2}+\left(1-a_{n}\right)\left\|x_{n}-p\right\|^{2}-a_{n}\left(1-a_{n}\right)\left(g\left(\left\|T_{1} x_{n}-x_{n}\right\|\right)\right) \\
& \leq a_{n}\left\|x_{n}-p\right\|^{2}+\left(1-a_{n}\right)\left\|x_{n}-p\right\|^{2}-a_{n}\left(1-a_{n}\right)\left(g\left(\left\|T_{1} x_{n}-x_{n}\right\|\right)\right) \\
& =\left\|x_{n}-p\right\|^{2}-a_{n}\left(1-a_{n}\right)\left(g\left(\left\|T_{1} x_{n}-x_{n}\right\|\right)\right) \\
\left\|z_{n}-p\right\|^{2} & \leq\left\|x_{n}-p\right\|^{2}-a_{n}\left(1-a_{n}\right)\left(g\left(\left\|T_{1} x_{n}-x_{n}\right\|\right)\right) .
\end{aligned}
$$

Thus we have

$$
\left\|z_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-a_{n}\left(1-a_{n}\right)\left(g\left(\left\|T_{1} x_{n}-x_{n}\right\|\right)\right)
$$

Now by (1.3) and Lemma 1.3 , we have

$$
\begin{aligned}
&\left\|y_{n}-p\right\|^{2}=\left\|b_{n} T_{2} z_{n}+c_{n} T_{2} x_{n}+\left(1-b_{n}-c_{n}\right) x_{n}-p\right\|^{2} \\
& \leq\left\|b_{n} T_{2} z_{n}+c_{n} T_{2} x_{n}+\left(1-b_{n}-c_{n}\right) x_{n}-p\right\|^{2} \\
& \leq b_{n}\left\|z_{n}-p\right\|^{2}+c_{n}\left\|x_{n}-p\right\|^{2}+\left(1-b_{n}-c_{n}\right)\left\|x_{n}-p\right\|^{2} \\
& \quad-b_{n}\left(1-b_{n}-c_{n}\right)\left(g\left(\left\|T_{2} z_{n}-x_{n}\right\|\right)\right) \\
& \quad-b_{n} a_{n}\left(1-a_{n}\right)\left(g\left(\left\|T_{1} x_{n}-x_{n}\right\|\right)\right) \\
& \leq b_{n}\left\|x_{n}-p\right\|^{2}+c_{n}\left\|x_{n}-p\right\|^{2}+\left(1-b_{n}-c_{n}\right)\left\|x_{n}-p\right\|^{2} \\
& \quad-b_{n}\left(1-b_{n}-c_{n}\right)\left(g\left(\left\|T_{2} z_{n}-x_{n}\right\|\right)\right) \\
& \quad-b_{n} a_{n}\left(1-a_{n}\right)\left(g\left(\left\|T_{1} x_{n}-x_{n}\right\|\right)\right) . \\
& \\
&\left\|y_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-b_{n}\left(1-b_{n}-c_{n}\right)\left(g\left(\left\|T_{2} z_{n}-x_{n}\right\|\right)\right) \\
& \quad-b_{n} a_{n}\left(1-a_{n}\right)\left(g\left(\left\|T_{1} x_{n}-x_{n}\right\|\right)\right) .
\end{aligned}
$$

