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Abstract In the current study we present df−statistical convergence of order α and df−strong Cesàro

summability of order α in accordance to a modulus for a sequence in a metric space. Furthermore

we introduce the connections between the sets of df−statistically convergent sequences of order α and

between the sets of df−strongly Cesàro summable sequences of order α in accordance to a modulus for

various values α and under some conditions on f . Besides this we introduce the relationships between

the set of df−statistically convergent sequences of order α and the set of df−strongly Cesàro summable

sequences of order α in accordance to a modulus for various values α and under some conditions on f .
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1. Introduction

The thinking of statistical convergence first was put forward by Zygmund [1] in 1935.
Statistical convergence was acquainted for the first time by Steinhaus [2] and Fast [3]
and then by Schoenberg [4] detachedly. Some mathematicions studied also the statistical
convergence of a sequence along density of subsets of natural numbers that we could
mention R. C. Buck [5] for instance. In the last decades and under different names the
subject was discussed in many different theories such as in the theory of Fourier analysis,
number theory, ergodic theory, measure theory, trigonometric series and Banach spaces.
It was additionally studied from the sequence spaces and summability theory point of
view and via summability theory by Fridy [6], Connor [7], Savaş [8], Mursaleen [9], Fridy
and Orhan [10], Móricz [11], Rath and Tripathy [12], Salat [13], Belen and Mohiuddine
[14] and somebody else.
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In general, the statistical convergence has been defined and investigated for the se-
quences of real or complex numbers. This concept also has been studied in metric spaces
by Küçükaslan et al. [15], Bilalov and Nazarova [16] and Kayan and Colak ([17], [18]).
In this paper, we study these concepts with order of a real number α between 0 and 1 by
using a modulus function in metric spaces.

The order of statistical convergence of a sequence of positive linear operators was
introduced by Gadjiev and Orhan [19]. The statistical convergence of order α (0 < α ≤ 1)
and strong p-Cesàro summability of order α were introduced and investigated by Çolak
[20] for number sequences, using the notion α - density of a subset of the set N of positive
integers.

The thinking of a modulus function was introduced by Nakano [21] in 1953. Ruckle [22]
and Maddox [23] have acquainted and debated some features of sequence spaces defined
by help of a modulus function. Other than them, Connor [24], Ghosh and Srivastava
[25], Bhardwaj and Singh ([26], [27], [28]), Çolak [29], Altin and Et [30] and some others
have utilized a modulus function to build some sequence spaces. Recently, Aizpuru et.
al. [31] defined the statistical convergence with the help of modulus functions and also
Bhardwaj and Dhawan [32] studied the statistical convergence of order α and strong
Cesàro summability of order α in accordance to a modulus for number sequences.

We now remember some descriptions those will be required afterwards.
Let N be the set of all positive integers. A number sequence x = (xk) is called as

statistically convergent to the number l if for each ε > 0, the set {k ∈ N : |xk − l| ≥ ε}
has natural density zero, where the natural density of a subset K ⊂ N is described by

δ(K) = lim
n→∞

1

n
|{k ≤ n : k ∈ K}|

and |{k ≤ n : k ∈ K}| indicates the number of elements of the set {k ≤ n : k ∈ K}. It is
apparent that δ(N) = 1 and δ(K) = 0 on condition that K ⊂ N is a finite set of positive
integers and δ(Kc) = δ(N)− δ(K) = 1− δ(K), where Kc = N−K. When a sequence is
statistically convergent to l we use the notation S − limxk = l to show it. Furthermore
we indicate by S the set of all statistically convergent sequences.

Definition 1.1. [20] Let α ∈ (0, 1] be any real number. The α − density of a subset
H ⊂ N is described by

δα (H) = lim
n→∞

1

nα
|{k ≤ n : k ∈ H}|

where the limit exists (finite or infinite).

Obviously we have δα (H) = 0 for every α ∈ (0, 1] provided that H ⊂ N is a finite
subset. Although δα (Hc) = 1 − δα (H) for α = 1, the equality δα (Hc) = 1 − δα (H) is
not true for 0 < α < 1 in general.

Also α−density δα (H) degrades to the natural density δ (H) of a subset H ⊂ N in
case α = 1. Note that

δα (N) =

{
1, α = 1
∞, α < 1

and for every subset H ⊆ N, δα (H) = 0 if α > 1.
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Let 0 < α ≤ 1 be given. A number sequence (xk) is called as statistically convergent
of order α if there exists a number l that provides

lim
n→∞

1

nα
|{k ≤ n : |xk − l| ≥ ε}| = 0

for every ε > 0 [20]. Then we say that (xk) is statistically convergent of order α, to l. We
use the notation Sα − limxk = l in case the sequence (xk) is statistically convergent of
order α, to l. We will use the notation Sα to indicate the set of all sequences which are
statistically convergent of order α.

