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1. INTRODUCTION

Throughout this article, let H be a real Hilbert space with inner product (-,-) and
norm || - ||. Let C be a nonempty closed convex subset of H. Let T : C — C be a
nonlinear mapping. A point x € C is called a fized point of T if Tx = x. The set of fixed
points of T' is the set F(T) :={z € C : Tz = z}.

A mapping T of C into itself is called nonexpansive if

|72 = Tyl| < |l —y| . Va,y € C.
It is well known that if T': H — H is a nonexpansive mapping, we have
1
(Ty T, (I =T — (I = T)y) < ST = T)a — (I = Ty|]>,Var,y € H.
Moreover, we also know that

(y— T, (T = T)a) < ST~ TP,
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for all x € H and y € F(T).
A mapping h : C — C is said to be a contraction if there exists a constant « € (0, 1) such
that

[h(z) = h(y)|| < allz —yll, Ve, y € C.

A mapping A : C — H is called a-inverse strongly monotone if there exists a positive
real number a such that

(Az — Ay,z —y) > a||Az — Ay|)* Yo,y € C.

In 2006, Marino and Xu [1] introduced the general iterative method based on the
viscosity approximation method proposed by Moudafi [2] in 2000 as folows:

(1.1)

xo € Hy arbitrary chosen,
Tn+1 = (I —ayD) Tz, + anéh(x,),Vn € N,

where T is a nonexpansive mapping, h is a contractive mapping on H, D is a strongly
positive bounded linear self-adjoint operator and {«,,} is a sequence in (0,1). They also
proved a strong convergence theorem of the sequence {z, } generated by (1.1).

Let f : H — H be a mapping and M : H — 2¥ be a multi-valued mapping. The
variational inclusion problem is to find v € H such that

0 € f(u)+ Mu, (1.2)

where 6 is zero vector in H. The set of the solution of (1.2) is denoted by VI(H, f, M).
A multi-valued mapping M : H — 29 is called monotone, if for all z,y € H, u € Mx and
v € My implies that (u — v,z —y) > 0. A multi-valued mapping M : H — 2 is called
maximal monotone, if it is monotone and if for any (z,u) € H X H, (u —v,x —y) > 0 for
every (y,v) € Graph(M) (the graph of mapping M) implies that v € M.

Let M : H — 2 be a multi-valued maximal monotone mapping, then the single-valued

mapping JM : H — H defined by

TV () = (I +AMy) " (u),Vu € H,
is called the resolvent operator associated with M where A is a positive number and I is
an identity mapping, see [3].

In 2008, Zhang et al. [3] proved a strong convergence theorem for finding a common
element of the set of solutions of the variational inclusion problem and the set of fixed
points of nonexpansive mappings in Hilbert space. They introduced the iterative scheme
as follows:

Yn = J)]\\41 (xn - )\Amn)y
Tnt+l = Qp® + (1 - Oén)Syn,Vn S Na
and proved a strong convergence theorem of the sequence {z,,} under suitable conditions

of parameter {a,} and A. In 2014, Khuangsatung and Kangtunyakarn [4] modified a
variational inclusion problem as follows: Finding v € H such that

N
0> aifi(u)+ Mu, (1.3)
=1

where f; : H — H is a single valued mapping, M : H — 2¥ is a multi-valued mapping,
a; € (0,1) with Zi\; a; = 1, and @ is a zero vector for all i = 1,2,..., N. Such a



Strong Convergence for the Modified Split Monotone ... 891

problem is called the modified variational inclusion. The set of solutions (1.3) is denoted
by VI(H, Zi\; a;Ai, M). If A;=Aforalli=1,2,...,N, then (1.3) reduces to (1.2).

Let H; and Hy be real Hilbert spaces. Let M; : H; — 21 be a multi-valued mapping
on a Hilbert space Hy, My : Hy — 22 be a multi-valued mapping on a Hilbert space Hy,
A : Hy — H> be a bounded linear operator, f : Hy — Hy and ¢ : Hy — Hs be two given
single-valued operators. In 2011, Moudafi [5] introduced the split monotone variational
inclusion problem (SMVIP) as follows: Find z* € H; such that

0 € f(z*)+ Myz*, (1.4)
and such that
y* = Az* € Hj solves 0 € g(y*) + May™. (1.5)

The set of all solutions of (1.4) and (1.5) is denoted by © = {z* € Hy : a* € VI(Hy, f, My)
and Az* € VI(Haz,g, M3)}. In order to solve the SMVIP, he introduced the following
iterative algorithm:

