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1. Introduction

Many researchers have worked extensively assuming unreliable server and it has to
be repaired immediately. However, few researchers have worked on the introduction of
stand-by server towards uninterrupted service. Queueing systems with such unreliable
stations are the topics of worth investigating from the performance prediction point of
view. In many real life situations, during start-up, we come across sudden crashing of the
hard disk in the case of a computer server or failure of a lime injecting pump to start in a
waste water treatment plant or failure of a machine in an assembly line in manufacturing
industry or failure of a boat to start in a boat club. These type of fault is attended
to by a repairman if he is free or a standby machine is put into operation if available.
During this interval queue builds up. Many Researchers have worked on random failure
of machine in regular operation. However very few studies have been made on starting
failure models of queuing system. Development of such model can be useful to many
industries like manufacturing systems. An attempt has been made in this paper to study
queuing models with starting failure and implemented it to bulk queuing models.
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Application of starting failure models was found in many industries like manufacturing
systems. Studying starting failure in bulk queuing models is therefore essential. The
server must be switched on by an incoming batch of customers if the number of customers
in the queue is greater than or equal to ′a′ else maintenance will begin and the customers
will have to join the queue.

Such models have been analysed by many researchers with diverse combinations.
Mokaddis et al. [1] studied the feedback retrial queueing system with starting failure
and single vacation. Recently, Yanga et al. [2] discussed a multi-server retrial queueing
system with Bernoulli feedback and starting failure. Krishnakumar et al. [3] discussed a
single server feedback retrial queue with starting failures.

Rajadurai et al. [4] studied a retrial queueing system with orbit search under single
vacation and starting failures. Some of the authors like, Wang et al. [5], Ayyappan et al.
[6] and Varalakshmi et al. [7] discussed feedback retrial queueing model with the concept
of starting failures. However, no work has been done in the queueing literature with the
combination of bulk queueing system with starting failure and repair, multiple vacation,
stand-by server, closedown and N-policy.

Arivudainambi and Gowsalya [8] analysed an M/G/1 retrial queue with two types of
service, Bernoulli vacation and starting failure. Analysis of a pre-emptive priority retrial
queue with starting failure, negative customers and at most J vacations was discussed
by Yuvarani and Saravanarajan [9]. Using the supplementary variable technique they
obtained the PGF’s for the system/orbit size in steady state. The stochastic decomposi-
tion and some important system measures were discussed. Ke et al. [10] studied retrial
queues with starting failure and service interruption. They use the matrix-geometric
method to calculate stationary probabilities and to build steady-state measurements of
system performance.

Jeyakumar and Rameshkumar [11] analysed an bulk queue with closedown time and
controllable arrivals during multiple adaptive vacations. They obtained various char-
acteristics of the queueing systems. Performance analysis of an feedback retrial queue
with non-persistent customers and multiple vacations with the N-policy was discussed
by Jailaxmi et al. [12]. Sudhesh et al. [13] analysed a N-policy queue with disastrous
breakdown. Ayyappan and Karpagam [14] analysed a bulk queue with stand-by server,
unreliable server, Bernoulli schedule multiple vacation, immediate feedback and N-policy.
Recently, Kolledath et al. [15] broughtout an excellent survey on stand-by.

The novel contribution of this paper is the incorporation of starting failure and repair,
stand-by server, multiple vacation, closedown and N-Policy in the bulk queueing system
which we commonly come across in our real life situations in a manufacturing industry
or transport sector or networking. The results of this paper can be applied in scheduling
in production line, ATMs, computer networks and satellite communication, etc. This
study can be extended further by considering the concepts of delaying repair, working
vacation policies, impatient customers. We consider a queueing model that has, apart
from the main channel, a stand-by that is only used during the regular service channel’s
maintenance times. Stand-by may not be as effective as the regular service channel, but it
can still do much to stop the queue from becoming out of control during the main service
channel’s failure times. Stand-by support is essential for achieving high performance
reliability and availability of any queueing model operating in machine environment.
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2. Mathematical Model with Real Life Example

We consider a batch arrival bulk service queue with starting failure, repair, stand-by
server, multiple vacation, closedown and N-policy in which the arrival follows a compound
Poisson process with rate λ. Both servers service time, main server vacation time and
closedown times follows general(arbitrary) distributions. The probability if the regular
server starting failure is ‘p’ and there is no failure is ‘q(p+q = 1)’ and the regular server’s
repair time follows exponential distributions with rate η. Let us assume that the regular
server fail to start with probability ‘p’ and the stand-by server comes into service. When
the regular servers return after repair or service completion with the number of clients
in the queue is less than ‘a’ then it starts the closedown work. After that it leaves for
sequence of vacation until ‘N ’ clients in the queue and it begins serving a batch of ‘b’
clients without starting failure with probability ‘q’.

A real life situation exists in Industrial Township where the domestic sewage generated
is treated in a Municipal sewage Treatment plant and the treated water is used for agri-
cultural purpose. In a township with more than 1.5 lakh population plant of 30 Million
Litres per day is in operation. The sewage generated from various blocks of the township
is brought by a network of pipelines and reaches storage well. A pump in the storage well
pumps the sewage to primary and secondary filters to remove suspended solids and then
aerated in Aeration tanks for further oxidation of waste material present in the sewage.
When the pump fails or the line fails or more flow than anticipated, the well over flows
and the operator opens the overflow valve and the sewage is diverted to a surge reservoir
meant for this purpose and stored there. Otherwise flooding of the area will happen
and create health hazard. Once the pump / line is repaired, the sewage from the surge
reservoir is pumped back to the storage well until it reaches certain level and the pump
starts pumping for treatment and disposal in the usual manner.
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Figure 1. Pictorial representation of the model
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2.1. Notations and Probabilities

• λ - Arrival rate.
• X - Group size random variable.
• Pr(X = k) = gk.
• X(z) - the Probability Generating Function (PGF) of X.
• Sv(.), Su(.), V (.) and C(.) represent the Cumulative Distribution Functions
(CDF) of service time of stand-by server, service time of regular server, vacation
time and closedown time of regular server with corresponding probability density
functions are sv(w), su(w), v(w) and c(w) respectively.
• S0

u(t), S0
v(t), V (0)(t) and C(0)(t) represent the remaining service time of reg-

ular server, remaining service time of stand-by server, remaining vacation and
closedown times of regular server at time ‘t’ respectively.
• S̃u(τ), S̃v(τ), Ṽ (τ) and C̃(τ) represent the Laplace Stieltjes Transform (LST)
of Su, Sv, V and C respectively.