Lemma 1.2. [20] Let E ⊆ N. Then δβ (E) ≤ δα (E) if 0 < α ≤ β ≤ 1.

A sequence x = (xk) is called as strongly Cesàro summable to L, if there exists a
complex number L that provides

lim
n

1

n

n∑
k=1

|xk − L| = 0

and the set of all strongly Cesàro summable sequences is indicated by [C, 1], that is

[C, 1] =

{
x = (xk) : lim

n

1

n

n∑
k=1

|xk − L| = 0, for some L ∈ C

}
.

The idea of a modulus function was established by Nakano [21]. We remember that a
function f : [0,∞)→ [0,∞) is called a modulus (see [22], [23]) if

(i) f (x) = 0 if and only if x = 0,
(ii) f (x+ y) ≤ f (x) + f (y), for all x ≥ 0, y ≥ 0,
(iii) f is increasing,
(iv) f is continuous from the right at 0.
In accordance with these features it is obvious that a modulus function must be con-

tinuous all over [0,∞). It is easy to check that a modulus may be bounded or unbounded.
For instance, f (x) = xp, where 0 < p ≤ 1, is unbounded, but f (x) = x

1+x is bounded.

Furthermore we have f (mu) ≤ mf (u) and so that f (m) ≤ m f (1) for every m ∈ N
from (ii) and lim

t→∞
f(t)
t exists by Proposition 1 of Maddox [33].

2. df−Statistical Convergence of Order α in Accordance
to a Modulus in a Metric Space

In this section using an unbounded modulus function f we define and study the df -
statistical convergence of order α for sequences in a metric space.

Definition 2.1. [32] Let f be an unbounded modulus function and α be any real number
that provides 0 < α ≤ 1. fα-density of a subset A of N is described by

δαf (A) = lim
n→∞

1

f (nα)
f (|{k ≤ n : k ∈ A}|)

if this limit is existing.

As will be noted, when α = 1, fα-density returns to f -density. In case f (x) = x,
fα-density becomes α-density. If α = 1 and f (x) = x, then fα-density reduces to the
natural density.
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The equality δαf (A) + δαf (N−A) = 1 does not hold for α ∈ (0, 1] and an unbounded

modulus f , in general. For instance, if we take f (x) = xp, 0 < p ≤ 1, α ∈ (0, 1) and
A = {2n : n ∈ N}, then δαf (A) = δαf (N−A) =∞. Also, finite sets have zero fα-density

for any unbounded modulus f and α ∈ (0, 1] (see [32]).

Lemma 2.2. Let α be any real number such that 0 < α ≤ 1, E ⊂ N and f be an
unbounded modulus function. If δαf (E) = 0, then N− E 6= ∅.

For any unbounded modulus f and α ∈ (0, 1], if δαf (A) = 0 then δα (A) = 0, but

the inverse of this need not be true (see [32]). Namely, a set having zero α-density for
some α ∈ (0, 1] might have non-zero fα-density for some unbounded modulus f , with
the same α. Similarly a set having zero natural density might have non-zero fα-density
for some unbounded modulus f and α ∈ (0, 1]. For example, let f(x) = log(x + 1) and
A = {1, 4, 9, . . .}. Then δ (A) = 0 and δα (A) = 0 for α ∈ ( 1

2 , 1] but δαf (A) ≥ δf (A) = 1
2

and therefore δαf (A) 6= 0.

If A ⊆ N has zero fα-density for some unbounded modulus f and for some α ∈ (0, 1],
then it has zero α-density and hence zero natural density (see [32].)

Lemma 2.3. [32] Let f be an unbounded modulus and A ⊆ N. If 0 < α ≤ β ≤ 1, then

δβf (A) ≤ δαf (A).

Thus, for any unbounded modulus f and 0 < α ≤ β ≤ 1, if A has zero fα-density
in that case, it has zero fβ-density. Specially, a set having zero fα-density for some
α ∈ (0, 1] has zero f -density. But, the inverse is not correct. For instance, let f(x) = xp

for 0 < p ≤ 1 and A = {1, 4, 9, . . .}. Then

δf (A) = lim
n→∞

f (|{k ≤ n : k ∈ A}|)
f (n)

≤ lim
n→∞

f ([
√
n])

f (n)
= lim
n→∞

[
√
n]
p

np
= 0

but, since

f (|{k ≤ n : k ∈ A}|)
f (nα)

=
[
√
n]
p

(nα)
p =

[
√
n]
p

(
√
n)
p ·

(
√
n)
p

nαp
=

[
√
n]
p

(
√
n)
p ·

1

np(α−
1
2 )

taking limit as n→∞ on both sides for any α ∈ (0, 12 ) we get δαf (A) =∞ as lim
n→∞

[
√
n]
p

(
√
n)
p

is finite. Here [r] denotes the integer part of real number r.