Tog1 = Iy (I = M) (@ + A (I (I = Ng) — 1) Azy,),¥n € N,

where J;Vh and Ji”z are the resolvents of M; and My, respectively, v € (0, %) with L
being the spectral radius of the operator A*A, and f, g are a; and s inverse strongly
monotone operators, respectively. He also proved that the sequence generated by the
proposed algorithm weakly converges to a solution of SMVIP under suitable conditions.
Many research papers have increasingly investigated SMVIP, see, for instance, [0, 7], and
the references therein. We know that spacial cases of SMVIP include the split feasibility
problem, the proximal split feasibility problem, the split common fixed point problem,
the split variational inclusion problem, the split variational inequality problem, and so
on, see for instance, [3-12], and the references therein. The split feasibility problem can
be applied to solving important real world problems in medical fields such as intensity-
modulated radiation therapy (IMRT) (see, [13])

In this paper, motivated by [1], [4], and [5], we introduce the modified split monotone
variational inclusion problem (MSMVIP) which is to find z* € H; such that

N
0 e Zalfz(x*) + M]J)*, (16)
i=1
and such that
N
y* = Ax* € Hj solves 0 € Z bigi(y™) + May™, (1.7)
i=1

where f; : Hy — H; is a single valued mapping, ¢g; : Hy — H> is a single valued
mapping, for all i = 1,2, ..., N, a; € (0,1) with Zf\;1 a; =1, b; € (0,1) with Zi\le b; =1,
M; : H; — 25 be a multi-valued mapping on a Hilbert space Hj, for all j = 1,2,
A: Hy — H, is a bounded linear operator, and 6 is a zero vector. The set of all solutions
of (1.6) and (1.7) is denoted by Q = {a* € H; : 2* € VI(Hl,ZiA;l a; fi, My) and Az* €
VI(Hy, Y| bigi, Ma)}, where a; € (0,1) with 328 | a; = 1, b; € (0,1) with Y% b; = 1.

The purpose of this article is to prove a strong convergence theorem for finding a
common element of the set of solutions of the modified split monotone variational inclusion
problem (MSMVIP) and the set of fixed points of a nonexpansive mapping in Hilbert
space. Moreover, we also apply our main result involving a k-strictly pseudo-contractive



892 Thai J. Math. Vol. 20 (2022) /W. Khuangsatung and A. Kangtunyakarn

mapping. In the last section, we give the numerical example to support some of our
results.

2. PRELIMINARIES

Throughout the paper unless otherwise stated, let H; and Hs be real Hilbert spaces
with inner product (-,-) and norm || - ||. Let C and @ be nonempty closed convex subset
of Hy and Ha, respectively. Recall that H; satisfies Opial’s condition [11], i.e., for any
sequence {x,} with z,, — z, the inequality

liminf ||z, — z|| < liminf |z, — y||,
n—o0 n—00

holds for every y € Hy with y # .
For a proof of the our main results, we will use the following lemmas.

Lemma 2.1 ([15]). Given x € Hy and y € C. Then, Pcx =y if and only if there holds
the inequality

(t—y,y—2)>0,Vz e C.
Lemma 2.2 ([16]). Let {s,} be a sequence of nonnegative real numbers satisfying
Sn+1 S (1 - an)sn + 5navn Z 17

where {a,} is a sequence in (0,1) and {0,} is a sequence such that

(1): Z Qy = 00;
n=1

6 o0
2): i <0 On| < 0.
(2) i sup o = OT;\ | < o0

Then, lim s, = 0.
n— 00

Lemma 2.3 ([3]). u € Hy is a solution of variational inclusion (1.2) if and only if
u=JM (u— \f(u), VA >0, ie.,

VI(Hy, f, M) = F(JY (I = A\f)), YA > 0.
Further, if X € (0,2«], then VI(Hy, f, My) is closed convex subset in Hj.

Lemma 2.4 ([1]). Let Hy be a real Hilbert space and let My : Hy — 211 pe g multi-valued
mazximal monotone mapping. For every i = 1,2,....N, let f; : HL — Hi be a;-inverse

~N{ai} and ﬂf\; VI(Hy, fi, My) # 0.

strongly monotone mapping with n = min;—y 2 .,
Then
N

N
VI(Hy, Y aifi,My) = [\ VI(Hy, fi, Ma),
i=1 i=1
where Zf\; a;=1,and 0 < a; <1 for everyi=1,2,...,N. Moreover, we have Ji\/ll (I -
)\Zi]il a; f;) is a nonexpansive mapping, for all 0 < A < 2.

