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Abstract In this paper, we investigate finite-time stability (FTS) of a class of uncertain switched

nonlinear systems with time-varying delay. By using the average dwell time method and Gronwall-

Bellman inequality, novel FTS criteria are derived. The FTS criteria of uncertain switched nonlinear

criteria are delays-dependent and given in terms of linear matrix inequalities (LMIs) which can be solved

by various available algorithms. Numerical example is given to illustrate effectiveness of our proposed

methods.
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1. Introduction

Time-varying delay systems have received considerable attention over the past few
decades. The main reason is that the real processes in our world always involve time-
delay systems, such as transportation systems, electrical power systems, communication
systems, economic systems and so on. Several dynamic system often depend on time-
delay; namely, the present state depends on the states, which is the main sources of
instability and less capable performance of the systems, see [1], [2–5], [6] and [7] There-
fore, the study of time-delay should be highlighted, especially those with time-varying
delay.

It is well known that a switched system is a particular type of hybrid system that
contains several subsystems and a switching law, the assignment at any time as soon
as the subsystem is active. A different switching rules cause different system behaviors
and hence lead to a different system display. Therefor, the switched system has been
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attracted attention in stable and stabilization. The result related to the switched system
are reported in the literature (see [8],[9],[10],[11], [12] and [13]).

Generally, most of the result of switched system is involved with stability analysis and
design of switching rules, see [14–16], ([12], [13], [17] and [18]) which is defined over an
infinite time interval. nevertheless, in many real world applications, the main aim is con-
cerned with the behavior of the system over a fixed finite time interval. For instance, the
problem of sending a rocket from the neighborhood of a point A to the neighborhood of a
point B over a fixed interval [15]. In this example, the concept of FTS is proposed. Some
early results on FTS of switched system can be found in [14] and [16], Lyapunov function
technique has been used in these work. It should be noted that, there are a few results on
FTS of switched system with time-varying delay. In [19], FTS of switched system with
time-varying delay has been investigated by using Lyapunov-Krasovskii functional and
average dwell time (ADT) approach. The problem of switched system with time-varying
delay via Gronwall-Bellman inequality has been studied in [8]. By using linear matrix
inequality technique the researcher have obtained the feasible condition guaranteeing sta-
bility of such a system, see [19], [12] and [13].

Motivated by the above-mentioned discussion and the practical background, we shall
derive the new FTS for switched uncertain nonlinear system with time-varying delay.
The main contribution of our studies are as follows. (i) By employing average dwell time
method and Gronwall-Bellman inequality technique, we derive new and less conservative
FTS for switched uncertain nonlinear system with time-varying delay in terms of LMIs.
(ii) The time-delay function are only required to be continuous but not necessarily differ-
entiable.

The rest of the paper is organized as follows. Section 2, present notations, definitions
and auxiliary lemmas required for the proof of the main results. In section 3, the FTS
of switched uncertain nonlinear system with time-varying delay is obtained. Illustrative
numerical example is presented in section 4. Section 5 concludes the paper.

2. Problem Formulation and Preliminaries

Consider the following uncertain switched nonlinear systems with time-varying delay;

ẋ(t) = (Aσ + ∆Aσ(t))x(t) + (Bσ + ∆Bσ(t))x(t− d(t)) + fσ(x(t), t)− fσ(0),

x(t) = ϕ(s),∈ [−d, 0], (2.1)

where x(t) ∈ Rn is the state vector, d(t) denotes the time-varying delay.Which satisfies
0 < d(t) ≤ d, ϕ(t) is a continuous vector-valued initial function on [−d, 0] for a known
constant d > 0. ∆Ai(t) and ∆Bi(t) are the time-varying uncertain matrices which given
in the following terms :

∆Ai(t) = EaFa(t)Ha,∆Bi(t) = EbFb(t)Hb (2.2)

and Ea, Eb, Ha, Hb are known constant matrices with appropriate dimensions, Fa(t), Fb(t)
are unknown uncertain matrices and satisfy

FTa (t)Fa(t) ≤ I, FTb (t)Fb(t) ≤ I; t ∈ R. (2.3)
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The function σ(t) : R+ ∪ {0} → N,N = 1, 2, ..., N is the switching signal which is piece-
wise constant and right continuous.The switching sequence,
σ(t) : (t0, σ(t0)), (t1, σ(t1)), ..., (tk, σ(tk)), σ(tk)εN, k = 0, 1, ..., is called switched sequence,
t0 = 0 is the initial time and tk denotes the kth switching instant. Moreover, σ(t) = i
means that the ith subsystem is activated. N denotes the number of the subsystem. For
i ∈ N,Ai and Bi are know real constant matrices. fi(•) : Rn → Rn is an unknown
nonlinear function satisfying

‖fi(x(t), t)− fi(x̂(t), t)‖ ≤ ‖Ui(x(t)− x̂(t))‖, (2.4)

x(t), x̂(t) ∈ Rn and Ui are known real constant matrices.