Definition 2.4. Let f be an unbounded modulus function and let 0 < α ≤ 1 be given.
In that case, a sequence x = (xk) in metric space (X, d) is called as df -statistically
convergent of order α to x◦ or Sαdf−convergent to x◦ if there exists a point x◦ ∈ X that
provides

δαf ({k ∈ N : xk /∈ Bε (x◦)}) = 0

that is

lim
n→∞

1

f (nα)
f (|{k ≤ n : xk /∈ Bε (x◦)}|) = 0

for every ε > 0, where Bε (x◦) = {x ∈ X : d (x, x◦) < ε} is the open ball of radius r and
center x◦.

If a sequence (xk) is df -statistically convergent of order α to x◦, we show it with
Sαdf − limxk = x◦. The set of all df -statistically convergent sequences of order α in the

metric space (X, d) will be indicated by Sαdf (X). As will be noted;
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In case α = 1, Sαdf−convergence returns to Sdf− convergence [34].

In case f (x) = x, Sαdf−convergence becomes Sαd−convergence [18].

In case α = 1 and f (x) = x, Sαdf−convergence becomes Sd−convergence. [15].

Lemma 2.5. Let f be an unbounded modulus function and let 0 < α ≤ 1 be given. If
a sequence x = (xk) is df -statistically convergent of order α, in that case, its limit is
unique.

Proof. Suppose that Sαdf − limxk = x◦ and Sαdf − limxk = x′◦. Let ε > 0 be given and

define the sets K1 (ε) =
{
k ≤ n : xk /∈ B ε

2
(x◦)

}
and K2 (ε) =

{
k ≤ n : xk /∈ B ε

2
(x′◦)

}
.

Since Sαdf − limxk = x◦, we have δαf (K1 (ε)) = 0 and similarly, since Sαdf − limxk = x′◦,

we have δαf (K2 (ε)) = 0. Let K(ε) = K1 (ε) ∪K2 (ε). In that case, δαf (K (ε)) = 0 and

from Lemma 2.2 it follows that N−K (ε) 6= ∅. Thus for any k ∈ N−K (ε), we may write

d (x◦, x
′
◦) ≤ d (x◦, xk) + d (xk, x

′
◦) <

ε

2
+
ε

2
= ε

Since ε > 0 was arbitrary, we get d (x◦, x
′
◦) = 0, i.e. x◦ = x′◦.

Remark 2.6. df -statistical convergence of order α is not well defined for α > 1. To

show this let f be an unbounded modulus such that lim
t→∞

f(t)
t > 0 and α > 1. Then it can

easily be shown that for the sequence x = (xk) defined by

xk =

 a, k = 2m
m = 1, 2, 3, . . .

b, k 6= 2m

we have Sαdf − limxk = a and Sαdf − limxk = b. But this contradicts to Lemma 2.5.

Remark 2.7. It is wide-open that any convergent sequence is df -statistically convergent
of order α for any unbounded modulus f and α ∈ (0, 1] in a metric space (X, d). However
the inverse is not correct in general. For instance, take into account the sequence x = (xk)
defined by

xk =

 1, k = m2

m = 1, 2, 3, . . .
0, k 6= m2

in the space X = R with the usual (absolute value) metric and the unbounded modulus
f(x) = xp, 0 < p ≤ 1. Since

lim
n→∞

1

f (nα)
f (|{k ≤ n : d (xk, 0) ≥ ε}|) ≤ lim

n→∞

f (
√
n)

f (nα)

= lim
n→∞

(
√
n)
p

(nα)
p = 0,

we have x = (xk)∈Sαdf (X) for α ∈ ( 1
2 , 1], but it is not convergent.

Theorem 2.8. Let (X, d) be a metric space, f be an unbounded modulus function and

0 < α ≤ β ≤ 1. Then Sαdf (X) ⊆ Sβdf (X) and the inclusion is exact for some α < β.

Proof. It is easy to see that Sαdf (X) ⊆ Sβdf (X), since 0 < α ≤ β ≤ 1 and f is increasing.

To show that the containment is exact, take into account the sequence x = (xk) defined
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by

xk =

 a, k = m3

m = 1, 2, 3, . . .
b, k 6= m3

where a, b ∈ X are fixed points with a 6= b and take the modulus f(x) = xp, 0 < p ≤ 1.