Moreover, by (1.3) and Lemma 1.4, we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2}= & \left\|\alpha_{n} T_{3} y_{n}+\beta_{n} T_{3} z_{n}+\gamma_{n} T_{3} x_{n}+\left(1-\alpha_{n}-\beta_{n}-\gamma_{n}\right) x_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|T_{3} y_{n}-p\right\|^{2}+\beta_{n}\left\|T_{3} z_{n}-p\right\|^{2}+\gamma_{n}\left\|T_{3} x_{n}-p\right\|^{2}+\left(1-\alpha_{n}-\beta_{n}-\gamma_{n}\right)\left\|x_{n}-p\right\|^{2} \\
& -\frac{1}{3}\left(1-\alpha_{n}-\beta_{n}-\gamma_{n}\right)\left(\alpha_{n} g\left(\left\|T_{3} y_{n}-x_{n}\right\|\right)+\beta_{n} g\left(\| T_{3} z_{n}-x_{n}\right) \|\right. \\
& \left.+\gamma_{n} g\left(\left\|T_{3} x_{n}-x_{n}\right\|\right)\right) \\
\leq & \alpha_{n}\left\|y_{n}-p\right\|^{2}+\beta_{n}\left\|z_{n}-p\right\|^{2}+\gamma_{n}\left\|x_{n}-p\right\|^{2}+\left(1-\alpha_{n}-\beta_{n}-\gamma_{n}\right)\left\|x_{n}-p\right\|^{2} \\
& -\frac{1}{3}\left(1-\alpha_{n}-\beta_{n}-\gamma_{n}\right)\left(\alpha_{n} g\left(\left\|T_{3} y_{n}-x_{n}\right\|\right)+\beta_{n} g\left(\| T_{3} z_{n}-x_{n}\right) \|\right. \\
& \left.+\gamma_{n} g\left(\left\|T_{3} x_{n}-x_{n}\right\|\right)\right) \\
\leq & \left\|x_{n}-p\right\|^{2}-\frac{1}{3}\left(1-\alpha_{n}-\beta_{n}-\gamma_{n}\right)\left(\alpha_{n} g\left(\left\|T_{3} y_{n}-x_{n}\right\|\right)+\beta_{n} g\left(\| T_{3} z_{n}-x_{n}\right) \|\right. \\
& \left.+\gamma_{n} g\left(\left\|T_{3} x_{n}-x_{n}\right\|\right)\right)-\alpha_{n} b_{n}\left(1-b_{n}-c_{n}\right)\left(g\left(\left\|T_{2} z_{n}-x_{n}\right\|\right)\right) \\
& -\alpha_{n} b_{n} a_{n}\left(1-a_{n}\right)\left(g\left(\left\|T_{1} x_{n}-x_{n}\right\|\right)\right)-\beta_{n} a_{n}\left(1-a_{n}\right)\left(g\left(\left\|T_{1} x_{n}-x_{n}\right\|\right)\right) \\
= & \left\|x_{n}-p\right\|^{2}-\frac{1}{3}\left(1-\alpha_{n}-\beta_{n}-\gamma_{n}\right)\left(\alpha_{n} g\left(\left\|T_{3} y_{n}-x_{n}\right\|\right)+\beta_{n} g\left(\| T_{3} z_{n}-x_{n}\right) \|\right. \\
& \left.+\gamma_{n} g\left(\left\|T_{3} x_{n}-x_{n}\right\|\right)\right)-\alpha_{n} b_{n}\left(1-b_{n}-c_{n}\right)\left(g\left(\left\|T_{2} z_{n}-x_{n}\right\|\right)\right) \\
& -\left(\alpha_{n} b_{n}+\beta_{n}\right) a_{n}\left(1-a_{n}\right)\left(g\left(\left\|T_{1} x_{n}-x_{n}\right\|\right)\right) .
\end{aligned}
$$

Thus we have

$$
\begin{gathered}
\left\|x_{n+1}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\frac{1}{3}\left(1-\alpha_{n}-\beta_{n}-\gamma_{n}\right)\left(\alpha_{n} g\left(\left\|T_{3} y_{n}-x_{n}\right\|\right)\right. \\
\left.+\beta_{n} g\left(\| T_{3} z_{n}-x_{n}\right) \|+\gamma_{n} g\left(\left\|T_{3} x_{n}-x_{n}\right\|\right)\right) \\
\quad-\alpha_{n} b_{n}\left(1-b_{n}-c_{n}\right)\left(g\left(\left\|T_{2} z_{n}-x_{n}\right\|\right)\right) \\
\quad-\left(\alpha_{n} b_{n}+\beta_{n}\right) a_{n}\left(1-a_{n}\right)\left(g\left(\left\|T_{1} x_{n}-x_{n}\right\|\right)\right)
\end{gathered}
$$