Let us define the following probabilities for further refinement of the above queueing
system:

Sn(t)∆t = Pr{Nq(t) = n, ε(t) = 5}, 0 ≤ n ≤ a− 1,

Mr,e(w, t)∆t = Pr{Ns(t) = r, Nq(t) = e, w ≤ S0
u(t) ≤ w + ∆t, ε(t) = 1},

a ≤ r ≤ b, e ≥ 0,

Cn(w, t)∆t = Pr{Nq(t) = n, w ≤ C0(t) ≤ w + ∆t, ε(t) = 2}, n ≥ 0,

Vl,j(w, t)∆t = Pr{φ(t) = l, Nq(t) = j, w ≤ V 0(t) ≤ w + ∆t, ε(t) = 3},
l ≥ 1, j ≥ 0.

Lr,e(w, t)∆t = Pr{Ns(t) = r, Nq(t) = e, w ≤ S0
v(t) ≤ w + ∆t, ε(t)4 =},

a ≤ r ≤ b, e ≥ 0.

where ε(t) = 1, 2, 3, 4 and 5 denotes regular server’s busy, in closedown, in vacation,
stand-by server is busy and idle respectively.
φ(t) = j, if the regular server is on jth vacation.
Ns(t) and Nq(t)=Number of clients in the service station and queue at time t respectively.

3. Queue Size Distribution

For the above queueing model, as time ‘t’ increases by ∆t, ∆t reduces the available
service time of the regular server, vacation time, and closed-down time.

Stand-by server idle

S0(t+ ∆t) = (1− λ∆t)(1− η∆t)S0(t) +
b∑

r=a

Lr,0(0, t)∆t, (3.1)

Se(t+ ∆t) = (1− λ∆t)(1− η∆t)Se(t) +

b∑
r=a

Lr,e(0, t)∆t+

e∑
k=1

Se−k(t)λgk∆t,

1 ≤ e ≤ a− 1. (3.2)
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The regular server busy

Mi,0(w −∆t, t+ ∆t) = (1− λ∆t)Mi,0(w, t) + η

∫ ∞
0

Li,0(y, t) dysu(w)∆t

+

b∑
r=a

Mr,i(0, t)su(w)∆t, a ≤ i ≤ b, (3.3)

Mi,e(w −∆t, t+ ∆t) = (1− λ∆t)Mi,e(w, t) + η

∫ ∞
0

Li,e(y, t) dysu(w)∆t

+

e∑
k=1

Mi,e−k(w, t)λgk∆t, e ≥ 1, a ≤ i ≤ b− 1, (3.4)

Mb,e(w −∆t, t+ ∆t) = (1− λ∆t)Mb,e(w) + η

∫ ∞
0

Lb,e(y, t) dysu(w)∆t

+

b∑
r=a

Mr,b+e(0, t)su(w)∆t+

e∑
k=1

Mb,e−k(w, t)λgk∆t,

1 ≤ e ≤ N − b− 1, (3.5)

Mb,e(w −∆t, t+ ∆t) = (1− λ∆t)Mb,e(w, t) + η

∫ ∞
0

Lb,e(y, t) dysu(w)∆t

+

e∑
k=1

Mb,e−k(w, t)λgk∆t+

b∑
r=a

Mr,b+e(0, t)su(w)∆t

+ q

∞∑
l=1

Vl,b+e(0, t)su(w)∆t, e ≥ N − b. (3.6)

The stand-by server busy

Li,0(w −∆t, t+ ∆t) = (1− λ∆t)(1− η∆t)Li,0(w, t) +

b∑
r=a

Lr,i(0, t)sv(w)∆t

+

a−1∑
k=0

Sk(t)λgi−ksv(w)∆t, a ≤ i ≤ b, (3.7)

Li,e(w −∆t, t+ ∆t) = (1− λ∆t)(1− η∆t)Li,e(w, t) +

e∑
k=1

Li,e−k(w, t)λgk∆t,

e ≥ 1, a ≤ i ≤ b− 1, (3.8)

Lb,e(w −∆t, t+ ∆t) = (1− λ∆t)(1− η∆t)Lb,e(w, t) +

b∑
r=a

Lr,b+e(0, t)sv(w)∆t

+

e∑
k=1

Lb,e−k(w, t)λgk∆t+

a−1∑
k=0

Sk(t)λgb+e−ksv(w)∆t,

1 ≤ e ≤ N − b− 1, (3.9)



A Bulk Queueing System with Starting Failure ... 911

Lb,e(w −∆t, t+ ∆t) = (1− λ∆t)(1− η∆t)Lb,e(w, t) +

b∑
r=a

Lr,b+e(0, t)sv(w)∆t

+

e∑
k=1

Lb,e−k(w, t)λgk∆t+

a−1∑
k=0

Sk(t)λgb+e−ksv(w)∆t

+ p

∞∑
l=1

Vl,b+e(0, t)sv(w)∆t, e ≥ N − b. (3.10)

Closedown

C0(w −∆t, t+ ∆t) = (1− λ∆t)C0(w, t) +

b∑
r=a

Mr,0(0, t)c(w)∆t+ ηS0(t)c(w)∆t,

(3.11)

Ce(w −∆t, t+ ∆t) = (1− λ∆t)Ce(w, t) +

b∑
r=a

Mr,e(0, t)c(w)∆t+ ηSe(t)c(w)∆t

+

e∑
k=1

Ce−k(w, t)λgk∆t, 1 ≤ e ≤ a− 1, (3.12)

Ce(w −∆t, t+ ∆t) = (1− λ∆t)Ce(w, t) +

e∑
k=1

Ce−k(w, t)λgk∆t, e ≥ a. (3.13)

Vacation

V1,0(w −∆t, t+ ∆t) = (1− λ∆t)V1,0(w, t) + C0(0, t)v(w)∆t, (3.14)

