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1. Introduction

The idea of statistical convergence was given by Zygmund [1] in the first edition of his
monograph published in Warsaw in 1935. Then, the concept of statistical convergence
was introduced by Fast [2] and Steinhaus [3] and later reintroduced by Schoenberg [4]
independently for real and complex numbers. Over the years and under different names,
statistical convergence has been discussed in the theory of Fourier analysis, ergodic theory,
number theory, measure theory, trigonometric series, turnpike theory and Banach spaces.
Later on, it was further investigated from the sequence space point of view and linked
with summability theory by various authors ( see [5], [6], [7], [8], [9], [10], [11], [12] ).

The statistical convergence depends on the density of subsets of N. The natural density
of K ⊆ N is defined by

δ (K) = lim
n→∞

1

n
|{k ≤ n : k ∈ K}| ,

where |{k ≤ n : k ∈ K}| denotes the number of elements of K ⊆ N not exceeding n and
if the above limit exists. It is clear that any finite subset of N has zero natural density
and δ (Kc) = 1− δ (K) (see [9]).

A sequence x = (xk) is said to be statistically convergent to a real number L if

δ ({k ≤ n: |xk − L| ≥ ε}) = 0,
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for each ε > 0. In this case, one can write S − limxk = L. The set of all statistically
convergent sequences is denoted by S (see [6], [9]). It is very well known that every
statistical convergent sequence is convergent, but the converse is not true.

The generalized de la Vallée-Poussin mean is defined by

tn (x) =
1

λn

∑
k∈In

xk,

where λ = (λn) is a non-decreasing sequence of positive numbers tending to ∞ such that
λn+1 ≤ λn + 1, λ1 = 1, as n→∞ and In = [n− λn + 1, n] . The set of all such sequences
is denoted by Λ (see [13], [14], [15], [16]).
x = (xk) is said to be (V, λ)−summable to a number L if tn (x) → L as n → ∞.

(V, λ)−summability reduces to (C, 1) summability when λn = n (see [13], [14]). The sets
of sequences x = (xk) which are strongly Cesàro summable and strongly (V, λ)- summable
to L are denoted by

[C, 1] =

{
x = (xk) : lim

n→∞

1

n

n∑
k=1

|xk − L| = 0 for some L

}
,

[V, λ] =

{
x = (xk) : lim

n→∞

1

λn

∑
k∈In

|xk − L| = 0 for some L

}
,

respectively. Strong (V, λ)−summability reduces to strong (C, 1) summability when λn =
n. Borwein [17] and Maddox [18] introduced and studied strongly summable functions.
The notion of λ-statistical convergence was introduced by Mursaleen [13] as follows:

Let K ⊂ N. λ−density of K is defined by

δλ (K) = lim
n→∞

1

λn
|{n− λn + 1 ≤ k ≤ n : k ∈ K}| .

δλ (K) reduces to the natural density δ (K) in case of λn = n for all n ∈ N (see [13]).
x = (xk) is said to be λ−statistically convergent to L if

lim
n→∞

1

λn
|{k ∈ In : |xk − L| ≥ ε}| = 0,

for each ε > 0. In this case, one can write Sλ − limxk = L (see [13]). If λn = n, Sλ
reduces to the set of statistically convergent sequences S. In later years, the concept of
almost λ-statistical convergence was studied by Savaş [19]. Nuray [20] studied λ-strong
summable and λ-statistically convergent functions.

Before giving the foundations of the subject, let us explain in detail the concept of time
scale calculus that we will build on the theory. A time scale is an arbitrary, nonempty,
closed subset of real numbers. An arbitrary time scale is denoted by the symbol T. It
has the topology that it inherits from the real numbers with the standart topology. The
theory of time scale was founded in Hilger’s doctoral dissertation in 1988 (see [21], [22]).
It allows to unify discrete and continuous analysis. One can replace the range of definition
(R) of the functions under consideration by an arbitrary time scale T [23]. Let us express
some notions related to the basics of time scales theory.