From the last inequality, we have

$$
\begin{align*}
& \alpha_{n}\left(1-\alpha_{n}-\beta_{n}-\gamma_{n}\right) g\left(\left\|T_{3} y_{n}-x_{n}\right\|\right) \leq 3\left(\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}\right) \tag{2.4}\\
& \beta_{n}\left(1-\alpha_{n}-\beta_{n}-\gamma_{n}\right) g\left(\left\|T_{3} z_{n}-x_{n}\right\|\right) \leq 3\left(\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}\right) \tag{2.5}\\
& \gamma_{n}\left(1-\alpha_{n}-\beta_{n}-\gamma_{n}\right) g\left(\left\|T_{3} x_{n}-x_{n}\right\|\right) \leq 3\left(\left\|x_{n}-q\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}\right) \tag{2.6}
\end{align*}
$$

and

$$
\begin{align*}
& \left(1-b_{n}-c_{n}\right)\left(b_{n} \alpha_{n}\right)\left(g\left(\left\|T_{2} z_{n}-x_{n}\right\|\right) \leq\left(\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}\right)\right. \tag{2.7}\\
& \left(\alpha_{n} b_{n}+\beta_{n}\right) a_{n}\left(1-a_{n}\right)\left(g\left(\left\|T_{1} x_{n}-x_{n}\right\|\right)\right) \leq\left(\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}\right) \tag{2.8}
\end{align*}
$$

By condition

$$
0<\liminf _{n} \alpha_{n} \leq \limsup _{n}\left(\alpha_{n}+\beta_{n}+\gamma_{n}\right)<1
$$

there exists a positive integer n_{0} and $\delta, \delta^{\prime} \in(0,1)$ such that $0<\delta<\alpha_{n}$ and $\alpha_{n}+\beta_{n}+\gamma_{n}<$ $\delta^{\prime}<1$ for all $n \geq n_{0}$. Then it follows from (2.4) that

$$
\begin{gathered}
(\delta(1-\delta)) \lim _{n \rightarrow \infty} \alpha_{n}\left(1-\alpha_{n}-\beta_{n}-\gamma_{n}\right) g\left(\left\|T_{3} y_{n}-x_{n}\right\|\right) \\
\leq 3\left(\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}\right)
\end{gathered}
$$

for all $n \geq n_{0}$. Thus, for $m \geq n_{0}$, we write

$$
\begin{aligned}
\sum_{n=n_{0}}^{m} g\left(\left\|T_{3} y_{n}-x_{n}\right\|\right) & \leq \frac{3}{(\delta(1-\delta))} \sum_{n=n_{0}}^{m}\left(\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}\right) \\
& \leq \frac{3}{(\delta(1-\delta))}\left(\left\|x_{n_{0}}-p\right\|^{2}\right)
\end{aligned}
$$

Letting $m \rightarrow \infty$, we have $\sum_{n=n_{0}}^{m} g\left(\left\|T_{3} y_{n}-x_{n}\right\|\right)<\infty$ so that

$$
\lim _{n \rightarrow \infty} g\left(\left\|T_{3} y_{n}-x_{n}\right\|\right)=0
$$

From g is continuous strictly increasing with $g(0)=0$ and (1) then we have

$$
\lim _{n \rightarrow \infty}\left\|T_{3} y_{n}-x_{n}\right\|=0
$$

By using a similar method for inequalities (2.5), (2.6),(2.7) and (2.8) we have,

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|T_{3} z_{n}-x_{n}\right\| & =0 \\
\lim _{n \rightarrow \infty}\left\|T_{3} x_{n}-x_{n}\right\| & =0 \\
\lim _{n \rightarrow \infty}\left\|T_{2} z_{n}-x_{n}\right\| & =0 \\
\lim _{n \rightarrow \infty}\left\|T_{1} x_{n}-x_{n}\right\| & =0 .
\end{aligned}
$$

Also note that

$$
\left\|z_{n}-x_{n}\right\| \leq\left\|a_{n} T_{1} x_{n}+\left(1-a_{n}\right) x_{n}-x_{n}\right\| \leq a_{n}\left\|T_{1} x_{n}-x_{n}\right\| \underset{n \rightarrow \infty}{\rightarrow 0}
$$

Since T_{2} is Berinde nonexpansive mapping, then we obtain,

$$
\begin{aligned}
\left\|T_{2} x_{n}-x_{n}\right\| & \leq\left\|T_{2} x_{n}-T_{2} z_{n}\right\|+\left\|T_{2} z_{n}-x_{n}\right\| \\
& \leq\left\|x_{n}-T_{2} z_{n}\right\|+\left\|z_{n}-x_{n}\right\|+L\left\|x_{n}-T_{2} z_{n}\right\| \underset{n \rightarrow \infty}{\rightarrow 0} .
\end{aligned}
$$