Lemma 2.5 ([1]). Let A be a strongly positive linear bounded operator on a Hilbert space
H with coefficient ¥ > 0 and 0 < p < ||A||7t. Then ||I — pA|| <1 — p7.
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Lemma 2.6. For every j = 1,2, M; : H; — 28 be a multi-valued maximal monotone
mapping on a Hilbert space H; and let A : Hy — Hy be a bounded linear operator. For
every i = 1,2,.... N, let f; : Hi — Hy be p;-inverse strongly monotone mapping with
w=min;=12 . ~{t:} and g; : Hy — Hy be v;-inverse strongly monotone mapping with
v =min;=12, ~N{vi}. Assume that Q is a nonempty. Then the following are equivalent:

(1) x* € Q,

(2) a* = (1= M S af) (@ — 7 A (T~ TV = A T big)Aa),
where 0 < A\ < 2u, 0 < Ay < 2v, v € (0, %) with L is the spectral radius of the operator
A* A, a; € (0,1) with YN a; =1, and b; € (0,1) with 3% b; =1, for alli = 1,2, ..., N.

Proof. Let the condition holds. Put Gy = vazl a;f;, and Go = ZZJ\LI big;.

(1) = (2) Let =* € Q, we have z* € VI(Hl,ZiI\Ll a; fi, My) = VI(Hy,Gy,M;) and
Az* € VI(HQ,Z;\LI bigi, M2) = VI(Hz,Go2, M3). From Lemma 2.3, we have z* €
F(J{(I = X\1G1)) and Az* € F(J3*(I — \,G2)). This implies that

ot = T3 — MGy (a" — A (I — T\ (I — \Ga))Ax™).

(2) = (1) Let 2* = Ji\fl (I—)\lGl)(m*—’yA*(I—Ji\fz(I—)\QGQ))Ax*) and let z € Q. From
Lemma 2.4, we have the mapping Ji\/lh (I —X\1Gy) and J)]\\fz(f — A2G3) are nonexpansive
mappings. Since z € © and (1) = (2), we have

2= J3 (I = MG1) (2 +7A* (I = T2 (I — \oG2))Az).
Since J;‘{l (I — A\ G1) and Ji‘f’“ (I — A2G2) are nonexpansive mappings, we have

[z = 2)? = |3 (1 = MGh)(a" — yA (I — T2 (I — \oGa)) Ax™)
— I (L= MG (2 =y AT = TR (I = MaGa)) Az) |
< (@ =AY = T2 (I = AaGa)) Aa”)
= (2 =y AL = IR (I = A2Ga))Az)|?
= [I(z" = 2) = Y (A" (I = J32 (I = \oGo)) Az
— A1 — Y2 (I — M2G2))Az) |12
= |jz* — 2||* — 2y(2* — 2, A*(I — Ji\?(] — A2G2))Az™)
+ PNATI = TR (I = X\oGa)) Ax*|?
= |jz* — 2||* — 2y(Az* — Az, (I — Ji\gz (I — X\2G2))Az™)
+ VAT = TR (T — XoGa)) Az |2
= |lz* — 2| + 2v(Az — ng (I — MaGo)Azx™ + Ji\;h (I — X\oGo)Az™
— Az*, (I-J32 (1= X2G2))Az™) + 92| A*(I — J\2 (I-X2Ga)) Ax*||?
= ||a*— 2|* + 2v((Az — Ji\? (I— A2Ga)Ax™, (I — J/]\Vf (I —X2G3))Azx™)
— [I(I = T2 (I = AaG2)) A™[|*) + || A*(I — J3* (I — \aGa)) Az™ |
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< la” = 2l* + 27(%”(1 — gt (I = A2Ga)) Aa”|?
— (T = T2 (I = MaG2))Az™|?) + V°LI(I — JY2 (I — X\2Ga)) Az |2
= [la* = 2]* =L = J32 (I = A2Ga)) Ax™|?
+ VLI = T2 (I = XaGa)) Az™ |2
— o — 22 = 3(1 = ALY (I = T2 (1 = AsGa)) A 2 (2.1)
Applying (2.1), we have
Az* € F(J\2(I — \Ga)). (2.2)
From Lemma (2.3), we have
Az* € VI(Hz, Go, Ma). (2.3)
From the definition of x* and (2.2), we have
ot = 3T = MG (z" —y A (I — T3 (1 — A2Ga)) Az®)
=3I = MGy)a™.
Then z* € F(J)]\\f1 (I — A\1G1)). From Lemma (2.3), we have
ot € VI(Hy, Gy, My). (2.4)
From (2.3) and (2.4), we have z* € Q. ]

3. MAIN THEOREM

In this section, we prove a strong convergence theorem for the modified split monotone
variational inclusion and the set of fixed point of a nonexpansive mapping in Hilbert
space.