Then x ∈ Sβdf (X) for β ∈ ( 1
3 , 1], but x /∈ Sαdf (X) for α ∈

(
0, 13
)
.

Corollary 2.9. Let (X, d) be a metric space, 0 < α ≤ 1 and f be an unbounded modulus.
Then if a sequence (xk) is df -statistically convergent of order α to a point x◦ ∈ X, in that
case, it is df -statistically convergent to x◦, i.e., Sαdf (X) ⊆ Sdf (X) and the containment
is exact for some α < 1.

Corollary 2.10. Let (X, d) be a metric space and f be an unbounded modulus function

and α, β ∈ (0, 1]. If Sαdf − limxk = x◦ and Sβdf − limxk = x′◦ then x◦ = x′◦.

Proof. Let Sαdf − limxk = x◦ and Sβdf − limxk = x′◦. In view of Corollary 2.9, we

know that Sαdf (X) ⊂ Sdf (X) for every α ∈ (0, 1]. Hence the sequence x = (xk) is df

-statistically convergent both to x◦ and to x′◦, independently of α and β. Since the limit
of a df -statistically convergent sequence is unique, we get x◦ = x′◦.

Now we can give the next theorem with an example for strictness of inclusion, without
proof.

Theorem 2.11. Let (X, d) be a metric space and f be an unbounded modulus function
and 0 < α ≤ 1. Then
i) Sαdf (X) ⊆ Sαd (X) and the containment is exact for some α,

ii) Sαdf (X) ⊆ Sd (X) and the containment is exact for some α.

Proof. One may give the proof easily. We only show that the inclusions are strict. For
this consider the metric space X = R with the usual metric d (x, y) = |x− y| and the
sequence (xk) defined by

xk =

 k, k = m2

m = 1, 2, 3, . . .
0, k 6= m2

. (1)

Let f(x) = log (x+ 1). Then x ∈ Sα for α ∈ ( 1
2 , 1] and hence x ∈ S. But x /∈ Sαf for any

α, since

δαf ({k ∈ N : |xk − 0| ≥ ε}) ≥ δf ({k ∈ N : |xk − 0| ≥ ε}) =
1

2
( 6= 0) .

In summary, the inclusion relations among the sets c (X), Sd (X), Sαd (X), Sdf (X) and
Sαdf (X) are as in the schema:

Sdf (X) ⊆ Sd (X)
∪

c (X) ⊆ Sαdf (X) ⊆ Sαd (X)

Corollary 2.12. Let (X, d) be a metric space, f and g be two unbounded modulus func-
tions and 0 < α ≤ 1. If Sαdf − limxk = x◦ and Sαdg − limxk = x′◦, then x◦ = x′◦.
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Proof. In the light of Theorem 2.11, we know that Sαdf (X) ⊆ Sαd (X) for every unbounded

modulus f . Therefore any sequence (xk) ∈ Sαdf (X)∩Sαdg (X) is d-statistically convergent

of order α both to x◦ and to x′◦, independently of f and g. Since the limit of a d-
statistically convergent sequence of order α is unique [18] we get x◦ = x′◦.

Theorem 2.13. Let (X, d) be a metric space and 0 < α ≤ β ≤ 1 and f be an unbounded

modulus that provides lim
t→∞

f(t)
t > 0. If a sequence (xk) is d-statistically convergent of

order α to a point x◦ ∈ X, in that case, it is df -statistically convergent of order β to x◦,

namely, Sαd (X) ⊆ Sβdf (X).

Proof. Let ε > 0 be given. Since |{k ≤ n : xk /∈ Bε (x◦)}| is a natural number, we have

f (|{k ≤ n : xk /∈ Bε (x◦)}|) ≤ |{k ≤ n : xk /∈ Bε (x◦)}| f (1)

and hence, using that 0 < α ≤ β ≤ 1 we may write

f (|{k ≤ n : xk /∈ Bε (x◦)}|)
f (nβ)

≤ f (|{k ≤ n : xk /∈ Bε (x◦)}|)
f (nα)

≤ |{k ≤ n : xk /∈ B (x◦, ε)}|
nα

nα

f (nα)
f (1) .

Since lim
t→∞

f(t)
t > 0 and x ∈ Sαd (X), we get x ∈ Sβdf (X).

If we get β = α in Theorem 2.13 we get the next conclusion.

Corollary 2.14. Let (X, d) be a metric space, 0 < α ≤ 1 be given and f be an unbounded

modulus such that lim
t→∞

f(t)
t > 0. If a sequence (xk) is d-statistically convergent of order

α to an element x◦ ∈ X, in that case, it is df -statistically convergent of order α to x◦,
i.e., Sαd (X) ⊆ Sαdf (X).

