A quartic functional equation and its generalized Hyers-Ulam-Rassias stability

Montakarn Petapirak and Paisan Nakmahachalasint

Abstract : In this paper, we study the general solution of the quartic functional equation

$$
f(3 x+y)+f(x+3 y)=64 f(x)+64 f(y)+24 f(x+y)-6 f(x-y)
$$

and prove its generalized Hyers-Ulam-Rassias stability.
Keywords : Functional Equation; Quartic Functional Equation; Stability; Hyers-Ulam-Rassias stability
2000 Mathematics Subject Classification : 39B22, 39B52, 39B82

1 Introduction

In 1940, S.M.Ulam [10] proposed the Ulam stability problem of a linear mapping. In the next year, D.H. Hyers 6] considered the case of approximately additive mapping $f: E \rightarrow E^{\prime}$ where E and E^{\prime} are Banach spaces and f satisfies the inequality $\|f(x+y)-f(x)-f(y)\| \leq \varepsilon$ for all $x, y \in E$. It was shown that the limit $L(x)=\lim _{n \rightarrow \infty} 2^{-n} f\left(2^{n} x\right)$ exists for all $x \in E$ and that L is the unique additive mapping satisfying $\|f(x)-L(x)\| \leq \varepsilon$. In recent years, a number of authors [4, 5, 9] have investigated the stability of linear mappings in various forms. In 2005, S.H. Lee, S.M. Im and I.S. Hwang [8] studied the solution of a quartic functional equation

$$
f(2 x+y)+f(2 x-y)=4 f(x+y)+4 f(x-y)+24 f(x)-6 f(y)
$$

and proved its stability in the sense of Hyers-Ulam.
In this paper, we use a different approach to study the general solution of the new functional equation

$$
\begin{equation*}
f(3 x+y)+f(x+3 y)=64 f(x)+64 f(y)+24 f(x+y)-6 f(x-y) \tag{1.1}
\end{equation*}
$$

and prove its generalized Hyers-Ulam-Rassias stability.

[^0]
2 The general solution

In this section, we establish the general solution of (1.1). Throughout this section X and Y will be real vector spaces.

We recall the definition of multiadditive functions. Suppose that $n \in \mathbb{N}$. A function $A_{n}: X^{n} \rightarrow Y$ is called n-additive if for every $r, 1 \leq r \leq n$, and for every $x_{1}, \ldots, x_{n}, y_{r} \in X$,
$f\left(x_{1}, \ldots, x_{r-1}, x_{r}+y_{r}, x_{r+1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{r-1}, y_{r}, x_{r+1}, \ldots, x_{n}\right)$.
That is, A_{n} is additive with respect to each of its variable $x_{r} \in X, r=1, \ldots, n$. Given a function $A_{n}: X^{n} \rightarrow Y$, by the diagonalization of A_{n} we understand the function $A^{n}: X \rightarrow Y$ given by the formula

$$
A^{n}(x):=A_{n}(x, \ldots, x), \quad x \in X
$$

In our studying for the general solution, we use some fact about a polynomial function and an n-additive symmetric function. A function $f: X \rightarrow Y$ is a polynomial function of order $s(s \in \mathbb{N})$ if f fulfil the condition $\Delta_{h}^{s+1} f(x)=0$ for every $x, h \in X$ where Δ_{x} is the forward difference operator with the span x defined by $\Delta_{x} f(y)=f(y+x)-f(y)$ for all $x, y \in X$. Moreover, it was proved that f can be written as $f=\sum_{n=0}^{s} A^{n}(x), x \in X$ where $A_{n}: X^{n} \rightarrow Y$ is an n-additive symmetric function and $A^{n}: X \rightarrow Y$ is the diagonalization of A_{n}, for each $n=0, \ldots, s$ (see [2], pp.71-77).

Theorem 2.1. A function $f: X \rightarrow Y$ satisfies the functional equation (1.1) if and only if there exists a 4-additive symmetric function $A_{4}: X^{4} \rightarrow Y$ such that $f(x)=A_{4}(x, x, x, x)$ for all $x \in X$.