Theorem 3.1. For every j = 1,2, M; : H; — 25 be a multi-valued mazimal monotone
mapping on a Hilbert space H; and let A : Hy — Hy be a bounded linear operator. For
every i = 1,2,.... N, let f; : Hi — Hy be p;-inverse strongly monotone mapping with
w=min;=12 . ~{t:} and g; : Hy — Hsy be v;-inverse strongly monotone mapping with
v =mini=1 . ~n{vi}. Let§ be a solution of (1.6) and (1.7) and X # 0. LetT : Hy — H;
be a nonexpansive mapping with ¥ = F(T) N Q is nonempty. Let h : Hy — Hp be
a contractive mapping with o € (0,1) and let D be a strongly positive bounded linear
operator with coefficient € € (0,1) with 0 < £ < % Let the sequence {x,} be generated by
x1 € Hy and

Un = JY(T = M 0 aifi) (@ — AN = T (1 = Mo 00 bigi)) Azy),
Tn4+1 = angh(xn) + (I - anD) (BnTxn + (1 - ﬂn)un) ,Vn € N,
(3.1)

where 0 < A1 < 2u, 0 < Ay < 2v, and v € (0,%) with L is the spectral radius of the
operator A*A. Suppose {an}, {Bn} C (0,1) satisfying the following conditions:

oo (oo}
(i): nli_)rrécozn =0, Z oy, = 00, and Z |apt1 — ap| < 005

n=1 n=1
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(ii): 0 < liminf, o Bn < limsup,,_, . Bn < 1,2 |Br+1 — Bnl| < 005
n=1
(iii): a; € (0,1) with Y3 ;a; = 1, and b; € (0,1) with Y20, b; = 1, for all
i=1,2,..,N.

Then the sequence {x,} converges strongly to z = Py (I — D + £h)(2).
Proof. Since a,, — 0 as n — oo, without loss of generality, we may assume that

a, < ||D||71, for all n € N.
We divide the proof into five steps:

Step 1. We show that the sequence {z,} is bounded. Let z € ¥. From Lemma 2.6, we
have

N N
p=JM I =MD aifi)(z—vAT I = (I =AY bigi)Az).

i=1 i=1
Put y, = BTz, + (1 — Br)u, and applying (2.1) in Lemma 2.6, we have
[y — 2l = 11BnT2n 4 (1 = Br)un — 2|
< BulTan — 2l + (1 = Bn)llun — 2|
< Bolln — 2l + (1 = Bu)llan — 2]
= ||zn — 2]|. (3.2)
From the definition of x,, and (3.2), we have
[znt1 — 2l = [lan&h(zn) + (I — an D)y, — 2||
o (§h(wn) — D2) + (I — anD)(yn — 2)|
ay [[EM(zn) — Dz|| + (|1 — anDl| lyn — |
an (& [(xn) = h(2)]| + 1€R(2) — Dz|l) + (1 = anl)|lzn — 2|
(1= an(€ = 6a)) l|lzn — 2]l + an [IEA(2) — Dz||
JLCELZNY

INCIA A

IN

£ —&a
By mathematical induction, we have ||z, — z|| < K,Vn € N. It implies that {z,} is
bounded and so is {uy,}.

max{|m1 —z||

Step 2. We will show that lim, o |[|[Znt1 — Zn|| = 0. Put G; = Zf;l a; f;, and
Gy = Zfil b;g;. From the definition of u,,, we have