V1,e(w −∆t, t+ ∆t) = (1− λ∆t)V1,e(w, t) +

e∑
k=1

V1,e−k(w, t)λgk∆t

+ Ce(0, t)v(w)∆t, e ≥ 1, (3.15)

Vl,0(w −∆t, t+ ∆t) = (1− λ∆t)Vl,0(w, t) + Vl−1,0(0, t)v(w)∆t, l ≥ 2, (3.16)

Vl,e(w −∆t, t+ ∆t) = (1− λ∆t)Vl,e(w, t) +

e∑
k=1

Vl,e−k(w, t)λgk∆t

+ Vl−1,e(0, t)v(w)∆t, l ≥ 2, 1 ≤ e ≤ N − 1, (3.17)

Vl,e(w −∆t, t+ ∆t) = (1− λ∆t)Vl,e(w, t) +

e∑
k=1

Vl,e−k(w, t)λgk∆t, l ≥ 2, e ≥ N.

(3.18)
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The Kolmogorov backward equation governing the system in steady state for the proposed
model is:

(λ+ η)S0 =

b∑
r=a

Lr,0(0), (3.19)

(λ+ η)Se =

b∑
r=a

Lr,e(0) +

e∑
k=1

Se−kλgk, 1 ≤ e ≤ a− 1, (3.20)

−M
′

i,0(w) = −λMi,0(w) +

b∑
r=a

Mr,i(0)su(w) + η

∫ ∞
0

Li,0(y) dysu(w), a ≤ i ≤ b,

(3.21)

−M
′

i,e(w) = −λMi,e(w) + η

∫ ∞
0

Li,e(y) dysu(w) +

e∑
k=1

Mi,e−k(w)λgk, e ≥ 1,

a ≤ i ≤ b− 1, (3.22)

−M
′

b,e(w) = −λMb,e(w) + η

∫ ∞
0

Lb,e(y) dysu(w) +

b∑
r=a

Mr,b+e(0)su(w)

+

e∑
k=1

Mb,e−k(w)λgk, 1 ≤ e ≤ N − b− 1, (3.23)

−M
′

b,e(w) = −λMb,e(w) + η

∫ ∞
0

Lb,e(y) dysu(w) +

e∑
k=1

Mb,e−k(w)λgk

+

b∑
r=a

Mr,b+e(0)su(w) + q

∞∑
l=1

Vl,b+e(0)su(w), e ≥ N − b, (3.24)

− L
′

i,0(w) = −(λ+ η)Li,0(w) +

b∑
r=a

Lr,i(0)sv(w) +

a−1∑
k=0

Skλgi−ksv(w),

a ≤ i ≤ b, (3.25)

− L
′

i,e(w) = −(λ+ η)Li,e(w) +

e∑
k=1

Li,e−k(w)λgk, e ≥ 1, a ≤ i ≤ b− 1, (3.26)

− L
′

b,e(w) = −(λ+ η)Lb,e(w) +

b∑
r=a

Lr,b+e(0)sv(w) +

e∑
k=1

Lb,e−k(w)λgk

+

a−1∑
k=0

Skλgb+e−ksv(w), 1 ≤ e ≤ N − b− 1, (3.27)

− L
′

b,e(w) = −(λ+ η)Lb,e(w) +

b∑
r=a

Lr,b+e(0)sv(w) +

e∑
k=1

Lb,e−k(w)λgk

+

a−1∑
k=0

Skλgb+e−ksv(w) + p

∞∑
l=1

Vl,b+e(0)sv(w), e ≥ N − b, (3.28)

− C
′

0(w) = −λC0(w) +

b∑
r=a

Mr,0(0)c(w) + ηS0c(w), (3.29)
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− C
′

e(w) = −λCe(w) +

b∑
r=a

Mr,e(0)c(w) + ηSec(w) +

e∑
k=1

Ce−k(w)λgk,

1 ≤ e ≤ a− 1, (3.30)

− C
′

e(w) = −λCe(w) +

e∑
k=1

Ce−k(w)λgk, e ≥ a, (3.31)

− V
′

1,0(w) = −λV1,0(w) + C0(0)v(w), (3.32)

− V
′

1,e(w) = −λV1,e(w) + Ce(0)v(w) +
e∑

k=1

V1,e−k(w)λgk, e ≥ 1, (3.33)

− V
′

l,0(w) = −λVl,0(w) + Vl−1,0(0)v(w), l ≥ 2, (3.34)

− V
′

l,e(w) = −λVl,e(w) + Vl−1,e(0)v(w) +

e∑
k=1

Vl,e−k(w)λgk, l ≥ 2, 1 ≤ e ≤ N−1,

(3.35)

− V
′

l,e(w) = −λVl,e(w) +

e∑
k=1

Vl,e−k(w)λgk, l ≥ 2, e ≥ N. (3.36)

Applying LST on both sides of equations (3.21) to (3.36), we get,

τM̃i,0(τ)−Mi,0(0) = λM̃i,0(τ)−
b∑

r=a

Mr,i(0)S̃u(τ)− η
∫ ∞
0

Li,0(y) dyS̃u(τ),

a ≤ i ≤ b, (3.37)

τM̃i,e(τ)−Mi,e(0) = λM̃i,e(τ)− η
∫ ∞
0

Li,e(y) dyS̃u(τ)−
e∑

k=1

M̃i,e−k(τ)λgk,

e ≥ 1, a ≤ i ≤ b− 1, (3.38)

τM̃b,e(τ)−Mb,e(0) = λM̃b,e(τ)− η
∫ ∞
0

Lb,e(y) dyS̃u(τ)−
b∑

r=a

Mr,b+e(0)S̃u(τ)

−
e∑

k=1

M̃b,e−k(τ)λgk, 1 ≤ e ≤ N − b− 1, (3.39)

τM̃b,e(τ)−Mb,e(0) = λM̃b,e(τ)− η
∫ ∞
0

Lb,e(y) dyS̃u(τ)−
e∑

k=1

M̃b,e−k(τ)λgk

−
b∑

r=a

Mr,b+e(0)S̃u(τ)− q
∞∑
l=1

Vl,b+e(0)S̃u(τ), e ≥ N − b,

(3.40)

