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Abstract COVID-19, declared as a pandemic worldwide, has different effects on people. Although there

is still no specific vaccine or a single type of treatment for this disease, it is known that various treatment

methods are used for this disease. This study is based on the idea that, contrary to the claims that herd

immunity against COVID-19 can be achieved, most patients who respond to treatment may also lose

immunity after recovery. To analyze the dynamic behavior of COVID-19 with a mathematical model,

a new modified SIRS model with a treatment function is considered. Findings show that the disease

presents a situation that leads to chaos.
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1. Introduction

In the process from the past to the future; war, famine, and infectious diseases are
factors that make survival difficult [1]. In 1918-1920, the flu pandemic killed more than
100 million people [2]. Since 1981, AIDS has emerged as a global epidemic threatening
the world’s health [3]. In 2003, SARS [4] and today’s disease COVID-19, which firstly
started in the city of Wuhan, Hubei, China in early December of 2019, affect all humanity
worldwide [5, 6]. As a result of this situation, researchers have done many studies to better
understand and control diseases. Epidemic models are formulated to describe the extent
of disease in a community [7–10]. Therefore, the dynamics of epidemic models are among
the important study topics. The disease processes have been studied in detail by using
mathematical models such as SI, SIS, SIR, SIRS, SEIR, SEIRS, MSEIR and MSEIRS in
order to model, predict, control and treat epidemic diseases that have been tried to resist
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since the early 1900s. As many researchers examine the asymptotic behavior [7–9, 11, 12]
and global behavior [13, 14] of epidemic models, most researchers examine bifurcation
behavior [15–17].

When the literature is examined, we see the analysis of the epidemic models associated
with COVID-19 disease since early 2020. In particular, it is tried to obtain results about
COVID-19 by using mathematical models.

The world is facing the growing COVID-19 pandemic. The World Health Organi-
zation (WHO) leads and coordinates the global effort, supporting countries to prevent,
detect and respond to the pandemic. To date, WHO have reported 40.455.651 confirmed
cases of COVID-19 including 1.119.431 deaths in world-wide [18]. Although a total of
10.040.766.359 doses of vaccine were administered as of 1 February 2022, globally, as of 2
February 2022, there were 380.321.615 confirmed cases of COVID-19, including 5.680.741
deaths reported to WHO. Due to the rapidly increasing number of patients, adequate and
necessary treatment may not be provided for patients in hospitals.

In diseases, vaccination is a preventive strategy and treatment is an important method
to reduce the spread of diseases [15, 19, 20]. During an outbreak, if no vaccine or treatment
is available for the disease, an alternative strategy is to quarantine suspected cases or
isolate those diagnosed with the disease. Although no pharmaceutical product has been
shown to be safe and effective for the treatment of COVID-19 in the early stages of the
disease; in many countries, doctors have patients with COVID-19 drugs that are not
approved for this disease.

Also, [21] gives information about drugs. Although there is no product approved by the
U.S. Food and Drug Administration (FDA) to treat coronavirus disease 2019 (COVID-
19), many medications are being tested. One investigation drug called remdesivir has been
authorized by the FDA for emergency use during the COVID-19 pandemic. Remdesivir
may be prescribed for people who are hospitalized with COVID-19. It’s given through a
needle in the skin (intravenously). In addition to remdesivir, other antiviral drugs being
tested include favipiravir and merimepodib. A recent study found it reduced deaths by
about 30% for people on ventilators and by about 20% for people who needed supplemental
oxygen. The U.S. National Institutes of Health has recommended this drug for people
hospitalized with COVID-19 who are on mechanical ventilators or need supplemental
oxygen .

When people recover from COVID-19, their blood contains antibodies that their bodies
produced to fight the coronavirus and help them get well. Antibodies are found in plasma,
a component of blood. Convalescent plasma - literally plasma from recovered patients
- has been used for more than 100 years to treat a variety of illnesses from measles to
polio, chickenpox, and SARS. It is widely believed to be safe. In the current situation,
antibody-containing plasma from a recovered patient is given by transfusion to a patient
who is suffering from COVID-19. The donor antibodies may help the patient fight the
illness, possibly shortening the length or reducing the severity of the disease. Though
convalescent plasma has been used for many years, and with varying success, not much
is known about how effective it is for treating COVID-19. A recent analysis of 35,000
hospitalized patients who received convalescent plasma to treat severe COVID-19 suggests
that the therapy may reduce the risk of dying. The data comes from the ongoing Expanded
Access Program (EAP) led by the Mayo Clinic. The researchers found that patients with
(or at risk of) severe COVID-19 who received convalescent plasma within three days of
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diagnosis were less likely to die than patients who received convalescent plasma later in
their illness [22].