The forward jump operator σ : T→ T can be defined by

σ(t) = inf {s ∈ T:s > t} ,
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for t ∈ T. And, the graininess function µ : T→ [0,∞) is defined by µ(t) = σ(t)− t. Here,
we put inf φ = supT where φ is an empty set. A closed interval on T is given by

[a, b]T = {t ∈ T:a ≤ t ≤ b} .

Open intervals and half open intervals on time scales are defined similarly (see [24]).
Now, it is time to remind Lebesque measure on time scales. It is necessary to generalize
the geometric concept of ”length” defined for intervals and the generalization is called
measure, specifically delta (∆) measure and nabla (∇) measure on time scales. Measure
theory on time scales was first constructed by Guseinov [25]. Then further studies were
made by Cabada-Vivero [26].

Let A denotes the family of all left closed and right open intervals of T of the form
[a, b)T. Let m : A→ [0,∞) be a set function on A such that m ([a, b)T) = b− a. Then, it
is known that m is a countably additive measure on A. Now, the Caratheodory extension
of the set function m associated with family A is said to be the Lebesque ∆−measure
on T and is denoted by µ∆. In this case, it is known that if a ∈ T−{maxT} , then
the single point set {a} is ∆−measurable and µ∆(a) = σ(a) − a. If a, b ∈ T and a ≤ b,
then µ∆ ((a, b)T) = b − σ(a). If a, b ∈ T−{maxT}, a ≤ b; µ∆ ((a, b]T) = σ(b) − σ(a) and
µ∆ ([a, b])T) = σ(b)− a (see [27]).

There are some studies about statistical convergence on time scales in literature. For
instance, Seyyidoglu and Tan [28] gave some new notations such as ∆−convergence,
∆−Cauchy by using ∆−density and investigate their relations. Turan and Duman [29]
introduced the concept of statistical convergence of delta measurable real-valued functions
defined on time scales as follows. Let f : T → R be a ∆−measurable function for a
∆−measurable subset Ω of T, the density of Ω over T is defined to be number

δT (Ω) = lim
t→∞

µ∆ (Ω(t))

µ∆ ([t0, t]T)
,

provided that above limit exists. Then, f is statistically convergent to a real number L
on T if for every ε > 0,

δT ({t ∈ T : |f(t)− L| ≥ ε}) = 0.

In this case, it can be written as sT − lim
t→∞

f(t) = L [29]. Uniform statistical convergence

was given by Altin et. al [30]. The notion of λ-statistical convergence on time scales was
introduced by Yilmaz and his coworkers [31] as follows:

Let Ω be a ∆λ− measurable subset of T. Then, the set Ω (t, λ) is defined by

Ω (t, λ) = {s ∈ [t− λt + t0, t]T : s ∈ Ω} ,

for t ∈ T. In this case, λ− density of Ω on T is denoted by δλT (Ω) , as follows:

δλT (Ω) = lim
t→∞

µ∆λ
(Ω (t, λ))

µ∆λ
([t− λt + t0, t]T)

,

provided that the above limit exists. Let f : T→ R be a ∆λ− measurable function. f is
λ− statistically convergent on T to a number L if

lim
t→∞

µ∆λ
(s ∈ [t− λt + t0, t]T : |f (s)− L| ≥ ε)

µ∆λ
([t− λt + t0, t]T)

= 0,
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for each ε > 0. In this case, one can write sλT − lim
t→∞

(f (t)) = L. The set of all λ−
statistically convergent functions on T is denoted by sλT. Except those, Turan and Duman
defined Lacunary statistical convergence on time scales [32]. Moreover, Cichon and Yantir
studied convergence of sets on time scales [33].

Statistical convergence in a paranormed space was introduced by Alotaibi and Al-
roqi in 2012 [34]. They defined the concept of statistical convergence and strongly
p−Cesàro summability in a paranormed space. λ−statistical convergence and strongly
λ−summability in a paranormed space were defined by Alghamdi and Mursaleen in 2013
[35]. In this study, our main goal is to define firstly a paranorm on an arbitrary time scale
and construct the structure of classical statistical convergence, λ−statistical convergence
and λp−summability on that time scale equipped with a paranorm.