τL̃i,0(τ)− Li,0(0) = (λ+ η)L̃i,0(τ)−
b∑

r=a

Lr,i(0)S̃v(τ)−
a−1∑
k=0

Skλgi−kS̃v(τ),

a ≤ i ≤ b, (3.41)
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τL̃i,e(τ)− Li,e(0) = (λ+ η)L̃i,e(τ)−
e∑

k=1

L̃i,e−k(τ)λgk, e ≥ 1, a ≤ i ≤ b− 1,

(3.42)

τL̃b,e(τ)− Lb,e(0) = (λ+ η)L̃b,e(τ)−
b∑

r=a

Lr,b+e(0)S̃v(τ)−
e∑

k=1

L̃b,e−k(τ)λgk

−
a−1∑
k=0

Skλgb+e−kS̃v(τ), 1 ≤ e ≤ N − b− 1, (3.43)

τL̃b,e(τ)− Lb,e(0) = (λ+ η)L̃b,e(τ)−
b∑

r=a

Lr,b+e(0)S̃v(τ)−
e∑

k=1

L̃b,e−k(τ)λgk

−
a−1∑
k=0

Skλgb+e−kS̃v(τ)− p
∞∑
l=1

Vl,b+e(0)S̃v(τ), e ≥ N − b,

(3.44)

τC̃0(τ)− C0(0) = λC̃0(τ)−
b∑

r=a

Mr,0(0)C̃(τ)− ηS0C̃(τ), (3.45)

τC̃e(τ)− Ce(0) = λC̃e(τ)−
b∑

r=a

Mr,e(0)C̃(τ)−
e∑

k=1

C̃e−k(τ)λgk − ηSeC̃(τ),

1 ≤ e ≤ a− 1, (3.46)

τC̃e(τ)− Ce(0) = λC̃e(τ)−
e∑

k=1

C̃e−k(τ)λgk, e ≥ a, (3.47)

τ Ṽ1,0(τ)− V1,0(0) = λṼ1,0(τ)− C0(0)Ṽ (τ), (3.48)

τ Ṽ1,e(τ)− V1,e(0) = λṼ1,e(τ)− Ce(0)Ṽ (τ)−
e∑

k=1

Ṽ1,e−k(τ)λgk, e ≥ 1, (3.49)

τ Ṽl,0(τ)− Vl,0(0) = λṼl,0(τ)− Vl−1,0(0)Ṽ (τ), l ≥ 2, (3.50)

τ Ṽl,e(τ)− Vl,e(0) = λṼl,e(τ)− Vl−1,e(0)Ṽ (τ)−
e∑

k=1

Ṽl,e−k(τ)λgk, l ≥ 2,

1 ≤ e ≤ N − 1, (3.51)

τ Ṽl,e(τ)− Vl,e(0) = λṼl,e(τ)−
e∑

k=1

Ṽl,e−k(τ)λgk, l ≥ 2, e ≥ N. (3.52)

The PGF of queue size is obtained by defining the following:

M̃i(z, τ) =

∞∑
e=0

M̃i,e(τ)ze, Mi(z, 0) =

∞∑
e=0

Mi,e(0)ze, a ≤ i ≤ b,

L̃i(z, τ) =

∞∑
e=0

L̃i,e(τ)ze, Li(z, 0) =

∞∑
e=0

Li,e(0)ze, a ≤ i ≤ b,
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C̃(z, τ) =

∞∑
e=0

C̃e(τ)ze, C(z, 0) =

∞∑
e=0

Ce(0)ze,

Ṽl(z, τ) =

∞∑
e=0

Ṽl,e(τ)ze Vl(z, 0) =

∞∑
e=0

Vl,e(0)ze, l ≥ 1. (3.53)

Equations (3.37) to (3.52) are multiplied by zn, summing over n (n = 0 to ∞), and using
equation (3.53), we get,

(τ − f(z))M̃i(z, τ) = Mi(z, 0)− S̃u(τ)
[ b∑
r=a

Mr,i(0) + ηL̃i(z, 0)
]
, a ≤ i ≤ b− 1,

(3.54)

zb(τ − f(z))M̃b(z, τ) = (zb − S̃u(τ))Mb(z, 0)− S̃u(τ)
[
zbηL̃b(z, 0)

+

b−1∑
r=a

Mr(z, 0)−
b−1∑
e=0

b∑
r=a

Mr,e(0)ze

+ q

∞∑
l=1

(
Vl(z, 0)−

N−1∑
n=0

Vl,n(0)zn
)]
, (3.55)

(τ − g(z))L̃i(z, τ) = Li(z, 0)− S̃v(τ)
[ b∑
r=a

Lr,i(0) +

a−1∑
k=0

Skλgi−k

]
, a ≤ i ≤ b− 1,

(3.56)

zb(τ − g(z))L̃b(z, τ) = Lb(z, 0)(zb − S̃v(τ))− S̃v(τ)
[ b−1∑
r=a

Lr(z, 0)

−
b−1∑
e=0

b∑
r=a

Lr,e(0)ze + λ

a−1∑
k=0

Skz
k
∞∑
e=b

ge−kz
e−k

+ p
∞∑
l=1

(
Vl(z, 0)−

N−1∑
n=0

Vl,n(0)zn
)]
, (3.57)

(τ − f(z))C̃(z, τ) = C(z, 0)− C̃(τ)
( a−1∑

n=0

b∑
r=a

Mr,n(0)zn + η

a−1∑
n=0

Snz
n
)
, (3.58)

(τ − f(z))Ṽ1(z, τ) = V1(z, 0)− Ṽ (τ)C(z, 0), (3.59)

(τ − f(z))Ṽl(z, τ) = Vl(z, 0)− Ṽ (τ)

N−1∑
n=0

Vl−1,n(0)zn, l ≥ 2, (3.60)

where f(z) = (1−X(z))λ, g(z) = η + (1−X(z))λ.
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Substitute τ = f(z) in (3.54) and (3.55), we get,

Mi(z, 0) = S̃u(f(z))
[ b∑
r=a

Mr,i(0) + ηL̃i(z, 0)
]
, a ≤ i ≤ b− 1, (3.61)