If we get α = 1 in Corollary 2.14 we get the next conclusion.

Corollary 2.15. Let (X, d) be a metric space and f be an unbounded modulus such that

lim
t→∞

f(t)
t > 0. If a sequence (xk) is d-statistically convergent to a point x◦ ∈ X, in that

case, it is df -statistically convergent to x◦, i.e., Sd (X) ⊆ Sdf (X) [34].

3. df−Strong Cesàro Summability of Order α in Accordance
to a Modulus in a Metric Space

In this section using a modulus function f we define and study the df - strong Cesàro
summability of order α (α > 0) for sequences given in a metric space. We also establish
the relationships between df - strong Cesàro summability of order α and df - statistical
convergence of order α (0 < α ≤ 1) in a metric space.

Definition 3.1. Let (X, d) be a metric space and f be a modulus function, and let a
real number α > 0 be given. A sequence (xk) in space X is called as df -strongly Cesàro
summable of order α, to x◦ if

lim
n→∞

1

nα

n∑
k=1

f [d (xk, x◦)] = 0

for a point x◦ ∈ X.
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Note that the modulus f need not be unbounded in this Definition. The set of all
df -strongly Cesàro summable sequences of order α in the metric space (X, d) will be
indicated by wαdf (X) that is

wαdf (X) =

{
x = (xk) : lim

n→∞

1

nα

n∑
k=1

f [d (xk, x◦)] = 0, ∃x◦ ∈ X

}
.

Note that we have obtained some sets previously defined for special cases of α and f . For
example, we get the set

wdf (X) =

{
x = (xk) : lim

n→∞

1

n

n∑
k=1

f [d (xk, x◦)] = 0, ∃x◦ ∈ X

}
,

for α = 1 [16], the set

wαd (X) =

{
x = (xk) : lim

n→∞

1

nα

n∑
k=1

d (xk, x◦) = 0, ∃x◦ ∈ X

}
for f (x) = x [18] and the set

wd (X) =

{
x = (xk) : lim

n→∞

1

n

n∑
k=1

d (xk, x◦) = 0, ∃x◦ ∈ X

}
for α = 1 and f (x) = x [16].

As stated in Remark 3.2 in [32], the authors of that paper use α as any positive real
number neglecting the condition ”α ≤ 1” in their spaces wfα,o and wfα, although α was
taken as a positive real number less than or equal to 1 in the spaces wαp and wαop of Çolak
(see [20]).

First of all we have to point out that to take real α as 0 < α ≤ 1 is essential in the
studies of strong Cesàro summability of order α, which is first given by Çolak [20]. Indeed
it is not difficult to illustrate that the df -strong Cesàro summability of order α is not
well defined for α > 1. To prove this consider the constant sequence (xk) = (a, a, a, ...) in
space X, which is convergent and df -strongly Cesàro summable of order α to a, and a
modulus f . Then for any arbitrary xo in X we have

lim
n→∞

1

nα

n∑
k=1

f [d (xk, x◦)] = lim
n→∞

1

nα

n∑
k=1

f [d (a, x◦)] = lim
n→∞

n

nα
f [d (a, x◦)] = 0

and since lim
n→∞

n
nα = 0 for α > 1 this means that (xk) is df - strongly Cesaro summable

of order α to any xo . But this is not possible, because wαdf − limxk is unique by Lemma
3.4 given below.

Theorem 3.2. Let (X, d) be a metric space and f be a modulus. Then

wαd (X) ⊆ wαdf (X)

in case α = 1.

Proof. Since the proof is alike to that of Theorem 1.18 in [34] we do not repeat it here.
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Remark 3.3. Theorem 3.2 does not have to be true for α < 1. For example, let X = R,
d (x, y) = |x− y| and consider the sequence (xk) =

(
1
k2

)
and the modulus f (x) = x

1
4 .

Since the inequality

1

nα

n∑
k=1

d (xk, 0) =
1

nα

n∑
k=1

1

k2
≤ 1

nα
π

6

is satisfied, then we get that the sequence (xk) =
(

1
k2

)
is d-strongly Cesàro summable of

order α, to 0 for every α > 0 and therefore for 0 < α < 1
2 , that is x ∈ wαd (R). At the

same time, using the inequality

n∑
k=1

1√
k
>
√
n

we may write

1

nα

n∑
k=1

f [d (xk, 0)] =
1

nα

n∑
k=1

1√
k
>

1

nα
√
n.

This means that the sequence (xk) =
(

1
k2

)
is not df -strongly Cesàro summable of order

α, to 0 for α ≤ 1
2 , i.e., x /∈ wαdf (R).

