A quadratic functional equation and its generalized Hyers-Ulam Rassias stability

Wanchitra Towanlong and Paisan Nakmahachalasint

Abstract : We study the general solution of the quadratic functional equation

$$
f(3 x+y)+f(3 x-y)=f(x+y)+f(x-y)+16 f(x)
$$

and investigate its generalized Hyers-Ulam-Rassias stability.
Keywords : Functional Equation; Quadratic Functional Equation; Stability; Hyers-Ulam-Rassias Stability
2000 Mathematics Subject Classification : 39B22, 39B52, 39B82

1 Introduction

In 1940, S.M. Ulam 12 proposed the Ulam stability problem of linear mappings. In the next year, D.H. Hyers [5] considered the case of approximately additive mappings $f: E \rightarrow E^{\prime}$ where E and E^{\prime} are Banach spaces and f satisfies inequality $\|f(x+y)-f(x)-f(y)\| \leq \varepsilon$ for all $x, y \in E$. It was shown that the limit $L(x)=\lim _{n \rightarrow \infty} 2^{-n} f\left(2^{n} x\right)$ exists for all $x \in E$ and that L is the unique additive mapping satisfying $\|f(x)-L(x)\| \leq \varepsilon$. In recent years, a number of authors [7, 6, 9] have investigated the stability of linear mappings in various forms.

In this paper, we will study a quadratic functional equation and will investigate its generalized Hyers-Ulam-Rassias stability.

2 The general solution

Theorem 2.1. Let X and Y be a real vector space. A function $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
f(3 x+y)+f(3 x-y)=f(x+y)+f(x-y)+16 f(x) \quad \forall x, y \in X \tag{2.1}
\end{equation*}
$$

if and only if it satisfies

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \quad \forall x, y \in X \tag{2.2}
\end{equation*}
$$

[^0]Proof. Suppose a function $f: X \rightarrow Y$ satisfies (2.1). Putting $(x, y)=(0,0)$ in (2.1), we get $f(0)=0$. Setting $y=x$ in (2.1), we obtain

$$
\begin{equation*}
f(4 x)=16 f(x) \tag{2.3}
\end{equation*}
$$

for all $x \in X$. Putting $(x, y)=(x, x-y)$ in (2.1), we have

$$
\begin{equation*}
f(4 x-y)+f(2 x+y)=f(2 x-y)+f(y)+16 f(x) \tag{2.4}
\end{equation*}
$$

If we reverse the sign of y in (2.4), then add the resulting equation to (2.4), we will have

$$
\begin{equation*}
f(4 x-y)+f(4 x+y)=f(y)+f(-y)+32 f(x) \tag{2.5}
\end{equation*}
$$

Replacing y with $4 y$ in (2.5) and using (2.3), we will be left with

$$
\begin{equation*}
f(x+y)+f(x-y)=f(y)+f(-y)+2 f(x) \tag{2.6}
\end{equation*}
$$

Putting $y=x$ in (2.6), we get

$$
\begin{equation*}
f(2 x)=3 f(x)+f(-x) \tag{2.7}
\end{equation*}
$$

Reversing the sign of x in (2.7) gives us $f(-2 x)=3 f(-x)+f(x)$. Replacing x with $2 x$ in (2.7) and taking into account (2.3), we obtian

$$
16 f(x)=3 f(2 x)+f(-2 x)=3(3 f(x)+f(-x))+(3 f(-x)+f(x))
$$

which simplifies to $f(x)=f(-x)$ for all $x \in X$. Hence, (2.6) reduces to (2.2).
Suppose a function $f: X \rightarrow Y$ satisfies (2.2). It is known 4] that f possesses a quadratic property; i.e., $f(n x)=n^{2} f(x)$ for all integers n and for all $x \in X$. Thus,

$$
f(3 x+y)+f(3 x-y)=2 f(3 x)+2 f(y)=18 f(x)+2 f(y)
$$

and we can see that (2.1) immediately follows.