Proof. Assume that f satisfies the functional equation (1.1).
Putting $x=y=0$ in (1.1), we have $f(0)=0$. Replacing x and y by $x+y$ and $x-y$, respectively, in (1.1), we obtain

$$
\begin{equation*}
f(4 x+2 y)+f(4 x-2 y)=64 f(x+y)+64 f(x-y)+24 f(2 x)-6 f(2 y) \tag{2.1}
\end{equation*}
$$

Replacing y by $-y$ in (2.1), we can see that

$$
f(y)=f(-y)
$$

for all $y \in X$. That is f is an even function. Replacing y by $-x$ in (1.1) and using the evenness of f, we get

$$
\begin{equation*}
f(2 x)=16 f(x) \tag{2.2}
\end{equation*}
$$

for all $x \in X$. Applying (2.2) to (2.1), we obtain

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=4 f(x+y)+4 f(x-y)+24 f(x)-6 f(y) \tag{2.3}
\end{equation*}
$$

Replacing y by $y+3 x$ and $y+2 x$, respectively, in (2.3), then take the difference of the two newly obtained equations, we get

$$
f(5 x+y)-5 f(4 x+y)+10 f(3 x+y)-10 f(2 x+y)+5 f(x+y)-f(y)=0
$$

Hence, f satisfies the difference functional equation $\Delta_{x}^{5} f(y)=0$. Consequently, f is a polynomial function of order 4 . Then there exist n-additive symmetric functions $A_{n}: X^{n} \rightarrow Y, n=0, \ldots, 4$, such that

$$
\begin{equation*}
f(x)=A^{0}+A^{1}(x)+A^{2}(x)+A^{3}(x)+A^{4}(x) \tag{2.4}
\end{equation*}
$$

where $A^{n}: X \rightarrow Y$ is the diagonalization of A_{n}, for each $n=0, \ldots, 4$. Since f is an even function, $A^{1}(x)$ and $A^{3}(x)$ must vanish. Moreover, since $f(0)=0$, we have $A^{0}=0$. Then (2.4) is reduced to

$$
\begin{equation*}
f(x)=A^{2}(x)+A^{4}(x) . \tag{2.5}
\end{equation*}
$$

By using the symmetry and the additivity of $A_{2}(x, y)$, one can verify that

$$
\begin{equation*}
A^{2}(x+y)+A^{2}(x-y)=2 A^{2}(x)+2 A^{2}(y) \tag{2.6}
\end{equation*}
$$

Substituting (2.5) into (1.1) and using the property (2.6), we obtain $A^{2}(x)=0$. Hence, we conclude that $f(x)=A^{4}(x)$ for all $x \in X$.

Conversely, assume that there exists a 4 -additive symmetric function A_{4} : $X^{4} \rightarrow Y$ such that $f(x)=A^{4}(x)$ for all $x \in X$. Note that $\Delta_{x}^{4} A^{4}(y)=4!A^{4}(x)$ (see [2], p.74). Thus, we obtain

$$
\begin{equation*}
A^{4}(4 x+y)-4 A^{4}(3 x+y)+6 A^{4}(2 x+y)-4 A^{4}(x+y)+A^{4}(y)=24 A^{4}(x) \tag{2.7}
\end{equation*}
$$

Replacing y by $y-x$ in (2.7), we obtain

$$
\begin{equation*}
A^{4}(3 x+y)-4 A^{4}(2 x+y)+6 A^{4}(x+y)-4 A^{4}(y)+A^{4}(y-x)=24 A^{4}(x) \tag{2.8}
\end{equation*}
$$

Replacing x and y by $x+y$ and $-2 y$, respectively, in (2.8), we obtain

$$
\begin{equation*}
A^{4}(3 x+y)-4 A^{4}(2 x)+6 A^{4}(x-y)-4 A^{4}(-2 y)+A^{4}(-3 y-x)=24 A^{4}(x+y) \tag{2.9}
\end{equation*}
$$

On account of the additivity of $A_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, we have $A^{4}(n x)=n^{4} A^{4}(x)$ for all $n \in \mathbb{Z}$. Then we have

$$
\begin{equation*}
A^{4}(3 x+y)+A^{4}(3 y+x)=64 A^{4}(x)+64 A^{4}(y)+24 A^{4}(x+y)-6 A^{4}(x-y) \tag{2.10}
\end{equation*}
$$

By the assumption, we arrive at the functional equation (1.1).