Lemma 3.4. Let (X, d) be a metric space and f be an unbounded modulus.Then the df -
strong Cesàro sum of a df -strongly Cesàro summable sequence of order α is unique for
α ≤ 1.

Proof. Let 0 < α ≤ 1 and suppose the sequence (xk) be df -strongly Cesàro summable of
order α to x◦ and x′◦. In that case, we may write

lim
n→∞

1

nα

n∑
k=1

f [d (xk, x◦)] = lim
n→∞

1

nα

n∑
k=1

f [d (xk, x
′
◦)] = 0.

Using the fact that f is subadditive, from the inequality

d (x◦, x
′
◦) ≤ d (x◦, xk) + d (xk, x

′
◦)

we may write

f [d (x◦, x
′
◦)] ≤ f [d (xk, x◦)] + f [d (xk, x

′
◦)]

and hence

1

nα

n∑
k=1

f [d (x◦, x
′
◦)] ≤

1

nα

n∑
k=1

f [d (xk, x◦)] +
1

nα

n∑
k=1

f [d (xk, x
′
◦)] .

Since both terms on the right side tend to 0 as n → ∞, then the term on the left side
also tends to 0 as n→∞, hence we have

lim
n→∞

1

nα

n∑
k=1

f [d (x◦, x
′
◦)] = lim

n→∞

n

nα
f [d (x◦, x

′
◦)] = 0.

From the fact

lim
n→∞

n

nα
=

{
∞ if α < 1
1 if α = 1



870 Thai J. Math. Vol. 20 (2022) /R. Çolak and E. Kayan

the equality lim
n→∞

n
nα f [d (x◦, x

′
◦)] = 0 is satisfied only for f [d (x◦, x

′
◦)] = 0. Thus we get

f [d (x◦, x
′
◦)] = 0⇐⇒ d (x◦, x

′
◦) = 0⇐⇒ x◦ = x′◦.

Theorem 3.5. Let (X, d) be a metric space, f be a modulus and 0 < α ≤ 1. If 0 <

lim
t→∞

f(t)
t then

wαdf (X) ⊆ wαd (X) .

Proof. Let us define m = lim
t→∞

f(t)
t = inf

{
f(t)
t : t > 0

}
and suppose (xk) ∈ wαdf (X). By

definition of m, we have f (t) ≥ mt for every t ≥ 0. Since m > 0, we have t ≤ 1
mf (t) , for

every t ≥ 0 and hence we have

1

nα

n∑
k=1

d (xk, x◦) ≤
1

m

1

nα

n∑
k=1

f [d (xk, x◦)] .

From this inequality we get x ∈ wαd (X) whenever x ∈ wαdf (X).

Remark 3.6. The condition lim
t→∞

f(t)
t > 0 in Theorem 3.5 can not be removed, i.e., the

inclusion wαdf (X) ⊆ wαd (X) does not have to be provided for any modulus function f

yielding the condition lim
t→∞

f(t)
t = 0. For example, take into account the space X = R

with the metric d (x, y) = |x− y|, the sequence x = (xk) defined by (1) and the modulus

f (x) = x
1+x . Now lim

t→∞
f(t)
t = 0 is provided and, since

1

nα

n∑
k=1

d (xk, 0) =
1

nα

n∑
k=1
k=m2

k +
1

nα

n∑
k=1
k 6=m2

0 ≥ 1

nα
(
√
n− 1)

√
n
√
n

6

we have x /∈ wαd (R) for α ≤ 3
2 . However, since

1

nα

n∑
k=1

f [d (xk, 0)] =
1

nα

n∑
k=1
k=m2

f (k) +
1

nα

n∑
k=1
k 6=m2

f (0)

=
1

nα

n∑
k=1
k=m2

k

1 + k
≤ 1

nα
√
n

we get x ∈ wαdf (R) for α > 1
2 and therefore for 1

2 < α ≤ 3
2 .

By combining Theorem 3.2 and Theorem 3.5 we get the next result.

Corollary 3.7. Let (X, d) be a metric space, f be a modulus providing lim
t→∞

f(t)
t > 0.

Then

wαd (X) = wαdf (X) .

in case α = 1.

Theorem 3.8. Let (X, d) be a metric space and f be any modulus. Then

wαdf (X) ⊆ wβdf (X)

in case 1 ≥ β ≥ α > 0 and the inclusion may be strict for some α < β.
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Proof. It is easy to see that wαdf (X) ⊆ wβdf (X) for β ≥ α. To show that the inclusion is

strict, let f be a modulus and let us consider the sequence x = (xk) defined by

xk =

 a, k = m2

m = 1, 2, 3, . . .
b, k 6= m2

(2)

where a, b ∈ X and a 6= b. Using the fact that f (0) = 0 we may write

1

nβ

n∑
k=1

f [d (xk, b)] =
1

nβ

n∑
k=1
k=m2

f [d (a, b)] +
1

nβ

n∑
k=1
k 6=m2

f [d (b, b)]

≤
√
n

nβ
f [d (a, b)] =

1

nβ−
1
2

f [d (a, b)] .