While the latest research suggests that antibodies against COVID-19 could be lost
in just three months, a new hope has appeared on the horizon: the enigmatic T cell.
The clues have been mounting for a while. First, scientists discovered patients who had
recovered from infection with COVID-19, but mysteriously didn’t have any antibodies
against it. Next it emerged that this might be the case for a significant number of people.
Then came the finding that many of those who do develop antibodies seem to lose them
again after just a few months. In short, though antibodies have proved invaluable for
tracking the spread of the pandemic, they might not have the leading role in immunity
that we once thought. If we are going to acquire long-term protection, it looks increasingly
like it might have to come from somewhere else. Several studies have shown that people
infected with COVID-19 tend to have T cells that can target the virus, regardless of
whether they have experienced symptoms. Hayday says: There’s every evidence that the
T cells can protect you, probably for many years. But when people get ill, the rug seems
to be being pulled from under them in their attempts to set up that protective defense
mechanism [18].

Immunity against COVID-19 is still uncertain. While it was observed that some pa-
tients recovered without producing antibodies, in others, even if antibodies were produced
against the disease, these antibodies were found to disappear in the body after a certain
period of time. Also; individuals infecting may become infected by exposure to low doses
of viral particles. Each of these situations means that patients may be more likely to
become re-infected if they are exposed to high doses of viral particles for the second time.

Plan of the paper as follows:

2. Mathematical Formulation and Existence of Positivity of
(2.3)

Mathematical model of COVID-19 disease system of SIR are formulated in this section.
Also, the existence and uniqueness and non-negative of the solution of the system (2.3)
are investigated. This study aims to offer a new approach to COVID-19 disease by using
a SIRS model. The basic epidemic models is an epidemic model subject to treatment (see
[20]) without births and deaths. The model has the following form:

dS

dt
= −βSI

N
+ ν(N − S − I)

dI

dt
= I

(
βS

N
− γ − κ

)
dR

dt
= γI − ν(N − S − I) + κI,

(2.1)

where S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0 and S(0)+I(0)+R(0) = N . Thus, S(t)+I(t)+R(t) =
N . The coefficient are as follows:

• β : average number of adequate contacts made by an infected individual per
time.

• β

N
S : average number of adequate contacts made by an infected individual

NI resulting in an infection of a susceptible individual per time.
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• β

N
SI : number of infections caused by all infected individuals per time.

• γ : recovery rate,
1

γ
= average infectious period.

• ν : rate of loss of immunity,
1

ν
= average length of immunity.

• N : total population size.
• κ : treatment rate.

The epidemic model is mentioned In [23]: Infectious diseases such as measles, mumps,
rubella, and chickenpox are modeled by classifying individuals in the population according
to their status with respect to the disease, healthy, infected, and immune. Diseases caused
by viruses or bacteria are not modeled directly at the population level, only indirectly
through the number of infected individuals. The disease states: S(susceptible); I(infected)
and R(removed), are defined. The dynamics of SIRS model differ from the SIR model.
It is not always the case that the epidemic dies out. The loss of immunity by immune
individuals allows the disease to become endemic. The basic reproduction number is a
threshold which determines whether the disease becomes endemic.

Since R(t) can be obtained from S(t) and I(t), it is sufficient to consider only the
variables S and I. The differential equations in S and I are given by

dS

dt
= −βSI

N
+ ν(N − S − I)

dI

dt
= I

(
βS

N
− γ − κ

)
.

(2.2)

Using the forward Euler’s Formula, we obtain as follows:

St+1 = St + δ

(
ν (N − St − It)−

βStIt
N

)
It+1 = It + δIt

(
βSt

N
− γ − κ

)
.

(2.3)

2.1. Existence and Uniqueness of the Solution

The sufficient condition for the existence and uniqueness of the solution of the system
(2.3) is as follow:

Theorem 2.1. For each initial condition which is positive, there exists a unique solution
for the system (2.3).

Proof. We prove a sufficient condition for the existence and uniqueness of the solutions
of the system (2.3) in the region ∆× (0, T ] where

∆ =
{

(St, It) ∈ R2 : max (|St| , |It| ≤ η)
}
.

The technique applied in [24] is implemented here. Consider H(x) = (H1(x),H2(x)), a
mapping is defined by

H1(x) =St + δ

(
ν (N − St − It)−

βStIt
N

)
H2(x) =It + δIt

(
βSt

N
− γ − κ

)
.