3 The Generalized Hyers-Ulam-Rassias Stability

Throughout this section X and Y will be a real normed space and a real Banach space, respectively. Given a function $f: X \rightarrow Y$, we set

$$
D f(x, y):=f(3 x+y)+f(x+3 y)-64 f(x)-64 f(y)-24 f(x+y)+6 f(x-y)
$$

for all $x, y \in X$.
Theorem 3.1. Let $\phi: X^{2} \rightarrow[0, \infty)$ be a function such that

$$
\left\{\begin{array}{l}
\sum_{i=0}^{\infty} \frac{\phi\left(3^{i} x, 0\right)}{81^{i}} \text { converges and } \tag{3.1}\\
\lim _{n \rightarrow \infty} \frac{\phi\left(3^{n} x, 3^{n} y\right)}{81^{n}}=0 \text { for all } x, y \in X
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\sum_{i=1}^{\infty} 81^{i} \phi\left(\frac{x}{3^{i}}, 0\right) \text { converges and } \tag{3.2}\\
\lim _{n \rightarrow \infty} 81^{n} \phi\left(\frac{x}{3^{n}}, \frac{y}{3^{n}}\right)=0 \text { for all } x, y \in X
\end{array}\right.
$$

If a function $f: X \rightarrow Y$ satisfies

$$
\begin{equation*}
\|D f(x, y)\| \leq \phi(x, y) \tag{3.3}
\end{equation*}
$$

for all $x, y \in X$ and $f(0)=0$, then there exists a unique function $T: X \rightarrow Y$ which satisfies the equation (1.1) and the inequality

$$
\|f(x)-T(x)\| \leq \begin{cases}\frac{1}{81} \sum_{i=0}^{\infty} \frac{\phi\left(3^{i} x, 0\right)}{81^{i}} & \text { if (3.1) holds } \tag{3.4}\\ \frac{1}{81} \sum_{i=1}^{\infty} 81^{i} \phi\left(\frac{x}{3^{i}}, 0\right) & \text { if (3.2) holds }\end{cases}
$$

for all $x \in X$. The function T is given by

$$
T(x)= \begin{cases}\lim _{n \rightarrow \infty} \frac{f\left(3^{n} x\right)}{81^{n}} & \text { if (3.1) holds } \tag{3.5}\\ \lim _{n \rightarrow \infty} 81^{n} f\left(\frac{x}{3^{n}}\right) & \text { if (3.2) holds }\end{cases}
$$

for all $x \in X$.
Proof. Putting $y=0$ in (3.3) and dividing by 81, we have

$$
\begin{equation*}
\left\|\frac{f(3 x)}{81}-f(x)\right\| \leq \frac{1}{81} \phi(x, 0) \tag{3.6}
\end{equation*}
$$

for all $x \in X$. Replacing x by $3 x$ in (3.6) and dividing by 81 , we obtain

$$
\begin{equation*}
\left\|\frac{f\left(3^{2} x\right)}{81^{2}}-\frac{f(3 x)}{81}\right\| \leq \frac{1}{81^{2}} \phi(3 x, 0) \tag{3.7}
\end{equation*}
$$

for all $x \in X$. From the equations (3.6) and (3.7), we have

$$
\begin{equation*}
\left\|\frac{f\left(3^{2} x\right)}{81^{2}}-f(x)\right\| \leq \frac{1}{81}\left(\phi(x, 0)+\frac{\phi(3 x, 0)}{81}\right) \tag{3.8}
\end{equation*}
$$

for all $x \in X$. Using a mathematical induction, we can extend (3.8) to

$$
\begin{equation*}
\left\|\frac{f\left(3^{n} x\right)}{81^{n}}-f(x)\right\| \leq \frac{1}{81} \sum_{i=0}^{n-1} \frac{\phi\left(3^{i} x, 0\right)}{81^{i}} \leq \frac{1}{81} \sum_{i=0}^{\infty} \frac{\phi\left(3^{i} x, 0\right)}{81^{i}} \tag{3.9}
\end{equation*}
$$

for all $x \in X$ and for all $n \in \mathbb{N}$.
For integers $m, n>0$, we have

$$
\begin{aligned}
\left\|\frac{f\left(3^{n} 3^{m} x\right)}{81^{n+m}}-\frac{f\left(3^{m} x\right)}{81^{m}}\right\| & =\frac{1}{81^{m}}\left\|\frac{f\left(3^{n} 3^{m} x\right)}{81^{n}}-f\left(3^{m} x\right)\right\| \\
& \leq \frac{1}{81^{m}} \cdot \frac{1}{81} \sum_{i=0}^{n-1} \frac{\phi\left(3^{i} 3^{m} x, 0\right)}{81^{i}} \\
& \leq \frac{1}{81} \sum_{i=0}^{\infty} \frac{\phi\left(3^{i} 3^{m} x, 0\right)}{81^{i+m}}
\end{aligned}
$$