Taking limit as n→∞ we get 1

nβ−
1
2
f [d (a, b)]→ 0 for β > 1

2 so that x ∈ wβdf (X). Also,

since

1

nα

n∑
k=1

f [d (xk, b)] ≥
√
n− 1

nα
f [d (a, b)]

and so that
√
n−1
nα f [d (a, b)]→∞ as n→∞ for 0 < α < 1

2 we get x /∈ wαdf (X).

4. Relationship between df−Statistical Convergence of Order
α and df−Strong Cesàro Summability of Order α
in Accordance to a Modulus in Metric Spaces

In this part we establish the relationships between df - strong Cesàro summability of
order α and df - statistical convergence of order α (0 < α ≤ 1) in a metric space.

Theorem 4.1. Let (X, d) be a metric space, f be an unbounded modulus providing the

condition lim
t→∞

f(t)
t > 0 and 0 < α ≤ β ≤ 1. If a sequence (xk) is df -strongly Cesàro

summable of order α to a point x◦ ∈ X, in that case, it is df -statistically convergent of

order β to x◦, that is, wαdf (X) ⊆ Sβdf (X).

Proof. Let ε > 0 be given and let us choose K (ε) = {k ≤ n : d (xk, x◦) ≥ ε}. Since
|K (ε)| is a positive integer we may write f (|K (ε)|) ≤ |K (ε)| f (1) and since f is increasing
the following inequalities hold.

1

nα

n∑
k=1

f [d (xk, x◦)] ≥
1

nα

n∑
k=1
k∈K(ε)

f [d (xk, x◦)] ≥
1

nα
|K (ε)| f (ε)

≥ 1

nβ
|K (ε)| f (ε) ≥

f
(
nβ
)

nβ
f (|K (ε)|)
f (nβ)

f (ε)

f (1)
.

Since lim
t→∞

f(t)
t > 0 and x ∈ wαdf (X), from this inequality we get x ∈ Sβdf (X).

If we take β = α in Theorem 4.1, we get the next conclusion.
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Corollary 4.2. Let f be an unbounded modulus that provides the condition lim
t→∞

f(t)
t > 0

and a real number 0 < α ≤ 1 be given. If a sequence (xk) in a metric space (X, d) is df
-strongly Cesàro summable of order α to a point x◦ ∈ X, in that case, the sequence is df
-statistically convergent of order α to x◦, i.e., wαdf (X) ⊆ Sαdf (X).

The special case α = 1 in Corollary 4.2, gives the next conclusion which is Theorem
3.6 in [34].

Corollary 4.3. Let f be an unbounded modulus that provides the condition lim
t→∞

f(t)
t > 0.

If a sequence (xk) in a metric space (X, d) is df -strongly Cesàro summable to a point
x◦ ∈ X, in that case, the sequence is df -statistically convergent to x◦, i.e., wdf (X) ⊆
Sdf (X).

Remark 4.4. The condition lim
t→∞

f(t)
t > 0 in Theorem 4.1 can not be removed. That is, for

an unbounded modulus f which provides lim
t→∞

f(t)
t = 0, a df -strongly Cesàro summable

sequence of order α does not have to be df -statistically convergent of order β, where
0 < α ≤ β ≤ 1. For example, consider a metric space (X, d) and the sequence x = (xk)
defined by (2) where a, b ∈ X (a 6= b) and the unbounded modulus f (x) = log (x+ 1)

that provides lim
t→∞

f(t)
t = lim

t→∞
log(t+1)

t = 0. Since

1

nα

n∑
k=1

f [d (xk, b)] =
1

nα

n∑
k=1
k=m2

f [d (a, b)] +
1

nα

n∑
k=1
k 6=m2

f [d (b, b)]

≤
√
n

nα
log [d (a, b) + 1] ,

taking limit in this last inequality as n→∞, we obtain x ∈ wαdf (X) for α > 1
2 . However,

since

lim
n→∞

1

f (nβ)
f (|{k ≤ n : d (xk, b) ≥ ε}|) = lim

n→∞

1

f (nβ)
f
(∣∣{k ≤ n : k = n2

}∣∣)
= lim
n→∞

f (
√
n)

f (nβ)
= lim
n→∞

log (
√
n+ 1)

log (nβ + 1)

=
1

2β
6= 0

we get x /∈ Sβdf (X) for any β such that 0 < β ≤ 1.

