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Abstract In this paper, we introduced generalized Cesaro vector-valued sequence space X (E, f, A™, p)
by taking sequence (E}, i) of seminormed spaces, modulus function f, m**-order difference operator A™
and bounded sequence (pg) of strictly positive real numbers. It is proved that the space X (E, f, A™, p)
is complete paranormed space if (Ej,qx) is a sequence of complete seminormed spaces. Some inclusion
relations on the space are obtained. By using composite function fV, space X (E, f¥, A™,p) is studied

for any v € N. A result on multiplier space of X (E, f, A™,p) is also obtained, if m = 0.
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1. INTRODUCTION

In 1953, Nakano [1] introduced the notion of modulus function. The idea of modulus
function is generalized by Ruckle [2] for constructing a class of F'K-spaces L(f) as follows:

o0
L(f)y=Sa=(zx) ew: Y f(lax|) < oo,
k=1
where w denotes the space of all sequences & = (x) of complex numbers.

He proved that intersection of all such L(f) spaces is empty set, a negative answer to
question of Wilansky [3] “Is there a smallest F'/K-space E in which the set {e1,ez...} of
unit vectors is bounded?”

Kizmaz [1] defined the sequence spaces

X(A)={z=(ry cw: Az € X} for X =l, cand ¢,

where Az = (Axzg) = (zx — xx+1) and he introduced that these sequence spaces are
Banach spaces with norm

lella = o] + Az, @ € X(A).
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Et and Colak [5] introduced sequence spaces using m"-order difference operator defined
as follows:

X(A™ ={xz=(z;) ew: Az € X} for X =, c and cg.

These sequence spaces are BK-spaces with norm

m
lzlla =Y || + |A™ 2] o0, = € X(A™), where m € N.
i=1
Furthermore, the notion of difference operator was investigated from different aspects by
Ercan and Bektag [6], Ercan [7], Ercan and Bektas [8] and many others.
Shuie [9] introduced Cesaro sequence spaces

oo n p
Ces, = {x:(xk) Gwzz <n12|xk|> <oo,1<p<oo}
n=1 k=1
n
and Cesse = {x = (1) €w:supn* Z 2| < oo} .
" k=1
He observed that the inclusion ¢, C Ces), is strict for 1 < p < 0.
Orhan [10] generalized spaces Ces, and Ces, using difference operator A by
o) n p
Ces,(A) = {m = (ap) Ew: Z <n_1 Z |Axk|> <oo,1<p< oo}
n=1 k=1
n
and Cese(A) = {x = () €w:supn Z |Axy| < oo} .
" k=1

Et [11] generalized spaces Ces,(A) and Cesoo(A) by using A™ operator as follows:

oo n p
Ces,(A™) = {x = (z) Ew: Z <n1 Z |Am$k> <oo,1<p< oo}
n=1 k=1
and Cesy(A™) = {aﬁ = (z1) €w:supn? Z A ] < oo} .
" k=1
Sanhan and Suantai [12] introduced generalized Cesaro sequence space by taking bounded

sequence p = (py,) of strictly positive real numbers as follows:

Ces(p) = {a: = (xp) Ew: Z (n_l Z |xk|> < oo} )
k=1

n=1

Indu Bala [13] introduced space Ces(f,p) with the help of modulus function f given by

Ces(f,p)z{xz(xk)Ew:Z lf (nlzm“)] <oo}.
n=1 k=1

Sudsukh [14] studied vector-valued Cesaro sequence space, which is defined by

Ces(E*,p) = {x = (zx) € W(E") : Z <n1 Z |mk||> < oo} ,
k=1

n=1
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where W(E*) = {z = (x1) : zx € E* for all k € N} and E* is a Banach space.

Authors studied various properties including geometry of these spaces. Inclusion rela-
tions on these spaces are also obtained. These spaces lead us to introduce a new vector-
valued Cesaro difference sequence space as discussed in present paper.

2. A NEW SEQUENCE SPACE X (E, f,A™ p)

Let X be a normal AK-sequence algebra with absolutely monotone norm g¢gx and
E = (FEk, qx) be a sequence of seminormed spaces such that Fy1 C Ej for each k € N.
We define

W(E) = {z = (x1) : zx € E}, for each k € N}.