2. Main Results

In this section, we try to give some basic notions related to paranorm, statistical
convergence, λ−statistical convergence and λ−summability on a time scale equipped with
a paranorm.

Definition 2.1. Let (V,+, .) be a linear space of the functions f, g : T → R on a time
scale T and q : V → R. If q satisfies following conditions, it is called a paranorm.

P1) q(f(s)) = 0, then f(s) = 0.
P2) q(−f(s)) = q(f(s)).
P3) q(f(s) + g(s)) ≤ q(f(s)) + q(g(s)).
P4) If (αn) be a sequence of scalars with αn → α0 as n→∞ and f(s), L ∈ V , with
f(s)→ L in the sense that q(f(s)−L)→ 0 as s→∞, then q(αnf(s)−α0L)→ 0
as s, n→∞.

Definition 2.2. Let f : T→V be a ∆− measurable function. f is statistically convergent
in paranorm sense on T to a number L if

lim
t→∞

µ∆ (s ∈ [t0, t]T : q (f (s)− L) ≥ ε)
µ∆ ([t0, t]T)

= 0,

for each ε > 0.

In this case, we write pT(st) − lim
t→∞

f (t) = L. The set of all statistically convergent

functions in paranorm sense on T will be denoted by pT(st).

Definition 2.3. Let f : T→V be a ∆λ− measurable function. f is λ−statistically
convergent in paranorm sense on T to a number L if

lim
t→∞

µ∆λ
(s ∈ I : q (f (s)− L) ≥ ε)

µ∆λ
(I)

= 0,

for each ε > 0 where I = [t− λt + t0, t]T .

In this case, we write pλT(st)− lim
t→∞

f (t) = L. The set of all λ−statistically convergent

functions in paranorm sense on T will be denoted by pλT(st).
Now we have the following important theorems.

Theorem 2.4. Let f : T→V be a ∆λ−measurable function. Then, pλT(st)− lim
t→∞

f (t) = L

and the limit is unique.
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Proof. Assume that we have two limits L1 6= L2. Hence, by definition,

Ω1(t) =
{
s ∈ I : q(f (s)− L1) ≥ ε

2

}
,

Ω2(t) =
{
s ∈ I : q(f (s)− L2) ≥ ε

2

}
.

On the other hand, pλT(st) − lim
t→∞

f (t) = L1 then, δλT(Ω1(t)) = 0 and pλT(st) −
lim
t→∞

f (t) = L2 then, δλT(Ω2(t)) = 0. Let Ω(t) = Ω1(t) ∩ Ω2(t). Therefore, Ωc(t) = φ

and δλT(Ωc(t)) = 1. If s ∈ I \Ω(t), q(L1 −L2) ≤ q(f(s)−L1) + q(f(s)−L2) ≤ ε
2 + ε

2 = ε.
Since ε is arbitrary, q(L1 − L2) = 0 or L1 = L2. This completes the proof.

Theorem 2.5. Let f, g : T→V be ∆λ− measurable functions, pλT(st) − lim
t→∞

f (t) = L1

and pλT(st)− lim
t→∞

g (t) = L2. Following relations are satisfied;

(1) pλT(st)− lim
t→∞

(f (t) + g(t)) = L1 + L2.

(2) pλT(st)− lim
t→∞

(cf (t)) = cL1, (c ∈ R) .

Proof. (1)

µ∆λ
(s ∈ I : q(f (s) + g(s)− (L1 + L2)) ≥ ε)

µ∆λ
(I)

≤
µ∆λ

(
s ∈ I : q(f (s)− L1) ≥ ε

2

)
µ∆λ

(I)

+
µ∆λ

(
s ∈ I : q(g (s)− L2) ≥ ε

2

)
µ∆λ

(I)
.

For t→∞, pλT(st)− lim
t→∞

f (t) = L1 and pλT(st)− lim
t→∞

g (t) = L2 implies

pλT(st)− lim
t→∞

(f(t) + g (t)) = L1 + L2.