Mb(z, 0) =
S̃u(f(z))

(zb − S̃u(f(z)))

[
zbηL̃b(z, 0) +

b−1∑
r=a

Mr(z, 0)−
b−1∑
e=0

b∑
r=a

Mr,e(0)ze

+ q
∞∑
l=1

(
Vl(z, 0)−

N−1∑
n=0

Vl,n(0)zn
)]
. (3.62)

Substitute τ = g(z) in (3.56) and (3.57), we get,

Li(z, 0) = S̃v(g(z))
[ b∑
r=a

Lr,i(0) +

a−1∑
k=0

Skλgi−k

]
, a ≤ i ≤ b− 1, (3.63)

Lb(z, 0) =
S̃v(g(z))

(zb − S̃v(g(z)))

[
λ

a−1∑
k=0

Skz
k
∞∑
e=b

ge−kz
e−k +

b−1∑
r=a

Lr(z, 0)

−
b−1∑
e=0

b∑
r=a

Lr,e(0)ze + p

∞∑
l=1

(
Vl(z, 0)−

N−1∑
n=0

Vl,n(0)zn
)]
. (3.64)

Substitute τ = f(z) in (3.58) to (3.60), we get,

C(z, 0) = C̃(f(z))
( a−1∑

n=0

b∑
r=a

Mr,n(0)zn + η

a−1∑
n=0

Snz
n
)
, (3.65)

V1(z, 0) = Ṽ (f(z))C(z, 0), (3.66)

Vl(z, 0) = Ṽ (f(z))

N−1∑
n=0

Vl−1,n(0)zn, l ≥ 2. (3.67)

Substitute equations (3.61) to (3.67) in (3.54) to (3.60), we get,

M̃i(z, τ) =
(S̃u(f(z))− S̃u(τ))

(τ − f(z))

[ b∑
r=a

Mr,i(0) + ηL̃i(z, 0)
]
, a ≤ i ≤ b− 1, (3.68)

M̃b(z, τ) =
(S̃u(f(z))− S̃u(τ))

(τ − f(z))(zb − S̃u(f(z)))

[
zbηL̃b(z, 0) +

b−1∑
r=a

Mr(z, 0)

−
b−1∑
e=0

b∑
r=a

Mr,e(0)ze + q

∞∑
l=1

(
Vl(z, 0)−

N−1∑
n=0

Vl,n(0)zn
)]
, (3.69)

L̃i(z, τ) =
(S̃v(g(z))− S̃v(τ))

(τ − g(z))

[ b∑
r=a

Lr,i(0) +

a−1∑
k=0

Skλgi−k

]
, a ≤ i ≤ b− 1, (3.70)
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L̃b(z, τ) =
(S̃v(g(z))− S̃v(τ))

(τ − g(z))(zb − S̃v(g(z)))

[ b−1∑
r=a

Lr(z, 0)−
b−1∑
e=0

b∑
r=a

Lr,e(0)ze

+ λ

a−1∑
k=0

Skz
k
∞∑
e=b

ge−kz
e−k + p

∞∑
l=1

(
Vl(z, 0)−

N−1∑
n=0

Vl,n(0)zn
)]
, (3.71)

C̃(z, τ) =
(C̃(f(z))− C̃(τ))

(∑a−1
e=0

∑b
r=aMr,e(0)ze + η

∑a−1
e=0 Sez

e
)

(τ − f(z))
, (3.72)

Ṽ1(z, τ) =
(Ṽ (f(z))− Ṽ (τ))C(z, 0)

(τ − f(z))
, (3.73)

Ṽl(z, τ) =
(Ṽ (f(z))− Ṽ (τ))

∑N−1
e=0 Vl−1,e(0)ze

(τ − f(z))
, l ≥ 2. (3.74)

4. Probability Generating Function of Queue Size

4.1. PGF of Queue Size at an Arbitrary Time Epoch

The PGF of the queue size at an arbitrary time epoch is obtained as

P (z) =

b∑
i=a

M̃i(z, 0) +

b∑
i=a

L̃i(z, 0) + C̃(z, 0) +

∞∑
l=1

Ṽl(z, 0) + S(z). (4.1)

By substituting τ = 0 in the equations (3.68) to (3.74), then the equation (4.1) becomes

P (z) =

[
A1(z)

b−1∑
i=a

(zb − zi)mi +A2(z)

b−1∑
i=a

(zb − zi)(qi +

a−1∑
k=0

Skλgi−k)

+ (A3(z)−A1(z))

a−1∑
n=0

mnz
n + (ηA3(z)− g(z)A2(z))

a−1∑
n=0

Snz
n

+ (1− Ṽ (f(z)))[g(z)A4(z)− qA1(z)− pA2(z)]

N−1∑
n=0

vnz
n
]

f(z)g(z)A4(z)

(4.2)

where mi =

b∑
r=a

Mr,i(0), vi =

∞∑
l=1

Vl,i(0), qi =

b∑
r=a

Lr,i(0) and the expressions

for A1(z), A2(z), A3(z), and A4(z) are defined in Appendix-I.

4.2. Steady State Condition

Any PGF of queue size should satisfy P (1) = 1. In order to satisfy this condition
applying “L’ Hopital’s rule” and evaluating lim

z→1
P (z), then equating the expression to 1,

we have, H = K1. Since mi, qi, vi and Si are probabilities of ‘i’ clients being in the
queue, it follows that H must be positive. Thus P (1) = 1 is satisfied iff K1 > 0. If

ρ =
λE(X)E(S)

b
< 1
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is the condition for the existence of steady state for the model under consideration. Equa-
tion (4.2) has ‘2b+N ’ unknowns m0,m1, ...,mb−1, qa, ..., qb−1, S0, S1,
..., Sa−1 and v0, v1, ..., vN−1. We can express vi interms of mi and Si in such a way that
equation (76) has only ‘2b’ unknowns. By Rouche’s theorem, “Rouche’s theorem is a
direct consequence of the argument principle and a powerful tool for determining regions
of the complex plane in which there may be zeros of a given analytic function. The scope
of application of Rouche’s theorem goes well beyond the field of queueing theory. While
the verification of the conditions needed to apply Rouche’s theorem can become rather
difficult, in queueing theory this is usually straightforward. For most queueing applica-
tions, the region of interest is typically the unit disk {z ∈ C : |z| ≤ 1}, and the ingredient
that makes Rouche’s theorem work is oftentimes the stability condition. This is why
Rouche’s theorem is a popular and standardized tool in queueing theory. However, the
standard way in which Rouche’s theorem is applied requires the analytic continuation of
the function of interest outside the unit disk. This can be done for many functions, but
definitely not for all.” it can be proved that “A4(z) has 2b − 1 zeros inside and one on
the unit circle |z| = 1. Since P (z) is analytic within and on the unit circle, the numerator
must vanish at these points, which gives 2b equations in 2b unknowns”. We can solve
these equations by any suitable numerical technique.