Clearly, W (FE) is a linear space under usual co-ordinate wise operations of vector addition
and scalar multiplication.
We introduced a new vector-valued Cesaro sequence space as follows:

X(E,f,Am,p)z{xEW( ({ ( 1quA zk>} )EX},

where f is a modulus function, p = (pg) is a bounded sequence of positive real numbers
and

A"y = ;(_1)l <Tln> Tpyy, m € NU {0}
Particular Cases: Some well-known sequence spaces are obtained by taking particular
values of X, Ey, f,p, and m as follows:
) UX =140 orly, f(x) =2,E, =Cforall k, p, =p (1 < p < oo) and m = 0, then
X(E, f,A™,p) = Ces, or Cess, respectively (Shuie []).
ii) IfX—El or oo, f(x) =2, Ep =Cforall k, p, =p (1 < p < o0) and m = 1, then
X(E, f,A™, p) = Cesp(A) or Ceso(A), respectively (Orhan [10]).
i) If X = 41 or be, f(x) = x,Er = C for all k and p, = p (1 < p < o0), then
X(E, f,A™, p) = Cesp(A™) or Ceso(A™), respectively (Et [11]).
(iv) f X =41, f(z) = x,Er = C for all kK and m = 0, then X(F, f,A™,p) = Ces(p)
(Sanhan and Suantai [12]).
(v
(

—~ g

)If X =41,E =C for all k and m =0, then X(E, f,A™,p) = Ces(f,p) (Bala [13]).
vi) If X =4y, f(z) = x, By, = E* for all k, where E* is a Banach space and m = 0, then
X(E, f,A™,p) = Ces(E*,p) (Sudsukh [11]).

3. DEFINITIONS AND SOME KNOWN RESULTS

Definition 3.1 ([2]). A function f : [0,00) — [0,00) is called modulus function if it
satisfies following conditions:

(i) f(x) =0 if and only if z =0,

(ii) fz +y) < f(@) + f(y),

(iii) f is increasing,

(iv) f is continuous from the right at 0.

Definition 3.2 ([15]). A sequence space X is called a K -space if the co-ordinate function
pr : X — K given by pi(x) = xy is continuous for each k € N.
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Definition 3.3 ([15]). A complete metric linear space is called a Frechet space. An
F K-space is a Frechet sequence space with continuous co-ordinates.

Definition 3.4 ([16]). An FK-space X is said to be an AK-space if X D ¢, where ¢

denotes space of finite sequences and (e,,) is a basis for X, i.e., 2l = Z zer — x for all
k=1

2z € X. For example, ¢(p) (1 < p < o0) and ¢y are AK-spaces. Also, a normed F' K-space

is called BK-space.

Definition 3.5 ([15]). A sequence space X is called normal (or solid) space if
x = (x) € X and |M\g| <1 for each k € N= \x = (A\pzg) € X.
Example: £(p) and ¢y(p) are normal spaces.

Definition 3.6 ([15]). A normed algebra X is an algebra with normed linear space
satisfying the condition ||zy|| < ||z||||y||, for all z,y € X.

Definition 3.7 ([15]). A norm g on a normal sequence space X is said to be absolutely
monotone if

x=(zk),y = (yr) € X and |xg| < |yx| for each k € N = g(x) < g(y).

Result 3.8 ([17]). For ag, b € C, the following inequalities hold:
lak + bl < T {lar™ + [0k}
and [A\[P* < max(1, |NH),

where (pi) is a bounded sequence of real numbers with 0 < pp < sup,pr = H, T =
max(1,2771) and ) € C.

Result 3.9 ([17]). For ag,b, € Cand 0 < p < 1,

3.1
3.2

—~
~—

—~
~—

n

> (] + 10e)? <D Jarl? + > [bwl?. (3.3)
k=1 k=1

k=1

Result 3.10 ([18]). If F is normal sequence algebra and || ||z be absolutely monotone
seminorm on F', then for every u = (un) v=(vy) € Fand p>1,

I+ 0112 < 17+ 1012, (3-4)
where (u + v)?P = ((up, + vp)P).
]

Lemma 3.11 ([19]). If f is a modulus function, then f” is also modulus function for
each r € N, where f" = fo fo f---of (r-times composition of f with itself).
)-

Lemma 3.12 ([20]
t € [0,00). Then

Let f1 and f2 be modulus functions and 0 < § < 1. If f1(¢) > ¢ for

oot < (220 pio
Lemma 3.13 ([21]). For any modulus function f,

limfit):inf{fgt):t>0}.

t—o00
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4. MAIN RESULTS ON THE SEQUENCE SPACE X (E, f, A™ p)
Theorem 4.1. X(E, f,A™ p) is a linear space over C.