(2) It is evident when c = 0. For c 6= 0,

µ∆λ
(s ∈ I : q(cf (s)− cL1) ≥ ε)

µ∆λ
(I)

≤
µ∆λ

(
s ∈ I : q(cf (s)− cL1) ≥ ε

c

)
µ∆λ

(I)
.

Then, we get pλT(st)− lim
t→∞

cf (t) = cL1 as t→∞.

Theorem 2.6. If pT(st) ≤ pλT(st), then

lim
t→∞

inf
µ∆λ

(I)

µ
∆

([t0, t])T
> 0. (2.1)

Proof. For ε > 0,

µ∆ (s ∈ [t0, t]T : q (f (s)− L) ≥ ε) ≥ µ∆λ
(s ∈ I : q (f (s)− L) ≥ ε) .

Then,

µ∆ (s ∈ [t0, t]T : q (f (s)− L) ≥ ε)
µ∆([t0, t]T)

≥ µ∆λ
(s ∈ I : q (f (s)− L) ≥ ε)

µ∆([t0, t]T)

µ∆λ
(I)

µ∆λ
(I)

=
µ∆λ

(I)

µ∆([t0, t]T)

1

µ∆λ
(I)

µ∆λ
(s ∈ I : q(f (s)− L) ≥ ε) .
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Hence by using (2.1) and taking limit as t→∞, pT(st)− lim
t→∞

f (t) = L implies

pλT(st)− lim
t→∞

f (t) = L.

This completes proof.

Theorem 2.7. Let µ∆λ(t)
and µ∆β(t)

be two sequences in Λ such that µ∆λ
≤ µ∆β

for all
t ∈ T.

(1) If

lim
t→∞

inf
µ∆λ

([t− λt + t0, t]T)

µ∆β
([t− βt + t0, t]T)

> 0, (2.2)

then pβT(st) ⊆ pλT(st).
(2) If

lim
t→∞

µ∆λ
([t− λt + t0, t]T)

µ∆β
([t− βt + t0, t]T)

= 1, (2.3)

then pλT(st) ⊆ pβT(st).

Proof. (1) Suppose that µ∆λ
≤ µ∆β

for all t ∈ T and (2.2) is satisfied. Then It ⊂ Jt and
for ε > 0, we have

µ∆β
(s ∈ [t− βt + t0, t]T : q (f (s)− L) ≥ ε)

≥ µ∆λ
(s ∈ [t− λt + t0, t]T : q (f (s)− L) ≥ ε) .

where Jt = [t− βt + 1, t] . Therefore,

µ∆β
(s ∈ [t− jt + t0, t]T : q (f (s)− L) ≥ ε)

µ∆β
([t− βt + t0, t]T)

≥
µ∆λ

([t− λt + t0, t]T)

µ∆β
([t− βt + t0, t]T)

1

µ∆λ
([t− λt + t0, t]T)

×µ∆λ
(s ∈ [t−λt+t0, t]T : q (f (s)−L) ≥ ε) ,

for all t ∈ T. Hence by using (2.2) and taking the limit as t→∞, we get pβT(st) ⊆ pλT(st).
(2) Let f be a ∆λ measurable function and, pλT(st)− lim f (t) = L. Since It ⊂ Jt,

we can write

µ∆β
(s ∈ [t− βt + t0, t]T : q (f (s)− L) ≥ ε)

µ∆β
([t− βt + t0, t]T)

=
µ∆β

(t− βt + t0 ≤ s ≤ t : q (f (s)− L) ≥ ε)
µ∆β

([t− βt + t0, t]T)

+
µ∆λ

(s ∈ [t− λt + t0, t]T : q (f (s)− L) ≥ ε)
µ∆β

([t− βt + t0, t]T)

≤
µ∆β

(s ∈ [t− βt + t0, t]T)

µ∆β
([t− βt + t0, t]T)

−
µ∆λ

(s ∈ [t− λt + t0, t]T)

µ∆β
([t− βt + t0, t]T)