(2.4)
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For any x, x̄ ∈ ∆, it follows from (2.4) that

‖H(x)−H(x̄)‖ = |H1(x)−H1(x̄)|+ |H2(x)−H2(x̄)|

=

∣∣∣∣St + δνN − δνSt − δνIt −
δβStIt
N

+ St − δνN + δνSt + δνIt +
δβStIt
N

∣∣∣∣
+

∣∣∣∣It +
δβStIt
N

− δγIt − δκIt − It −
δβStIt
N

+ δγIt + δκIt

∣∣∣∣
‖H(x)−H(x̄)‖

=

∣∣∣∣(St − St

)
− δν

(
St − St

)
− δν

(
It − It

)
− δβIt

N

(
St − St

)
− δβSt

N

(
It − It

)∣∣∣∣
+

∣∣∣∣(It − It)− δγ (It − It)− δκ (It − It)+
δβIt
N

(
St − St

)
+
δβSt

N

(
It − It

)∣∣∣∣
≤
[
1 + δν +

2βη

N

] (
St − St

)
+

[
1 + δ(ν + γ + κ) +

2βη

N

] (
It − It

)
‖H(x)−H(x̄)‖ ≤ Ω ‖x− x̄‖ ,

where Ω = max

{
1 + δν +

2βη

N
, 1 + δ(ν + γ + κ) +

2βη

N

}
.

Thus H(x) satisfies the Lipschitz condition and hence it leads to the existence and
uniqueness of solution of system (2.3).

2.2. Non-Negativity of System (2.3)

Theorem 2.2. The system (2.3) has positive solution, if the following conditions hold:

(1) δ(β + ν) < 1, then St+1 > 0, ∀t.
(2) δ(β − γ − κ) < 1, then It+1 > 0, ∀t.

Proof. The theorem is proved by direct proof and induction [25]. We know that St ≥
0, It ≥ 0, Rt ≥ 0 and St + It +Rt = N . Now consider the equation

St+1 =St + δ

[
βStIt
N

+ νN − νSt − νIt
]

=St

[
1− δ

(
βIt
N

+ ν

)]
+ δν(N − It).

We need to ensure that 1−δ
(
βIt
N

+ ν

)
> 0. As St ≥ 0, It ≥ 0, Rt ≥ 0 and St +It +Rt =

N leads to 0 ≤ It ≤ N . Hence

δ

(
βIt
N

+ ν

)
≤ δ

(
βN

N
+ ν

)
= δ(β + ν).

So if we consider

δ(β + ν) < 1

then

δ

(
βIt
N

+ ν

)
≤ δ(β + ν).

Similarly, we can show that It+1 ≥ 0 if δ(β − γ − κ) < 1. This completes the proof.
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3. The Existence and Stability of Equilibrium Points of System

(2.3)

In this section, we consider the epidemic model (2.3). Firstly, we discuss the existence
of equilibrium points for the model (2.3), and then study the stability of the equilibrium
points by using the characteristic polynomial or the eigenvalues of the matrix evaluated
at the equilibrium points. Now, let us give some necessary information.

Definition 3.1. [26] The following situations are valid for the equilibrium point (S, I) of
any system

(i) If |λ1| < 1 and |λ2| < 1, it is a sink point and locally asymptotically stable;
(ii) If |λ1| > 1 and |λ2| > 1, it is a source point and locally unstable;
(iii) If |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1), it is a saddle point ;
(iv) If |λ1| = 1 or |λ2| = 1, it is non-hyperbolic.

Theorem 3.2. [23] Let λ1 and λ2 be the roots of the characteristic equation of (2.3). If
|λ1,2| < 1 or |Tr(J)| < 1+det(J) < 2, the equilibrium point (S, I) is locally asymptotically
stable.

Theorem 3.3. [26] Let us take F (λ) = λ2 + Bλ + C such that F (1) > 0. Also λ1 and
λ2 are two roots of F (λ) = 0. So that the following are valid

(i) If F (−1) > 0 and C < 1, |λ1| < 1 and |λ2| < 1;
(ii) If F (−1) < 0, |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1);

(iii) If F (−1) > 0 and C > 1, |λ1| > 1 and |λ2| > 1;
(iv) If F (−1) = 0 and B 6= 0, 2, λ1 = −1 and |λ2| 6= 1;
(v) If B2 − 4C < 0 and C = 1, λ1 and λ2 complex root and |λ1,2| = 1.