Proof. Let z,y € X(E, f,A™ p) and \,u € C. For every n € N, by properties of
seminorm and modulus function, we get

f (n_l > (A (A + M%)))
k=1
< [f (IAlﬂlz%(Amxk)> + f (lunlzqzc(ﬁmyk)ﬂ
k=1 k=1

< max(1, M{HT

f (n—l Z qk(Amxk)ﬂ |
k=1

n Pn
f (nl qu(Amyk)>] , using inequalities (3.1) and (3.2),

k=1

+ max(1, MIT

where H = suppy, T = max(1,29-1), My = {1+ [\[]}, Mo = {1+ [|ul]} and []A]
k

denotes integr:;ﬂ part of |\|. Since X is a normal space, so Az + puy € X(E, f,A™,p).
Hence X (FE, f, A™,p) is a linear space. L]

Lemma 4.2. Let (Fg,qx) be a sequence of seminormed spaces and X be normal AK-

space with absolutely monotone seminorm gx . Then the map .. : [0, 00) — [0, 00) defined
by

he(u) = gx [Z {f (n_l ZUQk(Amxk)> } @nl
h=1

n=1

is a continuous function of u, for every positive integer r, where x = (z) € X and (ey)
is a unit vector basis in space X.

Proof. As norm function is continuous, it is sufficient to show that mapping defined by

gn i [0,00) = X, gn(u) = {f (n_l Zuqk(Amxk)> } /en
k=1

is continuous function for each n =1,2,---r. For this, let u; — 0 as ¢ — co. Then

n Pn
gn(u;) = {f (n_l Zuiqk(Amxk)> } en — (0,0,---) as i — o0.
k=1

It is true for each n = 1,2,---r. Thus, each g, is a sequentially continuous function.
Hence the function A, is a continuous function for each r € N. n

Theorem 4.3. Sequence space X (F, f, A™, p) is paranormed space under paranorm g
given by

g(x) =>_ flai(x:)) + <9X ({f (n_l Z%(Amxk)>} >> :
i=1 k=1
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where H = suppy, M = max(1, H).
k

Proof. (i) Clearly, g(8) = 0 as qx(6;x) = 0 and f(0) = 0, where 6}, is a zero vector in
Ey,keNand 0 = (01,09, -+ ,0,,-).

(i) g(—z) = g(x) as qr(—x) = qi(x), for any k € N.

(iii) For showing g(z + y) < g(x) + g(y), let = and y be any arbitrary elements of
X(E, f,A™, p). Then

3

glz+y) < Zf(h x;) +Zf(q7, Yi))
i=1 =1

(e (e gmerea) oo (e Q) 1) )

f(QZ xz +Zf(% yz

i=1 i=1

(g gV )

using inequality (3.3)

Zf QZ $z +Zf(q1 y, <QX |:<{f <nlek(Amzk)>} >:|>M
=1 i=1 =
n Pn %
(QX [({ (nl Z %(Amyk)) } >}> , using inequality (3.4)
k=1

= g(x) +9(y).

S8

I\
INGE

+

/

N

+

(iv) Suppose A, — A asr — oo and 2" — x as r — oo in X (F, f, A™ p). Then it is
required to prove that g(A.z" — Ax) — 0 as r — oo. For this, consider

T S oy 8 (e
k=1

= g(Ara” = Ax) <O F(IAelgi(@l — @) + A — Nai ()

=1

.

1

+ <gx K{f <n1 Z Arlaw(A™ (@ = @x)) +07" D A = Ale(Amm)) } )D

= g(\rz" — Az) Zf |Arlqi (@i — i) + [Ar = Algi(w:))
i=1

(ol g’

1

< |:<{f <nl Z [Ar — Algr(A™ a%))} >:|> , by inequalities (3.3) and (3.4)
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= g(\ra” = Ax) < M Y f(ai(z] — 2:))
=1

R ()
k=1
37 S0~ M) + <gx [({f <n > - qu(Amxk))} )D ,

where M3 = sup(1 + [|A]]).

m

= g(\a" = Ax) < Magla” —2) + Y f(IA = Nai(xs)

i=1

ol g )

The first term of R.H.S. tends to 0 as 7 — oo, the second term of R.H.S. also tends to 0
as r — oo due to the continuity of f. Now, proof is complete if we will show