+
µ∆λ

(s ∈ [t− λt + t0, t]T : q (f (s)− L) ≥ ε)
µ∆λ

([t− λt + t0, t]T)

≤
(

1−
µ∆λ

([t− λt + t0, t]T)

µ∆β
([t− βt + t0, t]T)

)
+
µ∆λ

(s ∈ [t− λt + t0, t]T : q (f (s)− L) ≥ ε)
µ∆λ

([t− λt + t0, t]T)
,
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for all t ∈ T. Since lim
t→∞

µ∆λ([t−λt+t0,t]T)
µ∆β ([t−βt+t0,t]T)

= 1 by (2), the term in above inequality tends

to 0 as t → ∞. Furthermore, since pλT(st) − lim f (t) = L, the second term of the right
hand side of the above inequality goes to 0

µ∆β
(t− βt + t0 ≤ s ≤ t : q (f (s)− L) ≥ ε)

µ∆β
([t− βt + t0, t]T)

→ 0,

as t→∞. Therefore pλT(st) ⊆ pβT(st). From Theorem 2.7, we have the following result.

Corollary 2.8. Let µ∆λ(t)
and µ∆β(t)

be two sequences in Λ such that µ∆λ
≤ µ∆β

for

all t ∈ T. If the second property of Theorem 2.7 holds, then pλT(st) = pβT(st). If we take
µ∆λ(t)

= λ (t) for t ∈ T in above corollary, we get the following result.

Corollary 2.9. Let µ∆λ(t)
∈ Λ. If lim

t→∞

µ∆λ([t−λt+t0,t]T)
λ(t) = 1, then pλT(st) = pT(st).

Definition 2.10. Let f : T→V be a ∆λ−measurable function and 0 < p < ∞. If there
exists a L ∈ R such that

lim
t→∞

1

µ∆λ
([t− λt + t0, t]T)

∫
[t−λt+t0,t]T

q (f (s)− L)
p

∆s = 0,

f is strongly λp−summable function in paranorm sense on T. The set of all strongly
λp−summable functions in paranorm sense on T will be denoted by [W,λp, q]T .

Lemma 2.11. Let f : T→V be a ∆λ−measurable function and
Ω(t, λ) = {s ∈ I : q(f (s)− L) ≥ ε} . Then, the following inequality holds for ε > 0,

µ∆λ
(Ω(t, λ))

1

ε

∫
Ω(t,λ)

q (f (s)− L) ∆s ≤ 1

ε

∫
I

q (f (s)− L) ∆s.

Theorem 2.12. Let f : T→V be a ∆λ−measurable function, L ∈ V and 0 < p < ∞.
Then, the followings are satisfied.

(1) [W,λp, q]T ⊂ pλT(st).

(2) pλT(st) − lim
t→∞

f (t) = L and if f is bounded, f is strongly λp−summable to L

in paranorm sense.

Proof. (1) Let us take as f(s)→ [W,λp, q]T . Then,∫
[t−λt+t0,t]T

q (f (s)− L)
p

∆s ≥
∫

Ω(t,λ)

q (f (s)− L)
p

∆s ≥ εpµ∆λ
(Ω(t, λ)) .

Therefore [W,λp, q]T − lim
t→∞

f (t) = L implies pλT(st)− lim
t→∞

f (t) = L.

(2) Let f be bounded and λ−statistically convergent to L in paranorm sense on
T. Then, there exists a positive number M > 0 such that q (f (s)− L) ≤M, s ∈ T and

lim
t→∞

µ∆λ
(Ω(t, λ))

µ∆λ
(I)

= 0

∫
I

q (f (s)− L)
p

∆s =

∫
Ω(t,λ)

q (f (s)− L)
p

∆s+

∫
I�Ω(t,λ)

q (f (s)− L)
p

∆s

≤ Mpµ∆λ
(Ω(t, λ)) + εpµ∆λ

(I) .
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Then,

lim
t→∞

1

µ∆λ
(I)

∫
I

q (f (s)− L)
p

∆s ≤Mp lim
t→∞

µ∆λ
(Ω(t, λ))

µ∆λ
(I)

+ εp.