4.3. Result

The probability vi (“the regular server’s vacation completion epoch, there are ‘i’ (0 ≤
i ≤ N − 1) clients in the queue”), can be expressed as sum of the probabilities of ‘i’ (0 ≤
i ≤ a−1) Si (“clients in the queue during stand-by server’s idle”) and mi(“regular server’s
busy period”).
Case 1: For n=0, 1, 2,..., a-1

vn =

n∑
i=0

Ki(mn−i + ηSn−i), n = 0, 1, 2, ..., a− 1,where (4.3)

Kn =
ψn +

∑n
i=1 γiKn−i

1− γ0
, n = 1, 2, ..., a− 1,with K0 =

γ0β0
1− γ0

, ψn =

n∑
i=0

γiβn−i

where the probabilities of the ‘i’ clients arrive during vacation (γi’s) and

closedown time (βi’s).

Case 2: For n = a, a+1,..., N-1

vn =

a−1∑
k=0

(mk + ηSk)(

n−k∑
i=0

γiβn−k−i) +

n−1∑
k=0

γn−kqk, n = a, a+ 1, ..., N − 1. (4.4)

4.4. Particular Case

Case 1: By assuming no failures, closedown and N-policy the equation (4.2) becomes

P (z) =

[
(1− S̃u(f(z)))

∑b−1
i=a(zb − zi)mi + (zb − 1)(1− Ṽ (f(z)))

∑a−1
n=0(cn + vn)zn

]
f(z)(zb − S̃u(f(z)))

(4.5)



A Bulk Queueing System with Starting Failure ... 919

which coincide with results of Haridass et al.[16].
Case 2: By assuming no failures and N-policy the equation (4.2) becomes

P (z) =

[
(1− S̃u(f(z)))

b−1∑
i=a

(zb − zi)mi + (zb − 1)(1− Ṽ (f(z)))

a−1∑
n=0

vnz
n

+ (zb − 1)(1− Ṽ (f(z))C̃(f(z)))

a−1∑
n=0

mnz
n
]

f(z)(zb − S̃u(f(z)))
,

(4.6)

which coincide with results of Jeyakumar et al.[17].

5. PGF of Queue Size at Various Epochs

5.1. Main Server’s Service:

N(z) =

[
g(z)(zb − S̃v(g(z)))

( b−1∑
i=a

(zb − zi)mi −
a−1∑
n=0

mnz
n
)

+ zbη(1− S̃v(g(z)))
( b−1∑

i=a

(zb − zi)[qi +

a−1∑
k=0

Skλgi−k]− g(z)S(z)
)

+ [pzbη(1− S̃v(g(z))) + qg(z)(zb − S̃v(g(z)))]×[
Ṽ (f(z))C̃(f(z))[

a−1∑
n=0

mnz
n + ηS(z)] + (Ṽ (f(z))− 1)

N−1∑
n=0

vnz
n
]]

f(z)g(z)(zb − S̃u(f(z)))(zb − S̃v(g(z)))
.

(5.1)

5.2. Stand-by Server’s Service:

B(z) =

[
(1− S̃v(g(z)))

[( b−1∑
i=a

(zb − zi)[qi +

a−1∑
k=0

Skλgi−k]− g(z)S(z)
)

+ p

(
Ṽ (f(z))C̃(f(z))[

a−1∑
n=0

mnz
n + ηS(z)] + (Ṽ (f(z))− 1)

N−1∑
n=0

vnz
n
)]]

g(z)(zb − S̃v(g(z)))
.

(5.2)

5.3. Vacation:

V (z) =

[
(1− Ṽ (f(z)))

[
C̃(f(z))

∑a−1
n=0[mnz

n + ηS(z)] +
∑N−1

n=0 vnz
n
]]

f(z)
. (5.3)
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5.4. Closedown:

C(z) =

[
(1− C̃(f(z)))

(∑a−1
n=0

∑b
r=a Pr,n(0)zn + η

∑a−1
n=0 Snz

n
)]

f(z)
. (5.4)

6. Some Performance Measures

6.1. Expected Queue Length

The mean queue length E(Q) at an arbitrary time epoch is given by

E(Q) =

[
f1(Su, Sv)

[ b−1∑
i=a

[b(b− 1)− i(i− 1)](mi + qi +

a−1∑
k=0

Skλgi−k)

+ f2(X,Su, Sv)

b−1∑
i=a

(b− i)mi + f3(X,Su, Sv)

b−1∑
i=a

(b− i)(qi +

a−1∑
k=0

Skλgi−k)

+ f4(X,Su, Sv, V, C)

a−1∑
n=0

mn + f5(X,Su, Sv, V, C)

a−1∑
n=0

Sn

+ f6(X,Su, Sv, V )

N−1∑
n=0

vn + f7(X,Su, Sv, V, C)

a−1∑
n=0

nmn

+ f8(X,Su, Sv, V, C)

a−1∑
n=0

nSn + f9(X,Su, Sv, V )

N−1∑
n=0

nvn

]
3(J1)2

,

(6.1)

the expressions for f ′i s are defined in Appendix-II.

6.2. Main Server’s Expected Length of Idle Period-E(I)

E(I) = E(I1) + E(C) where I1 is the idle period random variable due to multiple
vacation process and E(C) is the mean length of closedown time. Define a random variable
B as,

B =

{
0 after the first vacation if the server finds atleast ‘N ’ clients

1 after the first vacation if the server finds less than ‘N ’ clients

Now

E(I1) = E(I1/(B = 0))P (B = 0) + E(I1/(B = 1))P (B = 1)

= E(V )P (B = 0) + (E(V ) + E(I1))P (B = 1).