3 The Generalized Hyers-Ulam-Rassias Stability

Theorem 3.1. Let X be a real vector space and let Y be a Banach space. Let $\phi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\left\{\begin{array}{l}
\sum_{i=0}^{\infty} 9^{-i} \phi\left(3^{i} x, 0\right) \text { converges for all } x \in X, \text { and } \tag{3.1}\\
\lim _{n \rightarrow \infty} 9^{-n} \phi\left(3^{n} x, 3^{n} y\right)=0 \text { for all } x, y \in X
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\sum_{i=1}^{\infty} 9^{i} \phi\left(3^{-i} x, 0\right) \text { converges for all } x \in X, \text { and } \tag{3.2}\\
\lim _{n \rightarrow \infty} 9^{n} \phi\left(3^{-n} x, 3^{-n} y\right)=0 \text { for all } x, y \in X
\end{array}\right.
$$

If a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\|f(3 x+y)+f(3 x-y)-f(x+y)-f(x-y)-16 f(x)\| \leq \phi(x, y) \quad \forall x, y \in X \tag{3.3}
\end{equation*}
$$

then there exists a unique function $Q: X \rightarrow Y$ such that Q satisfies (2.1) and

$$
\|f(x)-Q(x)\| \leq\left\{\begin{array}{ll}
\frac{1}{18} \sum_{i=0}^{\infty} 9^{-i} \phi\left(3^{i} x, 0\right) & \text { if (3.1) holds } \tag{3.4}\\
\frac{1}{18} \sum_{i=1}^{\infty} 9^{i} \phi\left(3^{-i} x, 0\right) & \text { if (3.2) holds }
\end{array} \quad \forall x \in X\right.
$$

The function Q is given by

$$
Q(x)= \begin{cases}\lim _{n \rightarrow \infty} 9^{-n} f\left(3^{n} x\right) & \text { if }(\overline{3.1}) \text { holds } \tag{3.5}\\ \lim _{n \rightarrow \infty} 9^{n} f\left(3^{-n} x\right) & \text { if }(\overline{3.2}) \text { holds }\end{cases}
$$

Proof. We will first prove the case when the condition (3.1) holds. Letting $(x, y)=$ $(x, 0)$ in (3.3), we get

$$
\|2 f(3 x)-18 f(x)\| \leq \phi(x, 0)
$$

Dividing by 18 , we have

$$
\begin{equation*}
\left\|\frac{f(3 x)}{9}-f(x)\right\| \leq \frac{1}{18} \phi(x, 0) \quad \forall x \in X \tag{3.6}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\left\|\frac{f\left(3^{n} x\right)}{9^{n}}-f(x)\right\| & =\left\|\sum_{i=0}^{n-1}\left(\frac{f\left(3^{i+1} x\right)}{9^{i+1}}-\frac{f\left(3^{i} x\right)}{9^{i}}\right)\right\| \\
& \leq \sum_{i=0}^{n-1} \frac{1}{9^{i}}\left\|\frac{f\left(3^{i+1} x\right)}{9}-f\left(3^{i} x\right)\right\| \\
& \leq \frac{1}{18} \sum_{i=0}^{n-1} \frac{\phi\left(3^{i} x, 0\right)}{9^{i}}
\end{aligned}
$$

for a positive integer n and for all $x \in X$.
We have to show that the sequence $\left\{\frac{f\left(3^{n} x\right)}{9^{n}}\right\}$ converges for all $x \in X$. For every positive integer n and m, consider

$$
\begin{aligned}
\left\|\frac{f\left(3^{n+m} x\right)}{9^{n+m}}-\frac{f\left(3^{n} x\right)}{9^{n}}\right\| & =\frac{1}{9^{n}}\left\|\frac{f\left(3^{m} \cdot 3^{n} x\right)}{9^{m}}-f\left(3^{n} x\right)\right\| \\
& \leq \frac{1}{18 \cdot 9^{n}} \sum_{i=0}^{m-1} \frac{\phi\left(3^{i} \cdot 3^{n} x, 0\right)}{9^{i}} \\
& \leq \frac{1}{18} \sum_{i=0}^{\infty} \frac{\phi\left(3^{i+n} x, 0\right)}{9^{i+n}}
\end{aligned}
$$

By condition (3.1), the right-hand side approaches 0 when n tends to infinity. Thus, the sequence is a Cauchy sequence. Since a Banach space is complete, we let

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(3^{n} x\right)}{9^{n}}
$$

for all $x \in X$. By the definition of Q, we can see that inequality (3.4) holds in this case which the condition (3.1) holds.

