

A quartic functional equation and its generalized Hyers-Ulam-Rassias stability

Montakarn Petapirak and Paisan Nakmahachalasint

Abstract : In this paper, we study the general solution of the quartic functional equation

f(3x + y) + f(x + 3y) = 64f(x) + 64f(y) + 24f(x + y) - 6f(x - y)

and prove its generalized Hyers-Ulam-Rassias stability.

Keywords : Functional Equation; Quartic Functional Equation; Stability; Hyers-Ulam-Rassias stability

2000 Mathematics Subject Classification : 39B22, 39B52, 39B82

1 Introduction

Online ISSN 1686-0209

In 1940, S.M.Ulam [10] proposed the Ulam stability problem of a linear mapping. In the next year, D.H. Hyers [6] considered the case of approximately additive mapping $f: E \to E'$ where E and E' are Banach spaces and f satisfies the inequality $||f(x + y) - f(x) - f(y)|| \le \varepsilon$ for all $x, y \in E$. It was shown that the limit $L(x) = \lim_{n\to\infty} 2^{-n} f(2^n x)$ exists for all $x \in E$ and that L is the unique additive mapping satisfying $||f(x) - L(x)|| \le \varepsilon$. In recent years, a number of authors [4, 5, 9] have investigated the stability of linear mappings in various forms. In 2005, S.H. Lee, S.M. Im and I.S. Hwang [8] studied the solution of a quartic functional equation

$$f(2x + y) + f(2x - y) = 4f(x + y) + 4f(x - y) + 24f(x) - 6f(y)$$

and proved its stability in the sense of Hyers-Ulam.

In this paper, we use a different approach to study the general solution of the new functional equation

$$f(3x+y) + f(x+3y) = 64f(x) + 64f(y) + 24f(x+y) - 6f(x-y)$$
(1.1)

and prove its generalized Hyers-Ulam-Rassias stability.

^{ⓒ 2008} by the Mathematical Association of Thailand All rights reserve.

2 The general solution

In this section, we establish the general solution of (1.1). Throughout this section X and Y will be real vector spaces.

We recall the definition of multiadditive functions. Suppose that $n \in \mathbb{N}$. A function $A_n : X^n \to Y$ is called *n*-additive if for every $r, 1 \leq r \leq n$, and for every $x_1, ..., x_n, y_r \in X$,

$$f(x_1, ..., x_{r-1}, x_r + y_r, x_{r+1}, ..., x_n) = f(x_1, ..., x_n) + f(x_1, ..., x_{r-1}, y_r, x_{r+1}, ..., x_n).$$

That is, A_n is additive with respect to each of its variable $x_r \in X$, r = 1, ..., n. Given a function $A_n : X^n \to Y$, by the diagonalization of A_n we understand the function $A^n : X \to Y$ given by the formula

$$A^n(x) := A_n(x, \dots, x), \quad x \in X$$

In our studying for the general solution, we use some fact about a polynomial function and an *n*-additive symmetric function. A function $f: X \to Y$ is a polynomial function of order $s \ (s \in \mathbb{N})$ if f fulfil the condition $\Delta_h^{s+1}f(x) = 0$ for every $x, h \in X$ where Δ_x is the forward difference operator with the span x defined by $\Delta_x f(y) = f(y+x) - f(y)$ for all $x, y \in X$. Moreover, it was proved that f can be written as $f = \sum_{n=0}^{s} A^n(x), \ x \in X$ where $A_n : X^n \to Y$ is an *n*-additive symmetric function and $A^n : X \to Y$ is the diagonalization of A_n , for each n = 0, ..., s (see [2], pp.71-77).

Theorem 2.1. A function $f : X \to Y$ satisfies the functional equation (1.1) if and only if there exists a 4-additive symmetric function $A_4 : X^4 \to Y$ such that $f(x) = A_4(x, x, x, x)$ for all $x \in X$.

Proof. Assume that f satisfies the functional equation (1.1). Putting x = y = 0 in (1.1), we have f(0) = 0. Replacing x and y by x + y and x - y, respectively, in (1.1), we obtain

$$f(4x+2y) + f(4x-2y) = 64f(x+y) + 64f(x-y) + 24f(2x) - 6f(2y).$$
(2.1)

Replacing y by -y in (2.1), we can see that

$$f(y) = f(-y)$$

for all $y \in X$. That is f is an even function. Replacing y by -x in (1.1) and using the evenness of f, we get

$$f(2x) = 16f(x)$$
(2.2)

for all $x \in X$. Applying (2.2) to (2.1), we obtain

$$f(2x+y) + f(2x-y) = 4f(x+y) + 4f(x-y) + 24f(x) - 6f(y).$$
(2.3)

A quartic functional equation and its generalized...