un = | = [T (I = MG) (g — yA™ (I = J32 (I = AoGo)) Azy)
— NI = MG (wn—1 — YA (I — T3P (I = X\oGa)) Azyy)||?
< (@ =y A" (I = J32 (I = A2Ga)) Axy)
— (w1 — YA (I = I3 (I = XGa)) Amn 1) |1?
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= |(zn — 1) —vA*((I - Ji\;b (I — \2Go))Ax,
— (I = T3 (I = X2Ga)) Az, 1) |12
= ||lzn — avn_1||2 —29(xp — Tp—1, A*((I — Ji\gz (I — X\2G2)) Az,
— (I = JWB(I = \sGa))Azpy))
+ PIA (T = TR (I = XaGa))Azy — (I — JAP (I = XyGa)) Az 1) |2
= ||lzn — zn_1]? — 2W<Axn — TM2(T = AoGo) A + TY2(T — NoGh) Ay,
— Awp_1 + T3P (I = MoGa) A1 — J32 (I — \oG2) Azy1,
(I = TN (1 = 2aGa) Awy) = (I = T (I = XoGa) Awa 1) )
+ VLI = T3 (I = X2G2)) Ay — (I — J32 (1 — X2G2)) Azpa ||
= |len — zp|?
— 29((I = T3 (I — X2Ga)) Ay — (I — T2 (I — XoGa)) Ampy s
+ V(I = MaGa) Az, — TV (I = XoGa) Azpy, (I — T\ (I — XoGa)) Az,
— (I = J3P (I = X2G2)) Ay 1)
+ VLI = T2 (I = AaGa)) Ay — (I — T3 (I — AoGa)) Az ||?
= Jwn = zna* = 29 (11 = T2 (I = XaGa)) Az — (I = T2 (I = AoGo)) Ay ||
+ (JNB(I = XaGa) Azy — T2 (I = XNaGa)Azy1, (I — J\2 (I = AaGa)) Awy,
— (I = JWB(I — \2G2))Az—1))
+ VLI = T2 (I = X2G2)) Ay — (I — Jy2 (I — X2G2)) Azy1 ||
= |len — zp|?
+ 29( = (I = T2 (I = MoGa)) Amy, — (I = T2 (I = MoGa)) Ay |2
+ (VB (I = MaGa) Az g — TV (I = XoGa) Ay, (I — T2 (I — XoGa)) Az,
- (I - J,]\\?(I — A2G2)) Az, 1))
+ VLI = 3P (I = MGa)) Az — (I = I3 (I = MaGh)) Az ||?
< l#n = @nall®
+ 29( = (1 = T2 = XaGa)) Az — (I = T3 (1 = AaGa)) Ay ||
0 = T (T~ X)) Ay — (I =TT — 2Ga)) Aro 1)
+ VLI = T3 (I = XGa)) Az — (I — T2 (T — X\2Ga)) Az |2
= |ln — zna
— V(L= yL)|[(I = a2 (I = X\oGa)) Az, — (I = JR22 (I = MaGa)) Ay ||
< wn — an | (33)
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From the definition of y,, and (3.3), we have

[y = Yn—1ll = [1BnTzn + (1 = Bn)un — Bn1T@p—1 — (1 — Bp—1)tn—1|

= ||ﬁn(T33n - Tﬁnfl) + (Bn = Bn-1)Txn 1+ (1 — Bn)(un - Unfl)
+ (Bn-1 = Bn)tn-1]|

< BallTzn — Top—1 | +|Bn = Ba—1l|Ton—1l| + (1 = Bn)lun — wn—1]|
+ 1Bn = Ba—1lllun—1]

< Ballzn = 21|l + 18n = Ba-1lTzn-1ll + (1 = Bu)llzn — Tp—1]]
+ 1Bn = Ba—1lllun—1]

= llon — Zpall + Bn = BaallTzn-1l + [Bn — Bu—alllun—ll-  (3-4)

From the definition of x,, and (3.4), we have

[#n41 — znll = llangh(zn) + (I — anD)yn — an—18h(zn-1) = (I = an—1D)yn—1|
< anglh(zn) — h(@n-1)|| + {lom — a1 ||A(zn-1)|l
+ [[(I = anD)|[llyn — Yn—1ll + |an — @n—1[[[Dyn—1|
< anballzn — zpoa || 4+ €lan — an—1|[[A(2n-1)||
+ (1= and)llyn = yn-1ll + lon — an—1l[ Dyl
< anballzn — zpoa ||+ €lan — an—1|[[R(@n-1)|| + [an — an-1][| Dypn-1l
+ (1- O‘ng)(Hxn = Tp-1|l + [Bn = Ba—a | Txp-1|
+ |Bn — 5n—1|||“n—1”)
< (1= an(€ — £0)lJn — a1l + €l — an_1ll[a(za_1)]
+ lom — anal[|Dyn—1ll + [Bn = Brn-a || Tzn |
+ |Bn = Br-1lllun—1]l- (3.5)