Also note that

$$
\begin{aligned}
\left\|y_{n}-x_{n}\right\| & \leq\left\|b_{n} T_{2} z_{n}+c_{n} T_{2} x_{n}+\left(1-b_{n}-c_{n}\right) x_{n}-x_{n}\right\| \\
& \leq b_{n}\left\|T_{2} z_{n}-x_{n}\right\|+c_{n}\left\|T_{2} x_{n}-x_{n}\right\| .
\end{aligned}
$$

Then we obtain

$$
\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0
$$

It follows that

$$
\lim _{n \rightarrow \infty}\left\|T_{3} x_{n}-x_{n}\right\|=0, \quad \lim _{n \rightarrow \infty}\left\|T_{2} x_{n}-x_{n}\right\|=0 \text { and } \lim _{n \rightarrow \infty}\left\|T_{1} x_{n}-x_{n}\right\|=0
$$

In the next result, we prove our strong convergence theorem as follows.
Theorem 2.3. Let X be a real uniformly convex Banach space and K be a nonempty closed convex subset of X and $T_{i}: K \rightarrow K, i=1,2,3$ be Berinde nonexpansive and quasinonexpansive mappings. Assume that $p \in F$ is a common fixed point of $T_{i}, i=1,2,3$ and let $\left\{x_{n}\right\}$ be a sequence in K defined by (1.3), where $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are real sequences in $[0,1]$, such that $\left\{b_{n}+c_{n}\right\}$ and $\left\{\alpha_{n}+\beta_{n}+\gamma_{n}\right\}$ in $[0,1]$ for all $n \in \mathbb{N}$, and satisfy the conditions of Lemma 2.2. If, in addition, T_{1} or T_{2} is semi-compact then $\left\{x_{n}\right\}$ converges strongly to a common fixed point of $T_{i}, i=1,2,3$.
Proof. By Lemma 2.1, $\left\{\left\|x_{n}-p\right\|\right\}$ is bounded. It follows by our assumption that T_{1} is semi-compact, there exists a subsequence $\left\{T_{1} x_{n_{k}}\right\}$ of $\left\{T_{1} x_{n}\right\}$ such that $T_{1} x_{n_{k}} \longrightarrow q *$ as $k \rightarrow \infty$.

$$
\begin{aligned}
\left\|T_{1} q *-T_{1} x_{n_{k}}\right\| & \leq\left\|x_{n_{k}}-q *\right\|+L\left\|q *-T_{1} x_{n_{k}}\right\| \\
& \leq\left\|x_{n_{k}}-q *\right\|+L\left(\left\|q *-x_{n_{k}}\right\|+\left\|x_{n_{k}}-T_{1} x_{n_{k}}\right\|\right) \longrightarrow 0 \quad \text { as } k \rightarrow \infty .
\end{aligned}
$$

Therefore, we have $\left\|T_{1} x_{n_{k}}-T_{1} q *\right\| \longrightarrow 0$ which implies that $x_{n_{k}} \longrightarrow q *$ as $k \rightarrow \infty$. Again by Lemma 2.2, we have

$$
\left\|q *-T_{1} q *\right\| \leq \lim _{k \rightarrow \infty}\left(\left\|x_{n_{k}}-q *\right\|+\left\|x_{n_{k}}-T_{1} x_{n_{k}}\right\|+T_{1} x_{n_{k}}-T_{1} q * \|\right)=0 .
$$

Then we have $q *=T_{1} q *$. By using a similar method, $q *=T_{2} q *$ and then we have $q *=T_{3} q *$.

It follows that $q * \in F$. Moreover, since $\lim _{n \rightarrow \infty}\left\|x_{n}-q *\right\|$ exists, then $\lim _{n \rightarrow \infty}\left\|x_{n_{k}}-q *\right\|=0$, that is, $\left\{x_{n}\right\}$ converges strongly to a fixed point $q * \in F$. Moreover, $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0$ as proved in Lemma 2.2 and it follows $\lim _{n \rightarrow \infty}\left\|y_{n}-q *\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|z_{n}-q^{*}\right\|=0$. This completes the proof.