Replacing y by y + 3x and y + 2x, respectively, in (2.3), then take the difference of the two newly obtained equations, we get

$$f(5x+y) - 5f(4x+y) + 10f(3x+y) - 10f(2x+y) + 5f(x+y) - f(y) = 0$$

Hence, f satisfies the difference functional equation $\Delta_x^5 f(y) = 0$. Consequently, f is a polynomial function of order 4. Then there exist *n*-additive symmetric functions $A_n: X^n \to Y, n = 0, ..., 4$, such that

$$f(x) = A^{0} + A^{1}(x) + A^{2}(x) + A^{3}(x) + A^{4}(x)$$
(2.4)

where $A^n: X \to Y$ is the diagonalization of A_n , for each n = 0, ..., 4. Since f is an even function, $A^1(x)$ and $A^3(x)$ must vanish. Moreover, since f(0) = 0, we have $A^0 = 0$. Then (2.4) is reduced to

$$f(x) = A^{2}(x) + A^{4}(x).$$
(2.5)

By using the symmetry and the additivity of $A_2(x, y)$, one can verify that

$$A^{2}(x+y) + A^{2}(x-y) = 2A^{2}(x) + 2A^{2}(y).$$
(2.6)

Substituting (2.5) into (1.1) and using the property (2.6), we obtain $A^2(x) = 0$. Hence, we conclude that $f(x) = A^4(x)$ for all $x \in X$.

Conversely, assume that there exists a 4-additive symmetric function A_4 : $X^4 \to Y$ such that $f(x) = A^4(x)$ for all $x \in X$. Note that $\Delta_x^4 A^4(y) = 4! A^4(x)$ (see [2], p.74). Thus, we obtain

$$A^{4}(4x+y) - 4A^{4}(3x+y) + 6A^{4}(2x+y) - 4A^{4}(x+y) + A^{4}(y) = 24A^{4}(x).$$
(2.7)

Replacing y by y - x in (2.7), we obtain

$$A^{4}(3x+y) - 4A^{4}(2x+y) + 6A^{4}(x+y) - 4A^{4}(y) + A^{4}(y-x) = 24A^{4}(x).$$
(2.8)

Replacing x and y by x + y and -2y, respectively, in (2.8), we obtain

$$A^{4}(3x+y) - 4A^{4}(2x) + 6A^{4}(x-y) - 4A^{4}(-2y) + A^{4}(-3y-x) = 24A^{4}(x+y).$$
(2.9)

On account of the additivity of $A_4(x_1, x_2, x_3, x_4)$, we have $A^4(nx) = n^4 A^4(x)$ for all $n \in \mathbb{Z}$. Then we have

$$A^{4}(3x+y) + A^{4}(3y+x) = 64A^{4}(x) + 64A^{4}(y) + 24A^{4}(x+y) - 6A^{4}(x-y) \quad (2.10)$$

By the assumption, we arrive at the functional equation (1.1).

3 The Generalized Hyers-Ulam-Rassias Stability

Throughout this section X and Y will be a real normed space and a real Banach space, respectively. Given a function $f: X \to Y$, we set

$$Df(x,y) := f(3x+y) + f(x+3y) - 64f(x) - 64f(y) - 24f(x+y) + 6f(x-y)$$

for all $x, y \in X$.

Theorem 3.1. Let $\phi: X^2 \to [0,\infty)$ be a function such that

$$\sum_{i=0}^{\infty} \frac{\phi(3^{i}x,0)}{81^{i}} \text{ converges and}$$

$$\lim_{n \to \infty} \frac{\phi(3^{n}x,3^{n}y)}{81^{n}} = 0 \text{ for all } x, y \in X$$
(3.1)

or

$$\begin{cases} \sum_{i=1}^{\infty} 81^i \phi(\frac{x}{3^i}, 0) \text{ converges and} \\ \lim_{n \to \infty} 81^n \phi(\frac{x}{3^n}, \frac{y}{3^n}) = 0 \text{ for all } x, y \in X. \end{cases}$$
(3.2)

If a function $f: X \to Y$ satisfies

$$\|Df(x,y)\| \le \phi(x,y) \tag{3.3}$$

for all $x, y \in X$ and f(0) = 0, then there exists a unique function $T : X \to Y$ which satisfies the equation (1.1) and the inequality

$$\|f(x) - T(x)\| \le \begin{cases} \frac{1}{81} \sum_{i=0}^{\infty} \frac{\phi(3^{i}x, 0)}{81^{i}} & \text{if } (3.1) \text{ holds} \\ \frac{1}{81} \sum_{i=1}^{\infty} 81^{i} \phi(\frac{x}{3^{i}}, 0) & \text{if } (3.2) \text{ holds} \end{cases}$$
(3.4)

for all $x \in X$. The function T is given by

$$T(x) = \begin{cases} \lim_{n \to \infty} \frac{f(3^n x)}{81^n} & \text{if } (3.1) \text{ holds} \\ \lim_{n \to \infty} 81^n f(\frac{x}{3^n}) & \text{if } (3.2) \text{ holds} \end{cases}$$
(3.5)

for all $x \in X$.