To show that Q really satisfies the function equation, we set $(x, y)=\left(3^{n} x, 3^{n} y\right)$ in (3.3) and divide by 9^{n}, yielding

$$
\begin{aligned}
& \frac{1}{9^{n}} \| f\left(3^{n}(3 x+y)\right)+f\left(3^{n}(3 x-y)\right)-f\left(3^{n}(x+y)\right) \\
&-f\left(3^{n}(x-y)\right)-16 f\left(3^{n} x\right) \| \leq \frac{\phi\left(3^{n} x, 3^{n} y\right)}{9^{n}}
\end{aligned}
$$

Take the limit as n goes to infinity and note the definition of Q, the above equation becomes

$$
\|Q(3 x+y)+Q(3 x-y)-Q(x+y)-Q(x-y)-16 Q(x)\| \leq 0
$$

for all $x, y \in X$. Therefore, Q satisfies (2.1).
Finally, we prove the uniqueness of Q. Suppose that there exists another quadratic function $S: X \rightarrow Y$ such that S satisfies the functional equation (2.1) and

$$
\|S(x)-f(x)\| \leq \frac{1}{18} \sum_{i=0}^{\infty} \frac{\phi\left(3^{i} x, 0\right)}{9^{i}}
$$

for all $x \in X$. By Theorem 2.1, every solution of (2.1) is also a solution of

$$
Q(x+y)+Q(x-y)=2 Q(x)+2 Q(y)
$$

and it is straightforward to show that every solution has the quadratic property; i.e., $Q(n x)=n^{2} Q(x)$ for every positive integer n and for all $x \in X$. Therefore,

$$
\begin{aligned}
\|S(x)-Q(x)\| & =\frac{1}{9^{n}}\left\|S\left(3^{n} x\right)-Q\left(3^{n} x\right)\right\| \\
& \leq \frac{1}{9^{n}}\left\|S\left(3^{n} x\right)-f\left(3^{n} x\right)\right\|+\frac{1}{9^{n}}\left\|f\left(3^{n} x\right)-Q\left(3^{n} x\right)\right\| \\
& \leq 2 \cdot \frac{1}{9^{n}} \cdot \frac{1}{18} \sum_{i=0}^{\infty} \frac{\phi\left(3^{i} \cdot 3^{n} x, 0\right)}{9^{i}} \\
& \leq \frac{1}{9} \sum_{i=0}^{\infty} \frac{\phi\left(3^{i+n} x, 0\right)}{9^{i+n}}
\end{aligned}
$$

for all $x \in X$. By condition (3.1), the right-hand side goes to 0 as n tends to infinity, and it follows that $Q(x)=S(x)$ for all $x \in X$. Hence, Q is unique.

For the case that the condition (3.2) holds, we can state the proof in a similar manner as in the case which the condition (3.1) holds. Starting by setting $(x, y)=$ $\left(\frac{x}{3}, 0\right)$ in (3.3) and dividing by 2 , we get

$$
\begin{equation*}
\left\|f(x)-9 f\left(\frac{x}{3}\right)\right\| \leq \frac{1}{2} \phi\left(\frac{x}{3}, 0\right) \quad \forall x \in X \tag{3.7}
\end{equation*}
$$

and this equation can be extended to

$$
\left\|f(x)-9^{n} f\left(\frac{x}{3^{n}}\right)\right\| \leq \frac{1}{18} \sum_{i=1}^{n} 9^{i} \phi\left(3^{-i} x, 0\right)
$$

for a positive integer n and for all $x \in X$.
We can show that a sequence $\left\{9^{n} f\left(\frac{x}{3^{n}}\right)\right\}$ converges for all $x \in X$. After that we let,

$$
Q(x)=\lim _{n \rightarrow \infty} 9^{n} f\left(3^{-n} x\right)
$$

for all $x \in X$. We will omit the proof and the other proof can be produced accordingly.
Then the proof is complete.

Corollary 3.2. Let X be a real vector space and let Y be a Banach space. If a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\|f(3 x+y)+f(3 x-y)-f(x+y)-f(x-y)-16 f(x)\| \leq \varepsilon \quad \forall x, y \in X \tag{3.8}
\end{equation*}
$$

for some real number $\varepsilon>0$, then there exists a unique function $Q: X \rightarrow Y$ such that Q satisfies (2.1) and

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{\varepsilon}{16} \quad \forall x \in X \tag{3.9}
\end{equation*}
$$

Proof. We choose $\phi(x, y)=\varepsilon$ for all $x, y \in X$. Being in accordance with (3.1) in Theorem 3.1, it follows that

$$
\|f(x)-Q(x)\| \leq \frac{1}{18} \sum_{i=0}^{\infty} \frac{\varepsilon}{9^{i}}=\frac{\varepsilon}{16}
$$

for all $x \in X$ as desired.

