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Abstract : In this paper, we study the general solution of the quartic functional
equation

f(3x + y) + f(x + 3y) = 64f(x) + 64f(y) + 24f(x + y)− 6f(x− y)

and prove its generalized Hyers-Ulam-Rassias stability.
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1 Introduction

In 1940, S.M.Ulam [10] proposed the Ulam stability problem of a linear map-
ping. In the next year, D.H. Hyers [6] considered the case of approximately ad-
ditive mapping f : E → E

′
where E and E

′
are Banach spaces and f satisfies

the inequality ‖f(x + y) − f(x) − f(y)‖ ≤ ε for all x, y ∈ E. It was shown that
the limit L(x) = limn→∞ 2−nf(2nx) exists for all x ∈ E and that L is the unique
additive mapping satisfying ‖f(x) − L(x)‖ ≤ ε. In recent years, a number of au-
thors [4, 5, 9] have investigated the stability of linear mappings in various forms.
In 2005, S.H. Lee, S.M. Im and I.S. Hwang [8] studied the solution of a quartic
functional equation

f(2x + y) + f(2x− y) = 4f(x + y) + 4f(x− y) + 24f(x)− 6f(y)

and proved its stability in the sense of Hyers-Ulam.
In this paper, we use a different approach to study the general solution of the

new functional equation

f(3x + y) + f(x + 3y) = 64f(x) + 64f(y) + 24f(x + y)− 6f(x− y) (1.1)

and prove its generalized Hyers-Ulam-Rassias stability.

c© 2008 by the Mathematical Association of Thailand All rights reserve.



78 M. Petapirak and P. Nakmahachalasint

2 The general solution

In this section, we establish the general solution of (1.1). Throughout this
section X and Y will be real vector spaces.

We recall the definition of multiadditive functions. Suppose that n ∈ N.
A function An : Xn → Y is called n-additive if for every r, 1 ≤ r ≤ n, and
for every x1, ..., xn, yr ∈ X,

f(x1, ..., xr−1, xr +yr, xr+1, ..., xn) = f(x1, ..., xn)+f(x1, ..., xr−1, yr, xr+1, ..., xn).

That is, An is additive with respect to each of its variable xr ∈ X, r = 1, ..., n.
Given a function An : Xn → Y , by the diagonalization of An we understand the
function An : X → Y given by the formula

An(x) := An(x, ..., x), x ∈ X.

In our studying for the general solution, we use some fact about a polynomial
function and an n-additive symmetric function. A function f : X → Y is a
polynomial function of order s (s ∈ N) if f fulfil the condition ∆s+1

h f(x) = 0 for
every x, h ∈ X where ∆x is the forward difference operator with the span x defined
by ∆xf(y) = f(y+x)−f(y) for all x, y ∈ X. Moreover, it was proved that f can be

written as f =
s∑

n=0

An(x), x ∈ X where An : Xn → Y is an n-additive symmetric

function and An : X → Y is the diagonalization of An, for each n = 0, ..., s (see
[2], pp.71-77).

Theorem 2.1. A function f : X → Y satisfies the functional equation (1.1) if
and only if there exists a 4-additive symmetric function A4 : X4 → Y such that
f(x) = A4(x, x, x, x) for all x ∈ X.

Proof. Assume that f satisfies the functional equation (1.1).
Putting x = y = 0 in (1.1), we have f(0) = 0. Replacing x and y by x + y and
x− y, respectively, in (1.1), we obtain

f(4x + 2y) + f(4x− 2y) = 64f(x + y) + 64f(x− y) + 24f(2x)− 6f(2y). (2.1)

Replacing y by −y in (2.1), we can see that

f(y) = f(−y)

for all y ∈ X. That is f is an even function. Replacing y by −x in (1.1) and using
the evenness of f , we get

f(2x) = 16f(x) (2.2)

for all x ∈ X. Applying (2.2) to (2.1), we obtain

f(2x + y) + f(2x− y) = 4f(x + y) + 4f(x− y) + 24f(x)− 6f(y). (2.3)
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Replacing y by y + 3x and y + 2x , respectively, in (2.3), then take the difference
of the two newly obtained equations, we get

f(5x + y)− 5f(4x + y) + 10f(3x + y)− 10f(2x + y) + 5f(x + y)− f(y) = 0

Hence, f satisfies the difference functional equation ∆5
xf(y) = 0. Consequently,

f is a polynomial function of order 4. Then there exist n-additive symmetric
functions An : Xn → Y , n = 0, ..., 4, such that

f(x) = A0 + A1(x) + A2(x) + A3(x) + A4(x) (2.4)

where An : X → Y is the diagonalization of An, for each n = 0, ..., 4. Since f is an
even function, A1(x) and A3(x) must vanish. Moreover, since f(0) = 0, we have
A0 = 0. Then (2.4) is reduced to

f(x) = A2(x) + A4(x). (2.5)