Proof. Putting y = 0 in (3.3) and dividing by 81, we have

$$\left\|\frac{f(3x)}{81} - f(x)\right\| \le \frac{1}{81}\phi(x,0) \tag{3.6}$$

for all $x \in X$. Replacing x by 3x in (3.6) and dividing by 81, we obtain

$$\left\|\frac{f(3^2x)}{81^2} - \frac{f(3x)}{81}\right\| \le \frac{1}{81^2}\phi(3x,0) \tag{3.7}$$

A quartic functional equation and its generalized...

for all $x \in X$. From the equations (3.6) and (3.7), we have

$$\left\|\frac{f(3^2x)}{81^2} - f(x)\right\| \le \frac{1}{81} \left(\phi(x,0) + \frac{\phi(3x,0)}{81}\right)$$
(3.8)

for all $x \in X$. Using a mathematical induction, we can extend (3.8) to

$$\left\|\frac{f(3^n x)}{81^n} - f(x)\right\| \le \frac{1}{81} \sum_{i=0}^{n-1} \frac{\phi(3^i x, 0)}{81^i} \le \frac{1}{81} \sum_{i=0}^{\infty} \frac{\phi(3^i x, 0)}{81^i}$$
(3.9)

for all $x \in X$ and for all $n \in \mathbb{N}$.

For integers m, n > 0, we have

$$\begin{split} \|\frac{f(3^n 3^m x)}{81^{n+m}} - \frac{f(3^m x)}{81^m}\| &= \frac{1}{81^m} \|\frac{f(3^n 3^m x)}{81^n} - f(3^m x)\| \\ &\leq \frac{1}{81^m} \cdot \frac{1}{81} \sum_{i=0}^{n-1} \frac{\phi(3^i 3^m x, 0)}{81^i} \\ &\leq \frac{1}{81} \sum_{i=0}^{\infty} \frac{\phi(3^i 3^m x, 0)}{81^{i+m}} \end{split}$$

Since the right-hand side of the inequality tends to 0 as $m \to \infty$, the sequence $\{81^{-n}f(3^nx)\}$ is a Cauchy sequence. Since Y is complete, there exists the limit function $T(x) = \lim_{n\to\infty} 81^{-n}f(3^nx)$ for all $x \in X$. By letting $n \to \infty$ in (3.9), we arrive at the formula (3.4). To show that T satisfies the equation (1.1), replace x and y by 3^nx and 3^ny , respectively, in (3.3) and divide by 81^n , then it follows that

$$81^{-n} \| f(3^n(3x+y)) + f(3^n(x+3y)) - 64f(3^nx) - 64f(3^ny) - 24f(3^n(x+y)) + 6f(3^n(x-y)) \| \le 81^{-n}\phi(3^nx,3^ny)$$

Taking the limit as $n \to \infty$, we find that T satisfies (1.1) for all $x, y \in X$.

To prove the uniqueness of quartic function T subject to (3.4), assume that there exists a function $S: X \to Y$ which satisfies (1.1) and (3.4) with T replaced by S. Note that Theorem 2.1 gives us $T(3^n x) = 81^n T(x)$ and $S(3^n x) = 81^n S(x)$ for all $x \in X$ and $n \in \mathbb{N}$. Then we have

$$\begin{split} \|T(x) - S(x)\| &= \frac{1}{81^n} \|T(3^n x) - S(3^n x)\| \\ &\leq \frac{1}{81^n} \left(\|T(3^n x) - f(3^n x)\| + \|f(3^n x) - S(3^n x)\| \right) \\ &\leq \frac{1}{81^n} \left(\frac{2}{81} \sum_{i=0}^{\infty} \frac{\phi(3^i 3^n x, 0)}{81^i} \right) \\ &= \frac{2}{81} \sum_{i=0}^{\infty} \frac{\phi(3^i 3^n x, 0)}{81^{i+n}} \end{split}$$

for all $x \in X$. By letting $n \to \infty$ in the preceding inequality, we immediately find the uniqueness of T. This completes the proof of the theorem. \Box

Remark 3.2. In case of condition (3.1) a function f which satisfies the inequality (3.3) needs not to be zero at x = 0. By using the same argument, we can find a unique quartic function $T: X \to Y$ defined by $T(x) = \lim_{n\to\infty} 81^{-n} f(3^n x)$ which satisfies the equation (1.1) and the inequality

$$\|f(x) - T(x) - \frac{4}{5}f(0)\| \le \frac{1}{81} \sum_{i=0}^{\infty} \frac{\phi(3^{i}x, 0)}{81^{i}}$$
(3.10)

for all $x \in X$.