O e

n Pn
Since X is an AK-sequence space and ({f (n‘l Z qk(Amxk)> } ) € X, we get

k=1

9x ({f (n_l Z%(Amxk)>} ) - {f <n_1 Z%(Amxk)>} en| =0
k=1 n=1 k=1

= 9x l Z {f (”1Z%(Am$k)>} en] — 0, as m' — 0.

n=m’+1 k=1
Thus, for every € > 0, there exists a positive integer mg such that
0o n Pn
. . e\ M
gx | Y. (D] ak(Ama) en| < (5) (4.2)
n=mo+1 k=1

Now, A\, — X as r — oo implies that |\, — A| < 1 for all » > r1. As f is an increasing
function implies for all r > rq,

> {f(MT—Mn-liqk(A%k))}m T {f(n_liqk(Amxk)>}m.

n=mqo+1 k=1 n=mo+1 k=1

N

From monotonicity of gx, we have

gx [ i {f<>\r—/\|n1 Zn:qze(ﬁmévk)> }pnen} <9x{ i {f(nléqzc(ﬂmm)> }pnen} -

n=mqg+1 k=1 n=mqo-+1
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By inequality (4.2), for all > rq

gx l > {f (AT )\|nliqk(Amxk)>} en] < (g)M (4.3)

n=mo+1 k=1

Now, from Lemma 4.2, the function

ﬁmo ('LL) =9gx [ZO {f (nl Z uqk(Amxk)> } en]
n=1 k=1

is continuous function in u. Hence, there exist a § (0 < § < 1) such that
e\ M
) , for 0 <u <.

Fomg (1) < (5

For given 0 > 0, there exist a 79 € N such that |\, — A| <, for all » > ro. This implies
that for all r > 7o,

By (IAr =) = gx lz {f <n—1 S - )\|qk(Amxk)>} en] < (%)M (4.4)
k=1

n=1

Finally,

(o (L5 (e S iamen) Y 1
Li {f (IAT —An~! ,iQk(Amrk)) }pn en]> .
= <9X [({f (lAT —An~! éqk(Amxk)> }pn)DM
e o))

{

n
! (I/\r — A ge(A™ay)
k=1

g

N———
——
3
J
3
| I
N————
S

+ - =g,

N O
N ™

(e o))

for all » > 7o = max(ry,r2), by inequalities (4.3) and (4.4). From inequality (4.1), we
have g(A,2" — Ax) — 0 as r — oco. Hence X (E, f, A™, p) is a paranormed space. [

Theorem 4.4. X(E, f,A™,p) is a complete space under paranorm ¢ if (E,qx) is a
sequence of complete seminormed spaces.

Proof. Let (z") be a Cauchy sequence in X (E, f, A™, p). Then
gla" —z®) > 0asr,s— oo, ie.,

<{f (n_l qu(Am(xZ—xZ))> } )]) —0asr,s— oo.
k=1

> flaa] —a) + <9X

i=1
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Since each term in the above expression is non-negative, so

flgi(al —23)) =2 0asr,s = oo (4.5)

gx [({ ( 1qu (z} —xk))>}pn>] —0as 7,5 — o0o. (4.6)

As f is a continuous function, condition (4.5) implies sequence (z]) in E; is Cauchy

sequence for each i = 1,2,--- ;m. Since X is K-space, so condition (4.6) gives

n Dn
{f <n1 qu(Am(xz — xi))) } — 0 as r,s — oo, for each n € N,

k=1

and

n
ie., f (nl qu(Am(xZ — xi))) — 0 as 7,8 — oo, for each n € N.
By continuity of function f, we have g (A™(z}, —z})) — 0 as r, s — co. This means that
(A™z}) is Cauchy sequence in Ej, for each k. As (z]) is Cauchy sequence for 1 < ¢ < m
implies that (z},) is Cauchy sequence in Ej, for each k. Completeness of Ej implies (z},)
converges for each k. Let x € Ej be limit of (2}). Then ¢i(z}, — 2x) = 0 (r — o0) for
each k. Again, by the continuity of f,

n Pn
o™y a(A™(h — oy — 0 as r — oo, for each n € N,
k
k=1

which implies that we can choose a sequence 1}, (0 < 7}, < 1) such that

n Pn n Pn
{f (n > ak(A™ ()~ m))) } <, {f <n qu(A’”xZ))} (4.7)
k=1 k=1
Now, by property of modulus function and inequality (3.1), we have, for each n
{ < -t Z ak(A™ xk))} < { < -t Z%(A - l‘k))) +f <n1 > %(Amfﬂi)> }
B Pn nk:l Pn
{ < 12% (zg, xk)))} +{f (nlz%(ﬁm(%))} ]
. k=1
b g
Pn
{f <n1 Z qk(Am(a}};)> } :| , by inequality (4.7).
k=1

n Pn
Since X is a normal space, so <{f <n_1 Z qk(Amij)> } > € X.
k=1

Thus z € X(E, f,A™, p).
Now, it remains to show that g(a” —x) — 0 as r — oo. For every £ > 0, there exists
r1 € N such that g(z" — 2°) < e for all 7, s > 7.