By using the symmetry and the additivity of A2(x, y), one can verify that

A2(x + y) + A2(x− y) = 2A2(x) + 2A2(y). (2.6)

Substituting (2.5) into (1.1) and using the property (2.6), we obtain A2(x) = 0.
Hence, we conclude that f(x) = A4(x) for all x ∈ X.

Conversely, assume that there exists a 4-additive symmetric function A4 :
X4 → Y such that f(x) = A4(x) for all x ∈ X. Note that ∆4

xA4(y) = 4!A4(x)
(see [2], p.74). Thus, we obtain

A4(4x + y)− 4A4(3x + y) + 6A4(2x + y)− 4A4(x + y) + A4(y) = 24A4(x). (2.7)

Replacing y by y − x in (2.7), we obtain

A4(3x + y)− 4A4(2x + y) + 6A4(x + y)− 4A4(y) + A4(y − x) = 24A4(x). (2.8)

Replacing x and y by x + y and −2y, respectively, in (2.8), we obtain

A4(3x+y)−4A4(2x)+6A4(x−y)−4A4(−2y)+A4(−3y−x) = 24A4(x+y). (2.9)

On account of the additivity of A4(x1, x2, x3, x4), we have A4(nx) = n4A4(x) for
all n ∈ Z. Then we have

A4(3x+ y)+A4(3y +x) = 64A4(x)+ 64A4(y)+ 24A4(x+ y)− 6A4(x− y) (2.10)

By the assumption, we arrive at the functional equation (1.1).
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3 The Generalized Hyers-Ulam-Rassias Stability

Throughout this section X and Y will be a real normed space and a real
Banach space, respectively. Given a function f : X → Y , we set

Df(x, y) := f(3x + y) + f(x + 3y)− 64f(x)− 64f(y)− 24f(x + y) + 6f(x− y)

for all x, y ∈ X.

Theorem 3.1. Let φ : X2 → [0,∞) be a function such that




∞∑

i=0

φ(3ix, 0)
81i

converges and

lim
n→∞

φ(3nx, 3ny)
81n

= 0 for all x, y ∈ X

(3.1)

or 



∞∑

i=1

81iφ(
x

3i
, 0) converges and

lim
n→∞

81nφ(
x

3n
,

y

3n
) = 0 for all x, y ∈ X.

(3.2)

If a function f : X → Y satisfies

‖Df(x, y)‖ ≤ φ(x, y) (3.3)

for all x, y ∈ X and f(0) = 0, then there exists a unique function T : X → Y
which satisfies the equation (1.1) and the inequality

‖f(x)− T (x)‖ ≤





1
81

∞∑

i=0

φ(3ix, 0)
81i

if (3.1) holds

1
81

∞∑

i=1

81iφ(
x

3i
, 0) if (3.2) holds

(3.4)

for all x ∈ X. The function T is given by

T (x) =





lim
n→∞

f(3nx)
81n

if (3.1) holds

lim
n→∞

81nf(
x

3n
) if (3.2) holds

(3.5)

for all x ∈ X.

Proof. Putting y = 0 in (3.3) and dividing by 81, we have

‖f(3x)
81

− f(x)‖ ≤ 1
81

φ(x, 0) (3.6)

for all x ∈ X. Replacing x by 3x in (3.6) and dividing by 81, we obtain

‖f(32x)
812

− f(3x)
81

‖ ≤ 1
812

φ(3x, 0) (3.7)
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for all x ∈ X. From the equations (3.6) and (3.7) , we have

‖f(32x)
812

− f(x)‖ ≤ 1
81

(
φ(x, 0) +

φ(3x, 0)
81

)
(3.8)

for all x ∈ X. Using a mathematical induction, we can extend (3.8) to

‖f(3nx)
81n

− f(x)‖ ≤ 1
81

n−1∑

i=0

φ(3ix, 0)
81i

≤ 1
81

∞∑

i=0

φ(3ix, 0)
81i

(3.9)

for all x ∈ X and for all n ∈ N.
For integers m,n > 0, we have

‖f(3n3mx)
81n+m

− f(3mx)
81m

‖ =
1

81m
‖f(3n3mx)