Since the right-hand side of the inequality tends to 0 as $m \rightarrow \infty$, the sequence $\left\{81^{-n} f\left(3^{n} x\right)\right\}$ is a Cauchy sequence. Since Y is complete, there exists the limit function $T(x)=\lim _{n \rightarrow \infty} 81^{-n} f\left(3^{n} x\right)$ for all $x \in X$. By letting $n \rightarrow \infty$ in (3.9), we arrive at the formula (3.4). To show that T satisfies the equation (1.1), replace x and y by $3^{n} x$ and $3^{n} y$, respectively, in (3.3) and divide by 81^{n}, then it follows that

$$
\begin{array}{rl}
81^{-n} \| f\left(3^{n}(3 x+y)\right)+f\left(3^{n}(x+3 y)\right)-64 & f\left(3^{n} x\right)-64 f\left(3^{n} y\right)-24 f\left(3^{n}(x+y)\right) \\
+ & 6 f\left(3^{n}(x-y)\right) \| \leq 81^{-n} \phi\left(3^{n} x, 3^{n} y\right)
\end{array}
$$

Taking the limit as $n \rightarrow \infty$, we find that T satisfies (1.1) for all $x, y \in X$.
To prove the uniqueness of quartic function T subject to (3.4), assume that there exists a function $S: X \rightarrow Y$ which satisfies (1.1) and (3.4) with T replaced by S. Note that Theorem 2.1 gives us $T\left(3^{n} x\right)=81^{n} T(x)$ and $S\left(3^{n} x\right)=81^{n} S(x)$ for all $x \in X$ and $n \in \mathbb{N}$. Then we have

$$
\begin{aligned}
\|T(x)-S(x)\| & =\frac{1}{81^{n}}\left\|T\left(3^{n} x\right)-S\left(3^{n} x\right)\right\| \\
& \leq \frac{1}{81^{n}}\left(\left\|T\left(3^{n} x\right)-f\left(3^{n} x\right)\right\|+\left\|f\left(3^{n} x\right)-S\left(3^{n} x\right)\right\|\right) \\
& \leq \frac{1}{81^{n}}\left(\frac{2}{81} \sum_{i=0}^{\infty} \frac{\phi\left(3^{i} 3^{n} x, 0\right)}{81^{i}}\right) \\
& =\frac{2}{81} \sum_{i=0}^{\infty} \frac{\phi\left(3^{i} 3^{n} x, 0\right)}{81^{i+n}}
\end{aligned}
$$

for all $x \in X$. By letting $n \rightarrow \infty$ in the preceding inequality, we immediately find the uniqueness of T. This completes the proof of the theorem.

Remark 3.2. In case of condition (3.1) a function f which satisfies the inequality (3.3) needs not to be zero at $x=0$. By using the same argument, we can find a unique quartic function $T: X \rightarrow Y$ defined by $T(x)=\lim _{n \rightarrow \infty} 81^{-n} f\left(3^{n} x\right)$ which satisfies the equation (1.1) and the inequality

$$
\begin{equation*}
\left\|f(x)-T(x)-\frac{4}{5} f(0)\right\| \leq \frac{1}{81} \sum_{i=0}^{\infty} \frac{\phi\left(3^{i} x, 0\right)}{81^{i}} \tag{3.10}
\end{equation*}
$$

for all $x \in X$.
Corollary 3.3. If a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\|D f(x, y)\| \leq \varepsilon \tag{3.11}
\end{equation*}
$$

for all $x, y \in X$ for some real number $\varepsilon>0$, then there exists a unique function $T: X \rightarrow Y$ such that T satisfies (1.1) and

$$
\left\|f(x)-T(x)-\frac{4}{5} f(0)\right\| \leq \frac{\varepsilon}{80}
$$

for all $x \in X$. The function T is given by $T(x)=\lim _{n \rightarrow \infty} 81^{-n} f\left(3^{n} x\right)$ for all $x \in X$.