ST +mn,)

<2T
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By inequality (4.1), we obtained Z flgi(z] —23)) <eforall r,s >ry and
i=1

9x [({f (nl Z%(Am(xz — :EZ))> } )1 <eMforallr, s > ro.
k=1

By taking s — oo, we get Z flqi(x] —x;)) <eforall r > ry and
i=1

ng{ ( 12% (z} —xk))>}pn>]<e”f for all 7 > 7.

Taking ro = max(ry,r2), we have

1

gla" —x) zm:f (qi(x] — ) + <9X [({f (n_lzn:Qk(Am(xz_xk))>} >]>
i=1 k=1

< 2eforall r > rg.

Theorem 4.5. Space X (FE, f, A™, p) is a normal space if m = 0.

Proof. For m = 0, the space X(F, f,A™,p) is denoted by X(F, f,p). Let (A\x) be a
sequence of scalars such that |A\gx| < 1 for each k € N and x be any arbitrary element of

n P
X(E, f,p). Then <{f (n_l qu(xk)> } ) € X and for each k € N,
k=1

k(M) = [Aelar(zr) < qe(zr).

Now, by using property of modulus function f, we have

{f (n_l zn:qk()\kmk)> } | < {f (n_l zn:qk(xk)> } ,for each n € N
k=1 k=1

n Pn
As X is a normal space, so ({f (nl Z qk()\kxk)> } ) € X.
k=1

This means that Az € X(E, f,p). m

5. INCLUSION RELATIONS ON X (E, f, A™ p)
Theorem 5.1. (i) X(E, f1,A™,p) N X(E, fo, A™ p) C X(E, f1 + f2, A™,p), where f;

and f; are modulus functions.
(11) If Xl g XQa then Xl(Ev fa Am’p) g XQ(Ea fa Amvp)
(iil) X(E, f1,A™,p) C X(E, f o f1,A™,p), where f; and f are modulus functions.

Proof. (i) Let x € X(E, f1,A™,p) N X(E, fo, A™,p). Then

({ﬁ (n_lek(Amxk)>} ) € X and ({fz (n_IZQk(Amxk)>} ) € X.
k=1 k=1
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By using inequality (3.1), we have

{ Ji+f2) < 12% (A™zy, )} | < T{f1 <n_1iQk(Am$k>>} |
k=1
T{f2 (nl qu(Amxk)>} :
k=1

where H = sup pg, T = max(1,27~1). Since X is a normal space, so
k

n Pn
<{(f1 + fa) (nl Z%(Amxk)> } ) € X. Consequently, x € X(F, fi + f2, A™,p).
k=1

n P
(ii) Let © € X1(E, f,A™,p). Then ({ﬁ (n_l qu(Amxk)>} ) € X;. But Xj C
k=1
n P
X, so ({fl (nl qu(Amxk)> } ) € X5 which implies € X5 (FE, f, A™, p).
k=1
n Pn
(iii) Let z € X(E, f1,A™,p). Then <{f1 <n1 qu(Amxk)>} ) e X.
k=1

Construct sets J; and Jy as follows:

Pn
for any § satisfying 0 < 6 < 1, J; = {n € N : { ( 12% >} > ¢} and

{nEN{ < 1quA xk>} < o}

If n € Js, then

Pn
{ fofi) ( -1 qu (A", >} < {f(8)}™, due to function f is increasing.
Also, if n € Jy, then by Lemma 3.12,

(fofi) <n1 > qk(Amm)
k=1

)
filn (A™xy)
4 ( 5 ) 1 I;Qk k
n Pn
= {(fOfl) <n_1 Z%(Amwk)>}
k=1

27\ CINS A
max <1, (T) > {fl <n 1 kE:I gk (A zk)> } .
Thus, for any n € N

{ fofi) ( 12% (A™xy) )} | <{f(@O)}""