Applying Lemma 2.2, (3.5) and the conditions (i), (ii), we have

nhﬁ\rr;o |Znt1 — nl = 0. (3.6)
Step 3. We show that lim, o0 [|T2n — 2y || = limp, o0 ||t — 25| = 0. From the definition

of x,, we have

[Zns1 = ynll = llanéh(zn) + (I — anD)yn — yull
apl|Eh(xy) — an Dy,

Based on the above equation and the condition (i), we have

IN

Jim [z 41 = yal = 0. (3.7)
Observe that

[zn = Yall < 20 — Tnga || + [[2n41 — yall- (3.8)
From (3.6), (3.7), and (3.8), we have

Jim [z, —ya| = 0. (3.9)
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From the definition of y,,, we have

”yn_ZH2 = ”BnTﬂ:n‘F(l_ﬂn)un _Z”2
= BnllTzn — Z||2 + (1 = Bn)llun — Z||2 = Bn(1 = B T2y, — un”2
< ||33n_"5||2 _Bn(l_ﬁn)”Txn_un”Z-

It implies that
Bu(1 = Bl Txn — unl* < ||zn — 2[1* = [lyn — 21|
= (lzn = 2l + llyn = 2D llzn = ynll-
From the condition (ii) and (3.9), we have
lim ||Tz, — yn| = 0. (3.10)
n—roo
Observe that
[Tz = x|l < [ Txn = ynll + lyn — znll. (3.11)
From (3.9), (3.10), and (3.11), we have

nl;r{:o | T2y, — zn] = 0. (3.12)
Since

Yn — Tx, = BnTxn + (1 - Bn)un — Tz,
then

Yn — Ty = (1= Bn)(un — Tay).
From the equation above, (3.10), and the condition (ii), we have

lim [Tz, — u,|| = 0. (3.13)

n—oo

Observe that

[tn = nll < Nlun — Tan|l + | T2 — 2n.- (3.14)
From (3.12), (3.13), and (3.14), we have

lim ||, — 2,] = 0. (3.15)

n—oQ
Step 4. We will show that limsup (((h — D)z, z, — z) <0, where z = Py(I — D+ £h)z.
n—

o0
To show this, choose a subsequence {z, } of {z,} such that

limsup ((¢h — D)z, x, — z) = lim (((h — D)z, zp, — 2) . (3.16)
n— 00 k—o0
Without loss of generality, we can assume that x,, — w as k& — oco. From (3.15), we
obtain u,, — w as k — oo.
Next, we will show that w € Q. Assume that w ¢ €. By Lemma 2.6, we have
w # JYH(I = MGy)(w — yA*(I = JYP(I — X\2G3))Aw). By the Opial’s condition and
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(3.15), we obtain
lim inf ||z, — w||
k—o0
< liminf ||z, — TW (I = MG (w — yA* (I = T2 (I = M Ga)) Aw) |
—00
< liminf (|, — TN = MG1) (T, — YA (I = T2 (I — MaGa)) Azy,) |
—00
+ T = MG (@, — YA*(I = T3 (I = X2Ga)) Az,
— JUNI = NG (w — v A (I = T3 (T — X2G2)) Aw) )
< liminf ||z,, — w]|.
k—o0
This is a contradiction. Then we have

w e .

Next, we will show that w € F(T). Assume that w ¢ F(T). Then w # Tw. By the
nonexpansiveness of T, the Opial’s condition, and (3.12), we obtain

liminf ||z, —w| < liminf ||z,, —Tw]||
k—o00 k—o00

IN

liminf(|[zn, — Tan, || + | T2n, — Tw|))
k—o0

A

liminf ||z, — w]|.
k—o0

This is a contradiction. Then we have
we F(T).

Therefore w € ¥ = QN F(T).
Since x,, — w as k — oo and w € ¥. By (3.16) and Lemma 2.1, we have

limsup (((h — D)z, z, — 2) = klim ((h — D)z, xp, — )

=((€h—D)z,w — 2)
<0. (3.17)

Step 5. Finally, we show that lim z, = z, where z = Py(I — D + £h)z. From the

n—oo
definition of x,,, we have

[Zn41 = 2l* = llan(Eh(zs) — D2) + (I = @uD)(yn — 2)|1?
< (I = anD)(yn — 2)|I” + 200 (ER(xn) — Dz, 2pp1 — 2)
< (1= an€)?llyn — 21 + 20 (Eh(xn) — ER(2), Tns1 — 20)
+ 2a,(Eh(2) — Dz, Tp41 — T0)
< (1= an)?2n — 2 + 208 h(zn) — A ensr — 2]
+ 2a,(Eh(z) — Dz, 241 — x0)
< (1= and)?[len — 2I° + 2anéallzn — zll|znt1 — 2]
+ 2a,(Eh(z) — Dz, 241 — x0)
= (1= anf)?||lzn — 2||° + anballzn — 2|° + anéallznit — 2|