Corollary 3.3. Let X be a normed vector space and let Y be a Banach space. Given positive real number ε and p with $p \neq 2$. If a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\|f(3 x+y)+f(3 x-y)-f(x+y)-f(x-y)-16 f(x)\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{3.10}
\end{equation*}
$$

for all $x, y \in X$, then there exists a unique function $Q: X \rightarrow Y$ such that Q satisfies (2.1) and

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{\varepsilon}{2\left|9-3^{p}\right|}\|x\|^{p} \quad \forall x \in X \tag{3.11}
\end{equation*}
$$

Proof. We choose $\phi(x, y)=\varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ for all $x, y \in X$.
If $0<p<2$, then the condition (3.1) in Theorem 3.1 is fulfilled, and consequently

$$
\begin{aligned}
\|f(x)-Q(x)\| & \leq \frac{1}{18} \sum_{i=0}^{\infty} \frac{\varepsilon\left(3^{i p}\|x\|^{p}\right)}{9^{i}} \\
& =\frac{1}{18} \sum_{i=0}^{\infty} \varepsilon \cdot 3^{i(p-2)}\|x\|^{p} \\
& =\frac{\varepsilon}{18} \cdot \frac{1}{1-3^{p-2}}\|x\|^{p} \\
& =\frac{\varepsilon\|x\|^{p}}{2\left(9-3^{p}\right)}
\end{aligned}
$$

for all $x \in X$.
If $p>2$, the condition (3.2) in Theorem 3.1 is fulfilled, and consequently

$$
\begin{aligned}
\|f(x)-Q(x)\| & \leq \frac{1}{18} \sum_{i=1}^{\infty} 9^{i} \cdot \varepsilon \cdot \frac{\|x\|^{p}}{3^{i p}} \\
& =\frac{1}{18} \sum_{i=1}^{\infty} \frac{\varepsilon\|x\|^{p}}{3^{i(p-2)}} \\
& =\frac{\varepsilon}{18} \cdot \frac{\|x\|^{p}}{3^{p-2}-1} \\
& =\frac{\varepsilon\|x\|^{p}}{2\left(3^{p}-9\right)}
\end{aligned}
$$

for all $x \in X$.
Both cases of consideration complete our proof.

References

[1] J.-H. Bae, and K.-W. Jun, On the Generalized Hyers-Ulam-Rassias Stability of an n-Dimensional Quadratic Functional Equation, J. Math. Anal. Appl., 258 (2001), 183-193.
[2] J.-H. Bae, K.-W. Jun, and S.-M. Jung, On the Stability of a Quadratic Functional Equation, Kyungpook Math. J., 43 (2003), 415-423.
[3] I.-S. Chang, and H.-M. Kim, On the Hyers-Ulam Stability of Quadratic Functional Equations, J. Inequal. Pure Appl. Math., 3 (2002), Art. 33.
[4] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, Singapore, 2002.
[5] D.H. Hyers, On the Stability of the Linear Functional Equations, Proc. Natl. Acad. Sci, 27 (1941), 222-224.
[6] K.-W. Jun, and H.-M. Kim, Stability Problem of Ulam for Generalized Forms of Cauchy Functional Equations, J. Math. Anal. Appl., 312 (2005), 535-547.
[7] S.-M. Jung, Hyers-Ulam-Rassias Stability of Jensen's Equations and Its Application, Proc. Amer. Math. Soc., 126 (1998), 3137-3143.
[8] M.H. Moslehian, On the Stability of the Orthogonal Pexiderized Cauchy Equation, J. Math. Anal. Appl., 318 (2006), 211-223.
[9] W.-G. Park, and J.-H. Bae, On a Cauchy-Jensen Functional Equation and Its Stability, J. Math. Anal. Appl., 323 (2006), 634-643.
[10] J.M. Rassias, On the General Quadratic Functional Equation, Bol. Soc. Mat. Mexicana, 11 (2005), 259-268.
[11] Th.M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[12] S. M. Ulam, Problems in Modern Mathematics, Chapter 6, John Wiley \& Sons, New York, NY, USA, 1964.
(Received 15 May 2008)

Wanchitra Towanlong and Paisan Nakmahachalasint Department of Mathematics, Faculty of Science,
Chulalongkorn University,
e-mail : Wanchitra_ohm@hotmail.com and Paisan.N@chula.ac.th

[^0]: (c) 2008 by the Mathematical Association of Thailand All rights reserve.