H n Pn
+ max <1, (2j;(1)> ) {fl (”1 Z%(Amxk)> } .
k=1

n Pn
But, X is a normal space, so ({(f o f1) (nl qu(Amxk)> } ) e X. n

k=1

A

A
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6. THE SPACE X (E, f', A™ p) UsING COMPOSITE OF MODULUS
FuNcTIONS

For a fixed positive integer v, we define

X(E, f°,A™,p) = {x e W(E): ({f (n—l iqkmmmk)) } ) - X} .
k=1

It is easy to check that X(E, f”,A™,p) is a linear space over C. Also, we denote
X(E,A™,p) in place of X (E, fv,A™ p) if f(z) =

Theorem 6.1. The space X (FE, f¥, A™, p) is a paranormed space under paranorm g given

by
m n Pn ar
g(x) =Y [ (ai(@:) + (gx K{f (n_l qu(Amﬂfk)) } )D :
i=1 k=1
Proof. The proof of this theorem is same as proof of Theorem 4.3. ]

Theorem 6.2. (i) For any modulus function f and v € N,

X (B, f*,A™ p) C X(E,A™ p)if lim %t):(wo,

t—o0

(ii) Let f be a modulus function such that f(t) < St for all ¢ > 0 and v,! be positive
integers with [ < v. Then

X(E7 Am,p) g X(E7 fl’ATn/7p) g 'X(E’ fU7AT”7p)'

Proof. (i) By Lemma 3.13, we have a = inf { it > 0} which implies that ot < f(¢)

for all t > 0. As f is increasing function, we get o?t < f2(t). By induction, inequality
a’t < f”( ) holds for any v € N. Let z € X(E, f*, A™, p). Then

k=1
Now,

{nl Z qk(Amxk)} < {oz”f“ <n1 Z qk(Amxk)> }
k=1 —
< max(l,a { v( —1qu )} )

using inequality (3.2), where H = sup px. But, X is a normal space, so
k

n Pn
({n_l qu(Amxk)} ) € X. This means that v € X (E,A™, p).
k=1
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(ii) By given condition f(t) < St, we have f( ) < (1+ [B))¢t. By increasing property of
modulus function f, we obtained f2(t) < (1 + [3])?*t. Now, by induction for any /,v € N,
we have

F1(8) < (L+[B)'t and £9(t) < (1+[8])"t (6.1)
which implies

F) = FF1(1) < A+ [B)°f(), where s =v —1€N. (6.2)

k=1

Let © = (z1) € X(E,A™,p). Then ({nl qu(Amxk)} ) € X.

By inequality (6.1), we can write

{fl <”_1qu(Aml‘k)>} <(1+[s { _12% Mg } :
k=1

As X is a normal space, 80 T € X(Ev fl’Am7p). Thus X(E7Amap) - X(E7 fl’Am’p).
Again, if x € X (E, f', A™, p), then by inequality (6.2) and proceeding same as above, we
have z € X (E, f*, A™,p). Hence X(E, f', A™ p) C X(E, f',A™, p). m

Example 6.3. For ¢ > 0, functions f; and fy defined by
fit) =t +1t7 and fot) = log(1 +t)

satisfy conditions given in parts (i) and (ii) of Theorem 6.2, respectively.

7. MULTIPLIER OF THE SEQUENCE SPACE X |[E, f, p]

In this section, we assume that (Ej,qx) is seminormed algebra for each k& € N. The
multiplier set of X[FE, f,p] is denoted by M(X|[E, f,p]), which is defined as follows:

M(X[E,f,p])z{( k) € W(E) <{ ( qu akxk>} >€X, foralleX[E,f,p]}.

Theorem 7.1. For any modulus function f,
Lo (E) C M (X [Eg, f,p]), where ls, (E) = {x = (z1) € W(E) : sup gp(zg) < oo} .
k

Proof. Let a = (ay) € loo(E). Then

gr(ax) < 1+ [Hq] < oo, where Hy = Sl;p qr(ag). (7.1)
Let « = (x1) be any arbitrary element in X[FE, f, p]. Since (Ej, gx) is seminormed algebra,
for each k € N, so

qr(arzr) < qr(ar)qe(zk), for each k € N. (7.2)
By property of modulus function and above inequalities (7.1) and (7.2), we get

{f (n_l zn:qk(akxk)> } < (1+ [H)DY {f (n_l zn:qk(xk)> } , for each n € N.

k=1 k=1
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n Pn
As X is a normal space, so ({f <n1 Z qk(akxk)> } > e X.

k=1

Consequently, a € M (XIE, f,p]). n
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