+ 20,(Eh(z) — Dz, Tpt1 — To).
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It implies that
1= 20,8 + (an)? + anfar

_ L2 < _ 12
s 21 < {0t 0t g, s
200,
+ m<fh(2) — Dz,an — Z>
20, (€ —
— (1- 2y, e
anéa
2 e 2
1—apéa \2(€ —¢a)
1
+ = (&h(z) — Dz, xpy1 — z>)
§—Sa
From the condition (i), (3.17) and Lemma 2.2, we can conclude that the sequence {z,}
converges strongly to z = Pg(I — D + £h)z. This completes the proof. m

As direct proof of Theorem 3.1, we obtain the following result.

Corollary 3.2. Let H, and Hy be two real Hilbert spaces, My : Hi — 281 and M, :
Hy, — 22 be multi-valued mazimal monotone mappings and let A : Hi — Hy be a
bounded linear operator. Let f : Hi — Hi be p-inverse strongly monotone mapping and
g : Hy — Hs be v-inverse strongly monotone mapping. Let © be a solution of (1.4) and
(1.5) and © # 0. Let T : Hy — H; be a nonexpansive mapping with ¥ = F(T)N O is
nonempty. Let h : Hy — Hy be a contractive mapping with o € (0,1) and let D be a
strongly positive bounded linear operator with coefficient & € (0,1) with 0 < £ < é Let
the sequence {x,} be generated by 1 € Hy and

{ tn = T = A ) (2 — AT (1 = T2 (1 = Nog)) Az,),

Tn1 = anéh(zy) + (I — anD) (BT + (1 — Bp)un) ,¥n € N, (3.18)

where 0 < Ay < 2u, 0 < Ay < 2v, and v € (0, 1) with L is the spectral radius of the

operator A*A. Suppose {an}, {Bn} C (0,1) satisfying the following conditions:

o0 o0
(i): nli_)rr;oan =0, Z o, = 00, and Z lan+1 — ap| < 00

n=1 n=1
(i1): 0 < liminf, o0 B < limsup, oo Bn <1, Y |Bus1 — Bal < 00;

n=1

Then the sequence {x,} converges strongly to z = Py(I — D + £h)(2).

Proof. Put f; = f and ¢g; = g for all i = 1,2,..., N in Theorem 3.1. So, from Theorem
3.1, we obtain the desired result. [

4. APPLICATION

In this section, we utilize our main theorem to prove a strong convergence theorem for
finding a common element of the set of solutions of the modified split monotone variational
inclusion problem (MSMVIP) and the set of fixed points of a k-strictly pseudo-contractive

mapping.
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A mapping T : C — C is said to be k-strictly pseudo-contractive if there exists a
constant x € [0,1) such that

1Tz = Ty||* < l|lx = y||* + & ||(I = Tz — (I - Tyl

for all z,y € C. Note that the class of strictly pseudo-contractions strictly includes the
class of nonexpansive mapping.

Lemma 4.1 (See [17]). Let T : C — H; be a k-strict pseudo-contraction. Define S :
C — H by Sx =X+ (1—N)Tx for each x € C. Then, as A € [k, 1), S is a nonexpansive
mapping such that F(S) = F(T).

Theorem 4.2. Let Hy and Hy be two real Hilbert spaces, My : Hy — 2% and M, :
Hy — 272 pe multi-valued maximal monotone mappings and let A : Hy — Hy be a
bounded linear operator. For everyi=1,2,....N, let f; : Hy — H;y be p;-inverse strongly
monotone mapping with pu = min;=1 2, n{w:} and g; : Ho — Hay be v;-inverse strongly
monotone mapping with v = min;=1 2, n{vi} . Let Q be a solution of (1.6) and (1.7)
and Q # 0. Let T : Hi — Hy be a k-strict pseudo-contraction with W = F(T) N Q is
nonempty. Define the mapping S = Hy — Hy by Sx = ox + (1 — o)Tx for every x € Hy
and o € (k,1). Let h : Hi — Hy be a contractive mapping with « € (0,1) and let D be
a strongly positive bounded linear operator with coefficient &€ € (0,1) and 0 < £ < g Let
the sequence {x,} be generated by 1 € Hy and