Then, we have the following Lemma and Theorem for model (2.3).

Lemma 3.4. The existence of equilibrium steady states of the model (2.3) satisfies:

(1) The disease free equilibrium steady state E0 = (N, 0) always exists.
(2) If β > γ + κ, then the unique positive endemic equilibrium steady state

E1 =

(
N(κ+ γ)

β
,
Nν(β − γ − κ)

β(κ+ ν + γ)

)
exists.

Theorem 3.5. Assume that β > γ+κ. We have the following conditions for the endemic
equilibrium point E1.

(1) If 4 > 2δν

(
β + ν

κ+ ν + γ

)
+δ2ν(β−γ−κ) and δν

(
β + ν

κ+ ν + γ

)
> δ2ν(β−γ−κ),

then the endemic equilibrium point E1 is a sink point.

(2) if 4 < 2δν

(
β + ν

κ+ ν + γ

)
+ δ2ν(β − γ − κ), then the endemic equilibrium point

E1 is a saddle point.

(3) If 4 > 2δν

(
β + ν

κ+ ν + γ

)
+δ2ν(β−γ−κ) and δν

(
β + ν

κ+ ν + γ

)
< δ2ν(β−γ−κ),

then the endemic equilibrium point E1 is a source point.

(4) If 2δν

(
β + ν

κ+ ν + γ

)
+ δ2ν(β − γ − κ) = 4 and 2δν

(
β + ν

κ+ ν + γ

)
6= 2, then the

endemic equilibrium point E1 is a Flip bifurcation point.
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(5) If (β + ν)2 < (κ+ ν + γ)2(β − γ − κ) and δν

(
β + ν

κ+ ν + γ

)
= δ2ν(β − γ − κ),

then the endemic equilibrium point E1 is a Neimark-Saker bifurcation point.

Proof. Let us consider model (2.3), we have

f = S + δ

(
ν (N − S − I)− βSI

N

)
g = I + δI

(
βS

N
− γ − κ

)
,

and the Jacobian matrix is obtained the following form

J(S, I) =

1 + δ

(
−βI
N
− ν
)

δ

(
−βS
N
− ν
)

δ
βI

N
1 + δ

(
βS

N
− γ − κ

)
 .

We found as

J(E1) =

1− δν
(

β + ν

κ+ ν + γ

)
−δ (κ+ γ + ν)

δν

(
β − γ − κ
κ+ ν + γ

)
1

 .
Jacobian matrix evaluated at equilibrium point. The trace and determinant of the Jaco-
bian matrix can written

B =Trace[J(E1)] = 2− δν
(

β + ν

κ+ ν + γ

)
,

C =Det[J(E1)] = 1− δν
(

β + ν

κ+ ν + γ

)
+ δ2ν(β − γ − κ).

From |J(E1)− λI| = 0, the characteristic polynomial of the matrix is given by

F (λ) = λ2−
[
2− δν

(
β + ν

κ+ ν + γ

)]
λ+1−δν

(
β + ν

κ+ ν + γ

)
+δ2ν(β−γ−κ). (3.1)

We can prove the results (1) - (5) by using Theorem 3.3. This completes the proof.

4. Analysis of Neimark-Sacker Bifurcation and Its Chaos Con-
trol

The existence of Neimark-Sacker bifurcation and its chaos control are analyzed in
this section. The following Lemma has equivalent to the Theorem 3.5 depending on the
parameter δ. At, E1, the Jacobian matrix is

J(E1) =

[
1 + δa11 −δa12
δa21 1

]
. (4.1)

Here a11 = −ν
(

β + ν

κ+ ν + γ

)
, a12 = (κ+ γ + ν) and a21 = ν

(
β − γ − κ
κ+ ν + γ

)
. The charac-

teristic equation is F (λ) = λ2 − Tλ+D, T = 2 + δa11 and D = 1 + δa11 + δ2a12a21. The
eigen values are
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λ1,2 = 1 +
δU

2
± δ

2

√
U2 − 4V ,

while U = a11 and V = a12a21.

Lemma 4.1. The endemic equilibrium point E1 is a

(1) sink if one of the following conditions are satisfied:
(i) M∗ < 0 and δ < δ3,

(ii) M∗ ≥ 0 and δ < δ2,
(2) source if one of the following conditions are satisfied:

(i) M∗ < 0 and δ > δ3,
(ii) M∗ ≥ 0 and δ > δ1,

(3) saddle if M∗ ≥ 0 and δ2 < δ < δ1,
(4) non-hyperbolic if one of the following conditions are satisfied:

(i) M∗ < 0 and δ = δ3,
(ii) M∗ > 0 and δ = δ1 or δ = δ2.