Finally, we prove the weak convergence of the iterative scheme (1.3) for Berinde nonexpansive mappings in a uniformly convex Banach space satisfying Opial's condition.

Theorem 2.4. Let X be a real uniformly convex Banach space satisfying Opial's condition and K be a nonempty closed convex subset of X. and $T_{i}: K \rightarrow K, i=1,2,3$ be Berinde nonexpansive and quasi-nonexpansive mappings. Assume that $p \in F$ is a common fixed point of $T_{i}, i=1,2,3$ and let $\left\{x_{n}\right\}$ be a sequence in K defined by (1.3) where $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\},\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are real sequences in $[0,1]$, such that $\left\{b_{n}+c_{n}\right\}$ and $\left\{\alpha_{n}+\beta_{n}+\gamma_{n}\right\}$ in $[0,1]$ for all $n \in \mathbb{N}$, and satisfy the conditions of Lemma 2.2.

Then $\left\{x_{n}\right\}$ converges weakly to a common fixed point of $T_{i}, i=1,2,3$.
Proof. It follows from Lemma 2.2 that $\lim _{n \rightarrow \infty}\left\|T_{3} x_{n}-x_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|T_{2} x_{n}-x_{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|T_{1} x_{n}-x_{n}\right\|=0$. Since X is a uniformly convex Banach space and $\left\{\left\|x_{n}-p\right\|\right\}$ is bounded, we may assume that $\left\{x_{n}\right\} \rightarrow q_{1}$ weakly as $n \rightarrow \infty$, without loss of generality. Then we have $q_{1} \in F$. We assume that q_{1} and q_{2} are weak limits of the subsequences
$\left\{x_{n_{k}}\right\},\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$, respectively. By definition of demiclosed, $q_{1}, q_{2} \in F$. By Lemma 2.1, $\lim _{n \rightarrow \infty}\left\|x_{n}-q_{1}\right\|$ and $\lim _{n \rightarrow \infty}\left\|x_{n}-q_{2}\right\|$ exist. It follows from Lemma 1.5 that $q_{1}=q_{2}$. Therefore $\left\{x_{n}\right\}$ converges weakly to a common fixed point of $T_{i}: K \rightarrow K, i=1,2,3$. Moreover, $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0$ as proved in Lemma 2.2 and $\left\{x_{n}\right\} \rightarrow q_{1}$ weakly as $n \rightarrow \infty,\left\{y_{n}\right\} \rightarrow q_{1}$ weakly as $n \rightarrow \infty$ and $\left\{z_{n}\right\} \rightarrow q_{1}$ weakly as $n \rightarrow \infty$. This completes the proof.

References

[1] V. Berinde, On the approximation of fixed points of weak contractive mappings. Carpathian J. Math. 19 (2003) 7-22.
[2] M.A. Noor, New approximation schemes for general variational inequalities, J. Math. Analy. Appl. 251 (2000) 217-229.
[3] R. Glowinski, P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989.
[4] W.R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc. 4 (1953) 506510.
[5] I. Ishikawa, Fixed point by a new iteration method, Proc. Am. Math. Soc. 44 (1974) 147-150.
[6] W. Phuengrattana, S. Suantai, Comparison of rate of convergence of various iterative methods for the class of weak contraction in Banach spaces, Thai J. Math. 11 (11) (2013) 217-226.
[7] S. Kosol, Weak and strong convergence theorems of some of iterative methods for common fixed points of Berinde nonexpansive mappings in Banach spaces, Thai J. Math. 15 (3) (2017) 629-639.
[8] Z. Opial, Weak convergence of successive approximations for nonexpansive mappings, Bull. Ame. Math. Soc. 73 (1967) 591-597.
[9] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991) 1127-1138.
[10] Y.J. Cho, H. Zhou, G. Guo, Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings, Comput. Math. Appl. 47 (2004) 707-717.
[11] W. Nilsakoo, S. Saejung, A new thre-step fixed point iteration scheme for asymptotically nonexpansive mappings, Applied Mathematics and Computation 181 (2) (2006) 1026-1034.
[12] S. Suantai, Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Analy. Appl. 311 (2) (2005) 506-517.