E(I) =
E(V )

P (B = 0)
+ E(C). (6.2)
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where

P (B = 0) =

a−1∑
n=0

n∑
i=0

n−i∑
j=0

γjβn−i−j [mi + ηSi] +

N−1∑
n=a

a−1∑
i=0

n−i∑
j=0

γjβn−i−j [mi + ηSi] (6.3)

6.3. Expected Waiting Time-E(W)

It is obtained using the “Little’s formula”

E(W ) = E(Q)/λE(X) (6.4)

7. Numerical Example

This section deals with the numerical illustration of the proposed queueing model
through variations in the parameters using MATLAB software. We consider vacation,
closedown time of regular server follows exponential distribution, the service time of both
servers to follow Erlang-2 distribution in Table 1,3 and both servers to follow Exponential
distribution in Table 2,4 and 5.

Let us consider the service rate for regular sever as µ1 and that of stand-by server
as µ2. Vacation and closedown rate of regular server be γ and ζ respectively.
The results have been analysed in tabular forms and two dimensional graphs. The arbi-
trary chosen values satisfy the stability condition.

Let a = 5, b = 8, N = 10, µ1 = 10, µ2 = 7, α = 1, η = 2, γ = 10 and ζ = 8.
λ ρ E(Q) E(W ) E(I)
5.0 0.1250 19.6328 1.96328 3.50110
5.1 0.1275 20.7612 2.03541 3.45603
5.2 0.1300 21.9238 2.10806 3.41111
5.3 0.1325 23.1149 2.18065 3.36660
5.4 0.1350 24.3408 2.25378 3.32233
5.5 0.1375 25.6028 2.32753 3.27833
5.6 0.1400 26.6977 2.38372 3.23472
5.7 0.1425 27.8108 2.43954 3.19122
5.8 0.1450 28.9427 2.49506 3.14777
5.9 0.1475 30.0941 2.55034 3.10507
6.0 0.1500 31.2654 2.60545 3.06227
6.1 0.1525 32.4571 2.66042 3.02019
6.2 0.1550 33.6700 2.71532 2.97817
6.3 0.1575 34.9043 2.77018 2.93625
6.4 0.1600 36.1606 2.82505 2.89485
6.5 0.1625 37.4395 2.87996 2.85351

Table 1. Arrival rate (vs) Performance measures
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Figure 3. Arrival rate (vs) E(Q)



A Bulk Queueing System with Starting Failure ... 923

5 5.5 6 6.5

2

2.2

2.4

2.6

2.8

Arrival rate

E
(W

)

Figure 4. Arrival rate (vs) E(W)
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Figure 5. Arrival rate (vs) E(I)
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Take a = 5, b = 8, N = 10, µ1 = 15, µ2 = 12, α = 1, η = 2, γ = 4 and ζ = 3
λ ρ E(Q) E(W ) E(I)

5.0 0.0833 203.514 20.3514 21.3026
5.5 0.0917 235.484 21.4076 19.8302
6.0 0.1000 270.561 22.5467 18.4244
6.5 0.1083 308.939 23.7645 17.0869
7.0 0.1167 350.847 25.0605 15.8113
7.5 0.1250 396.461 26.4307 14.6014
8.0 0.1333 446.088 27.8805 13.4478
8.5 0.1417 499.588 29.3875 12.3518
9.0 0.1500 557.366 30.9648 11.3112
9.5 0.1583 619.391 32.5995 10.3250
10.0 0.1667 685.986 34.2993 9.39074

Table 2. Arrival rate (vs) Performance measures
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Figure 6. Arrival rate (vs) ρ
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Figure 7. Arrival rate (vs) E(Q)
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Figure 8. Arrival rate (vs) E(W)
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Figure 9. Arrival rate (vs) E(I)

The effect of increasing arrival rate λ are shown in Table 1,2 and Figure 2-9 Thus, if the
λ increases, then ρ, E(Q) and E(W) are increasing and expected idle E(I) is decreasing.

Take a = 5, b = 8, N = 10, λ = 10, µ2 = 11, α = 1, η = 2, γ = 4 and ζ = 3
µ1 ρ E(Q) E(W ) E(I)
12 0.1042 291.096 29.1096 6.8132
13 0.0962 287.604 28.7604 6.8621
14 0.0893 283.641 28.3641 6.9189
15 0.0833 279.199 27.9199 6.9845
16 0.0781 274.086 27.4086 7.0625
17 0.0735 268.143 26.8143 7.1568
18 0.0694 261.332 26.1332 7.2701
19 0.0658 253.163 25.3163 7.4136
20 0.0625 243.417 24.3417 7.5972

Table 3. Regular server’s service rate (vs) Performance measures
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Figure 11. Regular server’s service rate (vs) E(Q)
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Figure 12. Regular server’s service rate (vs) E(W)
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Figure 13. Regular server’s service rate (vs) E(I)
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Take a = 5, b = 8, N = 10, λ = 5, µ2 = 10, α = 1, η = 2, γ = 4 and ζ = 3
µ1 ρ E(Q) E(W ) E(I)

11.0 0.1136 151.618 15.1618 9.47479
11.5 0.1087 151.452 15.1452 9.49037
12.0 0.1042 151.242 15.1242 9.50841
12.5 0.1000 150.973 15.0973 9.52953
13.0 0.0962 150.633 15.0633 9.55433
13.5 0.0926 150.287 15.0287 9.58017
14.0 0.0893 149.823 14.9823 9.61161
14.5 0.0862 149.187 14.9187 9.65056
15.0 0.0833 148.139 14.8139 9.70586

Table 4. Regular server’s service rate (vs) Performance measures
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Figure 14. Regular server’s service rate (vs) ρ
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Figure 15. Regular server’s service rate (vs) E(Q)
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Figure 16. Regular server’s service rate (vs) E(W)
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Figure 17. Regular server’s service rate (vs) E(I)

The effect of increasing regular server’s service rate µ1 are shown in Table 3, 4 and
Figure 10-17 Thus, if the µ1 increases, then ρ, E(Q) and E(W) are decreasing and expected
idle E(I) is increasing.