Corollary 3.3. If a function $f: X \to Y$ satisfies the inequality

$$\|Df(x,y)\| \le \varepsilon \tag{3.11}$$

for all $x, y \in X$ for some real number $\varepsilon > 0$, then there exists a unique function $T: X \to Y$ such that T satisfies (1.1) and

$$||f(x) - T(x) - \frac{4}{5}f(0)|| \le \frac{\varepsilon}{80}$$

for all $x \in X$. The function T is given by $T(x) = \lim_{n \to \infty} 81^{-n} f(3^n x)$ for all $x \in X$.

Proof. Taking $\phi(x, y) = \varepsilon$ for all $x, y \in X$. Being in accordance with (3.1) in Remark of Theorem 3.1, we obtain

$$||f(x) - T(x) - \frac{4}{5}f(0)|| \le \frac{1}{81}\sum_{i=0}^{\infty}\frac{\varepsilon}{81^i} = \frac{\varepsilon}{80}$$

for all $x \in X$, as desired.

Corollary 3.4. Given positive real number ε and p with $p \neq 4$. If a function $f: X \to Y$ satisfies the inequality

$$||Df(x,y)|| \le \varepsilon (||x||^p + ||y||^p)$$
 (3.12)

for all $x, y \in X$, then there exists a unique function $T : X \to Y$ such that T satisfies (1.1) and

$$||f(x) - T(x)|| \le \frac{\varepsilon}{|3^4 - 3^p|} ||x||^p$$

for all $x \in X$.

A quartic functional equation and its generalized...

Proof. Taking $\phi(x, y) = \varepsilon(||x||^p + ||y||^p)$ for all $x, y \in X$. Putting x = y = 0 in (3.12), we obtain $||f(0)|| \le 0$. Hence, we have f(0) = 0. If 0 , then the condition (3.1) in Theorem 3.1 holds. It follows that

$$\begin{split} \|f(x) - T(x)\| &\leq \frac{\varepsilon}{81} \sum_{i=0}^{\infty} \frac{\left(3^{ip} \|x\|^p\right)}{81^i} \\ &= \frac{\varepsilon}{3^4 - 3^p} \|x\|^p \end{split}$$

for all $x \in X$. If p > 4, then the condition (3.2) in Theorem 3.1 holds. It follows that

$$\begin{aligned} \|f(x) - T(x)\| &\leq \frac{\varepsilon}{81} \sum_{i=1}^{\infty} 81^i \cdot \frac{\|x\|^p}{3^{ip}} \\ &= \frac{\varepsilon}{3^p - 3^4} \|x\|^p \end{aligned}$$

for all $x \in X$.

References

- I-S Chang, H-M Kim, On the Hyers-Ulam stability of quadratic functional equations, J. Inequal. Pure and Appl. Math. 33 (2002) 1-12.
- [2] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing, Singapore, 2002.
- [3] K-W Jun, H-M Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equations, J. Math. Anal. Appl. 274 (2002) 867-878.
- [4] K.-W. Jun, H.-M. Kim, Stability Problem of Ulam for Generalized Forms of Cauchy Functional Equations, J. Math. Anal. Appl. 312 (2005), 535-547.
- [5] S.-M. Jung, Hyers-Ulam-Rassias Stability of Jensen's Equations and Its Application, Proc. Amer. Math. Soc. 126 (1998), 3137-3143.
- [6] D.H. Hyers, On the Stability of the Linear Functional Equations, Proc. Natl. Acad. Sci. 27 (1941), 222-224.
- [7] H.M. Kim, On the stability problem for a mixed type of quartic and quadratic fuctional equation, J. Math. Anal. Appl. 324 (2006), 358-372.
- [8] S.H. Lee, S.M. Im, I.S. Hwang, Quartic functional equations, J. Math. Anal. Appl. 307 (2005) 387-394.
- [9] W.-G. Park, J.-H. Bae, On a Cauchy-Jensen Functional Equation and Its Stability, J. Math. Anal. Appl. 323 (2006), 634-643.
- [10] S.M. Ulam, Problem in Modern Mathematics, Chap. VI, Science Ed., Wiley, New York, 1964.

M. Petapirak and P. Nakmahachalasint

(Received 15 May 2008)

Montakarn Petapirak and Paisan Nakmahachalasint Department of Mathematics, Faculty of Science, Chulalongkorn University, e-mail : pmontakarn@yahoo.com, and paisan.n@chula.ac.th