81n
− f(3mx)‖

≤ 1
81m

· 1
81

n−1∑

i=0

φ(3i3mx, 0)
81i

≤ 1
81

∞∑

i=0

φ(3i3mx, 0)
81i+m

Since the right-hand side of the inequality tends to 0 as m → ∞, the sequence
{81−nf(3nx)} is a Cauchy sequence. Since Y is complete, there exists the limit
function T (x) = limn→∞81−nf(3nx) for all x ∈ X. By letting n → ∞ in (3.9),
we arrive at the formula (3.4). To show that T satisfies the equation (1.1), replace
x and y by 3nx and 3ny, respectively, in (3.3) and divide by 81n, then it follows
that

81−n‖f(3n(3x + y)) + f(3n(x + 3y))− 64f(3nx)− 64f(3ny)− 24f(3n(x + y))

+6f(3n(x− y))‖ ≤ 81−nφ(3nx, 3ny)

Taking the limit as n →∞, we find that T satisfies (1.1) for all x, y ∈ X.
To prove the uniqueness of quartic function T subject to (3.4), assume that

there exists a function S : X → Y which satisfies (1.1) and (3.4) with T replaced
by S. Note that Theorem 2.1 gives us T (3nx) = 81nT (x) and S(3nx) = 81nS(x)
for all x ∈ X and n ∈ N. Then we have

‖T (x)− S(x)‖ =
1

81n
‖T (3nx)− S(3nx)‖

≤ 1
81n

(‖T (3nx)− f(3nx)‖+ ‖f(3nx)− S(3nx)‖)

≤ 1
81n

(
2
81

∞∑

i=0

φ(3i3nx, 0)
81i

)

=
2
81

∞∑

i=0

φ(3i3nx, 0)
81i+n
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for all x ∈ X. By letting n →∞ in the preceding inequality, we immediately find
the uniqueness of T . This completes the proof of the theorem.

Remark 3.2. In case of condition (3.1) a function f which satisfies the inequality
(3.3) needs not to be zero at x = 0. By using the same argument, we can find a
unique quartic function T : X → Y defined by T (x) = limn→∞ 81−nf(3nx) which
satisfies the equation (1.1) and the inequality

‖f(x)− T (x)− 4
5
f(0)‖ ≤ 1

81

∞∑

i=0

φ(3ix, 0)
81i

(3.10)

for all x ∈ X.

Corollary 3.3. If a function f : X → Y satisfies the inequality

‖Df(x, y)‖ ≤ ε (3.11)

for all x, y ∈ X for some real number ε > 0, then there exists a unique function
T : X → Y such that T satisfies (1.1) and

‖f(x)− T (x)− 4
5
f(0)‖ ≤ ε

80

for all x ∈ X. The function T is given by T (x) = limn→∞ 81−nf(3nx) for all
x ∈ X.

Proof. Taking φ(x, y) = ε for all x, y ∈ X. Being in accordance with (3.1) in
Remark of Theorem 3.1, we obtain

‖f(x)− T (x)− 4
5
f(0)‖ ≤ 1

81

∞∑

i=0

ε

81i
=

ε

80

for all x ∈ X, as desired.

Corollary 3.4. Given positive real number ε and p with p 6= 4. If a function
f : X → Y satisfies the inequality

‖Df(x, y)‖ ≤ ε
(‖x‖p + ‖y‖p

)
(3.12)

for all x, y ∈ X, then there exists a unique function T : X → Y such that T
satisfies (1.1) and

‖f(x)− T (x)‖ ≤ ε

|34 − 3p| ‖x‖
p

for all x ∈ X.
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Proof. Taking φ(x, y) = ε
(‖x‖p + ‖y‖p

)
for all x, y ∈ X.

Putting x = y = 0 in (3.12), we obtain ‖f(0)‖ ≤ 0. Hence,we have f(0) = 0.
If 0 < p < 4, then the condition (3.1) in Theorem 3.1 holds. It follows that

‖f(x)− T (x)‖ ≤ ε

81

∞∑

i=0

(
3ip‖x‖p

)

81i

=
ε

34 − 3p
‖x‖p

for all x ∈ X. If p > 4, then the condition (3.2) in Theorem 3.1 holds. It follows
that

‖f(x)− T (x)‖ ≤ ε

81

∞∑

i=1

81i · ‖x‖
p

3ip

=
ε

3p − 34
‖x‖p

for all x ∈ X.
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