If we take f (x) = x in Theorem 4.1, we get the next conclusion which is Theorem 4.1
for p = 1 in [18].

Corollary 4.5. Let 0 < α ≤ β ≤ 1 be given. If a sequence (xk) in a metric space (X, d) is
d-strongly Cesàro summable of order α to an element x◦ ∈ X, in that case, that sequence

is d-statistically convergent of order β to x◦, i.e., wαd (X) ⊆ Sβd (X) .

Remark 4.6. The inverse of Theorem 4.1 is usually not correct. That is, for 0 <

α ≤ β ≤ 1 and an unbounded modulus f such that lim
t→∞

f(t)
t > 0, a df -statistically

convergent sequence of order β does not have to be df -strongly Cesàro summable of
order α. For example, consider a metric space (X, d) with different points a, b ∈ X and
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the sequence x = (xk) defined by (2) and the unbounded modulus f (x) = x that provides

lim
t→∞

f(t)
t = lim

t→∞
t
t = 1 > 0. Since

1

f (nβ)
f (|{k ≤ n : d (xk, b) ≥ ε}|) ≤

f (
√
n)

f (nβ)
=

√
n

nβ

holds true, then taking limit as n → ∞,we obtain x ∈ Sβdf (X) for β ∈ ( 1
2 , 1]. However,

since the inequality

1

nα

n∑
k=1

f [d (xk, b)] =
1

nα

n∑
k=1
k=m2

f [d (a, b)] +
1

nα

n∑
k=1
k 6=m2

f [d (b, b)]

=
1

nα

n∑
k=1
k=m2

d (a, b) ≥
√
n− 1

nα
d (a, b)

holds true, then taking limit as n→∞, we get x /∈ wαdf (X) for α < 1
2 .

Remark 4.7. A bounded and df -statistically convergent sequence of order α does not
have to be df -strongly Cesàro summable of order α. To show this fact, consider the space
X = R with the metric d (x, y) = |x− y|, the sequence (xk) =

(
1
k2

)
and the unbounded

modulus f (x) = x
1
4 . The sequence

(
1
k2

)
is convergent and therefore, it is df -statistically

convergent of order α to 0, for any α ∈ (0, 1] and every f . But, the sequence (xk) is not
df -strongly Cesàro summable of order α to 0, for α ≤ 1

2 .

Theorem 4.8. Let f be a modulus and the real numbers 0 < α ≤ β ≤ 1 be given. If a
sequence (xk) in a metric space (X, d) is df -strongly Cesàro summable of order α to a
point x◦ ∈ X, in that case, that sequence is d -statistically convergent of order β to x◦,

i.e., wαdf (X) ⊆ Sβd (X).

Proof. Let ε > 0 be given and let us define K (ε) = {k ≤ n : d (xk, x◦) ≥ ε}. Using the
fact that f is increasing, we can write

1

nα

n∑
k=1

f [d (xk, x◦)] ≥
1

nα

n∑
k=1
k∈K(ε)

f [d (xk, x◦)] ≥
1

nα
|K (ε)| f (ε) ≥ 1

nβ
|K (ε)| f (ε) .

From here, it follows that x ∈ Sβd (X) whenever x ∈ wαdf (X).

If we take β = α in Theorem 4.8, we get the next conclusion.

Corollary 4.9. Let f be a modulus and a real number 0 < α ≤ 1 be given. If a sequence
(xk) in a metric space (X, d) is df -strongly Cesàro summable of order α to a point
x◦ ∈ X, in that case, that sequence is d -statistically convergent of order α to x◦, i.e.,
wαdf (X) ⊆ Sαd (X).

The special case α = 1 in Corollary 4.9, gives the next conclusion which is Theorem 3
in [16].

Corollary 4.10. Let (X, d) be a metric space and f be a modulus. If a sequence (xk)
is df -strongly Cesàro summable to an element x◦ ∈ X, in that case, it is d -statistically
convergent to x◦, i.e., wdf (X) ⊆ Sd (X).
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The special case f (x) = x and α = 1 in Theorem 4.8, gives the next conclusion which
is Theorem 2 (i) for p = 1 in [16].

Corollary 4.11. Let (X, d) be a metric space. If a sequence (xk) is d -strongly Cesàro
summable to an element x◦ ∈ X, in that case, it is d -statistically convergent to x◦, i.e.,
wd (X) ⊆ Sd (X).

Note: It should be noted that in Theorem 4.1, Corollary 4.2 and Corollary 4.3, f is

an unbounded modulus such that lim
t→∞

f(t)
t > 0 while in Theorem 4.8, Corollary 4.9 and

Corollary 4.10, there is no any restriction on the modulus f .
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