M∗ = U2 − 4V and δ1 =
−U +

√
U2 − 4V

V
, δ2 =

−U −
√
U2 − 4V

V
, δ3 = −U

V
.

Let δ be the bifurcation parameter considered to analyzes Neimark-Sacker bifurcation.
The occurrence of this bifurcation is ensured when the eigenvalues at endemic equilibrium
states are complex conjugate with modulus equal to 1 [27]. The quadratic equation
obtained from (4.1) is F (λ) = λ2 − (2 + δU)λ+ (1 + δU + δ2V ).

From Lemma 4.1, if M∗ < 0 and δ = δ3, then the eigenvalues are

λ1,2 = 1− U2

2V
± i U

2V

√
4V − U2.

Now we conclude the theorem for the existence of the Neimark-sacker bifurcation of
system (2.3).

Theorem 4.2. The Neimark-sacker bifurcation of system (2.3) occurs when M∗ < 0 and
δ = δ3 and

|λ1,2| =
∣∣∣∣1− U2

2V
± i U

2V

√
4V − U2

∣∣∣∣ = 1.

Next hybrid controlled strategy (see [28]) is applied to control the chaos of the model
(2.3) and is given by

St+1 = αSt + αδ

(
ν (N − St − It)−

βStIt
N

)
+ (1− α)St

It+1 = αIt + αδIt

(
βSt

N
− γ − κ

)
+ (1− α)It.

(4.2)

where 0 < α < 1. Parameter perturbation and feedback control are combined in (4.2) as
control strategy and appropriate choice of α results in partial or completely elimination
of Neimark sacker bifurcation. Jacobian of (4.2) at E1 is

J(E1) =

[
1 + αδa11 −αδa12
αδa21 1

]
(4.3)

Here a11, a12, a21 are same as given in (4.1). The presence of the roots of the (4.3) in the
unit disk ensure the asymptotic stability of E1.
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5. Numerical Simulation

Theoretical analysis is verified in this section and supported with appropriate examples
by considering some special cases of system (2.3). Numerical simulations manifest clearly
interesting rich complex dynamics behaviors. Moreover, the orbits of the solutions with
phase plane diagrams for the COVID-19 model (2.3) are exhibited. Dynamic nature of
the COVID 19 model (2.3) about the endemic equilibrium steady state under different
sets of parameter values are presented.

Example 5.1. Consider the parameter values N = 100, δ = 3.6, β = 0.84, ν = 0.265, γ =
0.1 and κ = 0.3 with the initial conditions (95, 5). Computation yields (S∗, I∗) =

(47.619, 20.8736). The Jacobian matrix is J =

[
−0.5854 −2.394
0.6314 1

]
. Here T = 0.4146,

D = 0.9262 and the eigen values are λ1,2 = 0.2073±i0.9398 such that |λ1,2| = 0.9624 < 1.
The criteria for stability are satisfied. Hence the system (2.3) is stable, see Figure 1. The
phase portrait in Figure 2.1 (b) shows a sink and spiraling of the trajectory towards the
steady state (S∗, I∗).

Figure 1. Time Series and Phase Plane of the Stability of the Model (2.3)

Example 5.2. Considering the values N = 100, δ = 4.1, β = 0.84, ν = 0.265, γ = 0.1 and
κ = 0.3 with the initial conditions (95, 5) yields the endemic equilibrium state (S∗, I∗) =

(47.619, 20.8736). The Jacobian matrix is J =

[
−0.8056 −2.7265
0.7191 1

]
. Here T = 0.1944,

D = 1.1550 and the eigen values are λ1,2 = 0.0972±i1.0703 such that |λ1,2| = 1.0747 > 1.
The criteria for stability are not satisfied. Hence the system (2.3) is unstable. The
trajectory spirals inwards but does not approach a point. The trajectory finally settles
down as a limit cycle, see the phase portrait in Figure 2.