Since ε is arbitrary, we obtain f(s)→ [W,λp, q]T .

Theorem 2.13. Let µ∆λ(t)
and µ∆β(t)

be two sequences in Λ such that µ∆λ
≤ µ∆β

for
all t ∈ T. Then,

(1) If (2.1) holds, then [W,λp, q]T ⊆ [W,βp, q]T.
(2) If (2.2) holds, then

`∞ (T, q) ∩ [W,λp, q]T ⊆ [W,βp, q]T

where `∞ (T, q) =

{
f/f : T→ R, sup

s∈T
q(f(s)) <∞

}
.

Proof. (1) Suppose that µ∆λ
≤ µ∆β

for all t ∈ T. Then It ⊂ Jt so that we may write

1

µ∆β ([t− βt + t0, t]T)

∫
[t−βt+t0,t]T

q (f (s)− L)
p

∆s

≥ 1

µ∆λ
([t− λt + t0, t]T)

∫
[t−λt+t0,t]T

q (f (s)− L)
p

∆s,

for all t ∈ T. This implies that

1

µ∆β ([t− βt + t0, t]T)

∫
[t−βt+t0,t]T

q (f (s)− L)
p

∆s

≥
µ∆λ

([t− λt + t0, t]T)

µ∆β ([t− βt + t0, t]T)

1

µ∆λ
([t− λt + t0, t]T)

∫
[t−λt+t0,t]T

q (f (s)− L)
p

∆s.

Then taking limit of the last inequality as t→∞ and using (2.3), we obtain [W,λp, q]T ⊆
[W,βp, q]T .

(2) Let f ∈ `∞ (T, q) ∩ [W,λp, q]T. Suppose that (2.2) holds. Since f ∈ `∞ (T, q) ,
then there exists a positive number M such that q(f(s)) ≤M for all s ∈ T and also now,
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since µ∆λ
≤ µ∆β

and so that 1
µ∆β
≤ 1

µ∆λ
and It ⊂ Jt, we may write

1

µ∆β ([t− βt + t0, t]T)

∫
[t−βt+t0,t]T

q (f (s)− L)
p

∆s

≥ 1

µ∆β ([t− βt + t0, t]T)

∫
Jt/It

q (f (s)− L)
p

∆s

+
1

µ∆β ([t− βt + t0, t]T)

∫
It

q (f (s)− L)
p

∆s

≤
(
µ∆β ([t− βt + t0, t]T)− µ∆λ

([t− λt + t0, t]T)

µ∆β ([t− βt + t0, t]T)

)
M

+
1

µ∆λ
([t− λt + t0, t]T)

∫
It

q (f (s)− L)
p

∆s

for all t ∈ T. Since lim
t→∞

µ∆λ([t−λt+t0,t]T)
µ∆β ([t−βt+t0,t]T)

= 1 by (2.2) the first term and since f ∈
[W,λp, q]T the second term of right hand side of above inequality tend to 0 as t→∞.(

Note that: 1−
µ∆λ

([t− λt + t0, t]T)

µ∆β ([t− βt + t0, t]T)
≥ 0 for all t ∈ T

)
.

This implies that `∞ (T, q) ∩ [W,λp, q]T ⊆ [W,βp, q]T and so `∞ (T, q) ∩ [W,λp, q]T ⊆
`∞ (T) ∩ [W,βp, q]T . From Theorem 2.5 we have the following result.

Corollary 2.14. Let µ∆λ(t)
and µ∆β(t)

be two sequences in Λ such that µ∆λ
≤ µ∆β

for

all t ∈ T. If (2.2) holds, then `∞ (T, q) ∩ [W,λp, q]T = `∞ (T) ∩ [W,βp, q]T .

Conclusions

Important concepts such as statistical convergence and λ−statistical convergence, which
have a very important effect for the summability theory, are discussed again in the para-
norm case on an arbitrary time scale. Likewise, λp−summability and its properties are
studied in paranorm sense on an arbitrary time scale. We think that these results will
bring a new breath to the summability theory.
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