Take a = 5, b = 8, N = 10, µ1 = 12, α = 1, η = 2, γ = 4 and ζ = 3
µ2 E(Q) E(W ) E(I)
6.0 296.023 29.6023 9.17672
6.5 280.304 28.0304 9.1826
7.0 264.933 26.4933 9.1893
7.5 249.919 24.9919 9.19678
8.0 235.265 23.5265 9.20503
8.5 220.979 22.0979 9.21406
9.0 207.062 20.7062 9.22388
9.5 193.519 19.3519 9.23455
10.0 180.352 18.0352 9.2461

Table 5. Stand-by server service rate (vs) Performance measures
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Figure 18. Stand-by server service rate(vs) E(Q)
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Figure 19. Stand-by server service rate (vs) E(W)
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Figure 20. Stand-by server service rate (vs) E(I)

The effect of increasing Stand-by server service rate µ2 are shown in Table 5 and Figure
18-20 Thus, if the µ2 increases, then E(Q) and E(W) are decreasing and expected idle
E(I) is increasing.

8. Conclusion

In this study we have analysed bulk queue system with starting failure, stand-by server,
closedown, N-policy and multiple vacation. The steady state solution of the above system
during idle, busy and vacation mode were estimated. Further, the important performance
measures such as mean waiting time of a client and mean number of clients in the queue
are derived. The analytical findings are validated with the help of numerical examples and
it can find application in real life situations for example in transportation and networking
sectors. The novel contribution in this paper is the incorporation of starting failure
and repair, stand-by server, closedown and N-Policy in the case of bulk queuing system
which we commonly come across in our real life situtions in a manufacturing industry or
transport sector or networking. The results of this paper can be applied in production
line, ATMs, computer networks and satellite communication, etc. Further work can be
done in this area with additional parameters such as delaying repair, working vacation
policies and impatient customers.

9. Appendix

9.1. Appendix-I

The expressions used in equations (4.2) are given below:

A1(z) = g(z)T2T3

A2(z) = T4[f(z)T1 + zbηT3],
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A3(z) = g(z)T2[T1(1− Ṽ (f(z))C̃(f(z))) + qṼ (f(z))C̃(f(z))T3]

+ pṼ (f(z))C̃(f(z))A2(z),

A4(z) = T1T2,

where

T1 = (zb − S̃u(f(z))), T2 = (zb − S̃v(g(z))),

T3 = (1− S̃u(f(z))), T4 = (1− S̃v(g(z))).

9.2. Appendix-II

The expressions for fi’s in (6.1) are given below:

f1(Su, Sv) = 3Y1K1, f2(X,Su, Sv) = 3(Y3 − 2bηSb1)K1 − 2Y1K2,

f3(X,Su, Sv) = 3(Y3 + 2bY5)K1 − 2Y1K2,

f4(X,Su, Sv, V, C) = (Y6 − (1− q)Y7 + pY8)K1 − 2b(Y9 + Su1)K2,

f5(X,Su, Sv, V, C) =
[
η[Y6 + qY7 − (1− p)Y8] + 3[λX2Y1 + λX1(Y3 + 2bY5)]

]
K1

− 2[bη(Y9 − Y5) + λX1Y1]K2,

f6(X,Su, Sv, V ) = 3K1

[
(S̃v(η)− 1)[V1(ηb(b− 1)− 2bλX1) + bηV2]

− 2b[ηV1(b− Su1 − Sv1) + ηqSu1V1 − pY5V1]
]
,

f7(X,Su, Sv, V, C) = 2bK1(Y9 + ηSu1),

f8(X,Su, Sv, V, C) = 6K1[bη(Y9 − Y5) + λX1Y1],

f9(Sv, V ) = 2bηV1(S̃v(η)− 1)[3K1 −K2], (9.1)

where

K1 = 2ηλX1(b− Su1)(S̃v(η)− 1),

K2 = 3(S̃v(η)− 1)[ηλX2(b− Su1) + λX1(ηb(b− 1)− 2bλX1)]− 3λX1

− 6bηλX1(b− Su1 − Sv1),

Y1 = ηSu1(1− S̃v(η)), Y2 = ηSu2 − 2λX1Su1,

Y3 = (S̃v(η)− 1)Y2 + 2ηSu1Sv1,

Y4 = (S̃v(η)− 1)[ηSu3 − 3λX1Su2 − 3λX2Su1] + 3Sv1Y2 + 3ηSu1Sv2,

Y5 = (S̃v(η)− 1)(λX1 + ηSu1),

Y6 = 3b
[
2(V1 + C1)[p(Y5 + ηSu1)− η(b− Sv1)]+

(S̃v(η)− 1)[η(V2 + C2 + 2V1C1) + (V1 + C1)(η(b− 1)− 2λX1)]
]
,

Y7 = Y4 − 3b(Y2 + η(b− 1)Su1),

Y8 = Y4 + 3b[(b− 1)Y5 + (S̃v(η)− 1)(ηSu2 + λX2) + 2Sv1(ηSu1 + λX1)],

Y9 = pY5 + η(V1 + C1 − qSu1),
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H =



(
Y1

[∑b−1
i=a pi +

∑b−1
i=a(qi +

∑a−1
k=0 Skλgi−k)

]
+b[pY5 + η(V1 + C1 + (1− q)Su1)]

∑a−1
n=0mn

+
[
bη[(V1 + C1 − qSu1)− (1− p)Y5] + λX1Y1

]∑a−1
n=0 Sn

+bηV1(S̃v(η)− 1)
∑N−1

n=0 nvn,

with Su1 = λX1E(Su), Su2 = E(S2
u)(λX1)2 + λX2E(Su),

Sv1 = −λX1S̃
′

v(η), Sv2 = S̃
′′

v (η)(λX1)2 − λX2S̃
′

v(η),

V1 = λX1E(V ), V2 = λX2E(V ) + λ2X2
1E(V 2),

C1 = λX1E(C), C2 = λX2E(C) + λ2X2
1E(C2), X1 = E(X) and X2 = E(X2).
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