Un = S\ = M 0 aifi) (@ — AT = T3 (1 = Mo 00 bigi)) Az)
Tnt1 = ap€h(zy) + (I — apD) (BnSxyn + (1 — Bn)un) ,Vn € N,

(4.1)
where 0 < A\ < 2u, 0 < Ay < 2v, and v € (0,%) with L is the spectral radius of the
operator A*A. Suppose {an}, {Bn} C (0,1) satisfying the following conditions:

(i): nli_)rr;oan =0, Z a, = 0o, and Z lant1 — ap| < 00

n=1 n=1
(i1): 0 < liminf, o0 B < limsup, oo Bn <1, Y |Bus1 — Bal < 00;
n=1
(iii): a; € (0,1) with YN ;a; = 1, and b; € (0,1) with SN b; = 1, for all
i=1,2,..,N.

Then the sequence {x,} converges strongly to z = Py (I — D + £h)(z2).
Proof. From Lemma 4.1 and Theorem 3.1, we obtain the desired result. ]

5. NUMERICAL RESULT

The purpose of this section, we give a numerical example to support our main result.
The following example is given to support Theorem 3.1.

Example 5.1. Let R be the set of real numbers and let (-,-) : R* x R — R be an inner
product defined by (x,y) =x-y =1 - y1 + o2 - yo, for all x = (z1,22), ¥y = (y1,y2) and
H, =Hy, =R? Foreveryi=1,2,...,N, let D, fi, g;, h : R> = R? be defined by

_ (T w2\ . fim odme) (2 iz _ (% 32
DX‘(z’z)’fZX (12’12)’91" (9’9)’h(x) (3’3)’
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and let T : R? — R? be defined by
Tx — (ﬂ E) ’
55
for all x = (21,72) € R%, y = (y1,y2) € R% Observe that, for every i = 1,2,..., N, f;
and g; are inverse strongly monotone mappings, D is a strongly positive bounded linear
operator, h is a contractive mapping, and also we have T is a nonexpansive mapping. We
also define A : R? — R? as follows:

Ax = (5.’[71 —3x2,3x1 + 53?2) s
and A* : R? — R? as follows:
A*x = (5$1 + 3502, 5:1?2 — 3I1) .

Then A is a bounded linear operator. Moreover, the spectral radius of the operator A*A
is 34 and also we have v € (0, 7).

For every i =1,2,...,N. Suppose that JM1 = JM2 =1, a = 11541 + ﬁsN» b; =
Let x, = (xl x2) and u, = (u U ) be generated by (3.1), where o, = ﬁ,
Brn = gaig for every n € N. Put Ay = Ay = N and & = % . It is easy to see that all

sequences satisfy conditions of Theorem 3.1. For every n € N, we rewrite (3.1) as follows:

N
1 14 1
ne (I_N <§_4: 15 +N15N> fi)
N
§ 1 15, 1

Xt :% (é) hxn) + (I = %D) (5 o lxe (1= 51172L 6)“”> o G

where x,, = (xl a?Q) and u,, = (u1 u2). Then the sequences x,, = (x,ll,x%) and u,, =

(ul,u2) generated by (5.1) converge strongly to 0, where 0 = (0,0).
Using the algorithm (5.1) and choosing x; = (5,—5) and n = N = 100, the numerical

results for the sequences z,, and u,, are shown the following table and figure.

15
16° + NlGN

T 2 T 2
U, U, T, x

4.9915097  -4.9915097  5.0000000 -5.0000000
3.8815482 -3.8815482  3.8881505 -3.8881505
3.2134041  -3.2134041 3.2188699 -3.2188699
2.6939520 -2.6939520 2.6985343 -2.6985343
2.2672346 -2.2672346 2.2710910 -2.2710910

[SAENGUI R

50  0.0009374 -0.0009374 0.0009390 -0.0009390

96  0.0000003 -0.0000003 0.0000003 -0.0000003
97  0.0000003 -0.0000003 0.0000003 -0.0000003
98  0.0000002 -0.0000002  0.0000002 -0.0000002
99  0.0000002 -0.0000002 0.0000002 -0.0000002
100 0.0000001 -0.0000001 0.0000001 -0.0000001

TABLE 1. The values of the sequences {u, } and {x,} with initial values
x1 = (5,—5) and n = N = 100.
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FIGURE 1. The behavior of {x,} with initial values x; = (5,—5) and
n =N = 100.
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