Proof. Taking $\phi(x, y)=\varepsilon$ for all $x, y \in X$. Being in accordance with (3.1) in Remark of Theorem [3.1, we obtain

$$
\left\|f(x)-T(x)-\frac{4}{5} f(0)\right\| \leq \frac{1}{81} \sum_{i=0}^{\infty} \frac{\varepsilon}{81^{i}}=\frac{\varepsilon}{80}
$$

for all $x \in X$, as desired.

Corollary 3.4. Given positive real number ε and p with $p \neq 4$. If a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\|D f(x, y)\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{3.12}
\end{equation*}
$$

for all $x, y \in X$, then there exists a unique function $T: X \rightarrow Y$ such that T satisfies (1.1) and

$$
\|f(x)-T(x)\| \leq \frac{\varepsilon}{\left|3^{4}-3^{p}\right|}\|x\|^{p}
$$

for all $x \in X$.

Proof. Taking $\phi(x, y)=\varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ for all $x, y \in X$.
Putting $x=y=0$ in (3.12), we obtain $\|f(0)\| \leq 0$. Hence, we have $f(0)=0$. If $0<p<4$, then the condition (3.1) in Theorem 3.1 holds. It follows that

$$
\begin{aligned}
\|f(x)-T(x)\| & \leq \frac{\varepsilon}{81} \sum_{i=0}^{\infty} \frac{\left(3^{i p}\|x\|^{p}\right)}{81^{i}} \\
& =\frac{\varepsilon}{3^{4}-3^{p}}\|x\|^{p}
\end{aligned}
$$

for all $x \in X$. If $p>4$, then the condition (3.2) in Theorem 3.1 holds. It follows that

$$
\begin{aligned}
\|f(x)-T(x)\| & \leq \frac{\varepsilon}{81} \sum_{i=1}^{\infty} 81^{i} \cdot \frac{\|x\|^{p}}{3^{i p}} \\
& =\frac{\varepsilon}{3^{p}-3^{4}}\|x\|^{p}
\end{aligned}
$$

for all $x \in X$.

References

[1] I-S Chang, H-M Kim, On the Hyers-Ulam stability of quadratic funtional equations, J. Inequal. Pure and Appl. Math. 33 (2002) 1-12.
[2] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing, Singapore, 2002.
[3] K-W Jun, H-M Kim, The generalized Hyers-Ulam-Rassias stability of a cubic funtional equations, J. Math. Anal. Appl. 274 (2002) 867-878.
[4] K.-W. Jun, H.-M. Kim, Stability Problem of Ulam for Generalized Forms of Cauchy Functional Equations, J. Math. Anal. Appl. 312 (2005), 535-547.
[5] S.-M. Jung, Hyers-Ulam-Rassias Stability of Jensen's Equations and Its Application, Proc. Amer. Math. Soc. 126 (1998), 3137-3143.
[6] D.H. Hyers, On the Stability of the Linear Functional Equations, Proc. Natl. Acad. Sci. 27 (1941), 222-224.
[7] H.M. Kim, On the stability problem for a mixed type of quartic and quadratic fuctional equation, J. Math. Anal. Appl. 324 (2006), 358-372.
[8] S.H. Lee, S.M. Im, I.S. Hwang, Quartic funtional equations, J. Math. Anal. Appl. 307 (2005) 387-394.
[9] W.-G. Park, J.-H. Bae, On a Cauchy-Jensen Functional Equation and Its Stability, J. Math. Anal. Appl. 323 (2006), 634-643.
[10] S.M. Ulam, Problem in Modern Mathematics, Chap. VI, Science Ed., Wiley, New York, 1964.
(Received 15 May 2008)
Montakarn Petapirak and Paisan Nakmahachalasint
Department of Mathematics,
Faculty of Science,
Chulalongkorn University,
e-mail : pmontakarn@yahoo.com,
and paisan.n@chula.ac.th

[^0]: (C) 2008 by the Mathematical Association of Thailand All rights reserve.