Example 5.3. Taking the values M = 100, β = 0.84, ν = 0.265, γ = 0.1, κ = 0.3 and
δ ∈ (3.7, 4.57) in the model (2.3) with the initial condition S(0) = 95 and I(0) = 5. This
example is considered for Neimark-Sacker bifurcation. By simple calculation, unique pos-
itive endemic equilibrium steady state is estimated to be (S∗, I∗) = (47.619, 20.8736).
Moreover, the conditions of Lemma 4.1 are verified as follows: U = −0.4404;V =
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Figure 2. Time Series and Phase Plane of the Unstability of the Model (2.3)

0.1166;M∗ = −0.2724 < 0 and δ3 = 3.777. Eigenvalues are λ1,2 = 0.1683 ± i0.9860
with |λ1,2| = 1. By Lemma 4.1, conditions for Neimark-Sacker bifurcation are obtained
near the endemic equilibrium steady state E1 at the bifurcation critical value δ3.

Figure 3. Neimark-Sacker Bifurcation of COVID-19 Pandemic Model of (2.3)

Neimark-Sacker bifurcation diagrams of the endemic equilibrium point E1 of the model
(2.3) in (δ, S) and (δ, I) planes are displayed in Figure 3 (a) & (b). Phase portraits of
system (2.3) for different values of δ are presented in Figure 4. From Figure 3, it is
observed that endemic equilibrium state of system (2.3) is locally asymptotically stable
for δ < δ3 = 3.777, lose its stability at δ = δ3 and a stable invariant cycle bifurcates from
E1 for δ > δ3. Also quasi-periodic orbits on the invariant cycle arise for δ > δ3 and period
orbits emerge in the period-windows, the orbits move towards chaos with the increasing
of δ.

Phase plane portraits are also presented for the system with various values of δ in
Figure 4. For δ = 3.75, the solution curve spirals inwards and settles down indicating
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stability and for δ from 3.8 to 4.2, the curve moves spirals inwards it settles down as limit
cycle and indicating unstability. For δ = 4.3− 4.4, the solution curve spirals inwards but
does not converge to a point. Finally for δ = 4.45−4.57 the circle disappears and chaotic
attractors appear. Comparing the bifurcation and phase plane diagrams, we justify our
conclusions.

Figure 4. Phase Plane of the COVID-19 Pandemic Model of (2.3) for
Different Values of δ

Example 5.4. Figure 4 exhibits a closed invariant circle appearing and unstability fixed
point E∗ with the set of parameter values M = 100, β = 0.84, ν = 0.265, γ = 0.1, κ = 0.3
and takes δ = 3.78 with the initial point S(0) = 95 and I(0) = 5.

For these parametric values, the controlled system (4.2) can be written as

St+1 = St + αδ

(
ν (N − St − It)−

βStIt
N

)
It+1 = It + αδIt

(
βSt

N
− γ − κ

)
.

(5.1)
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Figure 5. Time Series and Phase Plane for the Model (2.3)

where M = 100, β = 0.84, ν = 0.265, γ = 0.1, κ = 0.3, δ = 3.78 and 0 < α < 1. Jacobian

of controlled model (5.1) evaluated at E1 is J(E1) =

[
1− 1.6647α −2.5137α

0.6630α 1

]
. The

characteristic equation is λ2 − (2 − 1.6647)λ + 1.6666α2 + 1 − 1.6647α = 0. Then, the
roots lie in the unit open disk if and only if 0 < α < 0.9999. Moreover, the plots for S
and I of the controlled model (5.1) are exhibits in Figure 6 with α = 0.98. It is clear that
the endemic equilibrium E1 is stable see Figure 6.

Figure 6. Time Series and Phase Plane for the Controlled Model (5.1)

6. Conclusion

COVID-19, a viral infectious disease that mainly occurs as fever and pneumonia, is
known to give different symptoms depending on the person. In severe cases, antiviral
and respiratory supportive therapies are the main treatment. Although there is no au-
thorization by the FDA to use any drugs for the prevention or treatment of COVID-19,
Remdesivir received an emergency use clearance from the FDA on May 1, 2020 based
on preliminary data showing that hospitalized patients with severe disease have a faster
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recovery time. From the perspective of clinical immunologists and rheumatologists, antivi-
ral and supportive therapies are undoubtedly important in treating COVID-19 patients.
While antiviral drugs containing hydroxyl-chloroquine and azithromycin are thought to
be the best option to treat patients based on their presentation and symptoms, the main
concern is that anti-inflammatory drugs such as corticosteroids may delay the elimination
of the virus in those with compromised immune systems; and may increase the risk of
secondary infection. At the same time, when studies on Covid-19 are examined, people
produce a reasonable antibody response against the virus, but these antibodies decrease
on most people in a short time and become undetectable in some cases. Since antibodies
are the main defense feature of the immune system in fighting coronavirus, these findings
suggest that they can re-infect people in seasonal waves and vaccines may not protect
them for long.
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