Definition 2.1. [20] For given positive number c1, c2, T and a symmetric positive defi-
nite matrix M , the uncertain switched nonlinear systems (2.1) is finite-time stable (FTS)
with respect to(c1, c2, T,M) if the following condition hold

sup
−d≤ θ≤0

{φ(s)TMφ(s), φ̇(s)TMφ̇(s)} < c1 ⇒ xT (t)Mx(t) < c2;∀t ∈ [0, T ]. (2.5)

Definition 2.2. [8] For any T2 > T1 > 0, let Nσ(T1, T2) denote the switching number of
σ(t) on an interval (T1, T2), if

Nσ(T1, T2) ≤ N0 + (T1, T2)/τa (2.6)

holds for given N0 ≥ 0, τa > 0. Then the constant τa is called the average dwell time
(ADT) and N0 is the chatter bound. Without loss of generality,we choose N0 = 0 in this
paper.Before concluding this section, the following lemmas are given which will be used
in the main results.

Lemma 2.3. [8] (Gronwall- Bellman inequality). Let x(t), y(t) be real - valued non-
negative continuous function with domain {t | t ≥ t0}, a is a nonnegative scalar, if the
following inequality

x(t) ≤ a+

∫ t

t0

x(s)y(s) (2.7)

holds, for t ≥ t0, then x(t) ≤ a exp(
∫ t
t0
y(s)ds).

Proposition 2.4. [20] (Schur complement lemma). Given matrices X,Y,Z, where
Y = Y T > 0 and X = XT , X + ZTY −1Z < 0 if and only if[

X ZT

Z −Y

]
< 0. (2.8)

Proposition 2.5. [21] Let E, H and F be any constant matrices of appropriate dimensions
and FTF ≤ I. For any ε < 0 , we have

EFH +HTFTET ≤ εEET + ε−1HTH. (2.9)
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3. Main Result

Theorem 3.1. For a given positive numbers c1, c2, T, positive constant α > 0, a
symmetric positive definite matrix M and any matrices Ui, if there exist positive definite
matrices Pi, Ri and any matrices Ki, Wi, Xi, Yi, Zi such that the following matrix
inequality holds:

Ψi =



Ψ11i Ψ12i Ψ13i Ψ14i Ψ15i Ψ16i 0 0 Ψ19i Ψ110i

∗ Ψ22i Ψ23i Ψ24i 0 0 0 0 dXi 0
∗ ∗ Ψ33i Ψ34i 0 0 0 0 dYi 0
∗ ∗ ∗ Ψ44i 0 0 KiEa KiEb dZi 0
∗ ∗ ∗ ∗ −1I

ε 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ −1I

ε 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −1I

ε 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −1I

ε 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −dRi 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I


< 0 (3.1)

the average dwell time satisfies

τa > τ∗a =
lnµ

(ln( c2a
c21b

) · 1
T )− α

, (3.2)

eαT c21b

a
< c2, (3.3)

then the system (2.1) is FTS with respect to (c1, c2, T,M), where
Ψ11i = ATi Pi + PiAi − αPi +WT

i +Wi + 2ε−1HT
a Ha,

Ψ12i = PiBi +XT
i −Wi,Ψ13i = Pi + Y Ti ,Ψ14i = ATi K

T
i + ZTi ,

Ψ15i = PiEa,Ψ16i = PiEb,Ψ19i = dWi,Ψ110i = UTi ,
Ψ22i = −Xi −XT

i + 2ε−1HT
b Hb,Ψ23i = −Y Ti ,Ψ24i = BTi K

T
i − ZTi ,

Ψ33i = −I,Ψ34i = KT
i ,Ψ44i = dRi − 2Ki and µ ≥ 1 satisfying

Pi ≤ µPj , Ri ≤ µRj ,∀i,j ∈ N. (3.4)

Proof Assume that the ith subsystem is activated during [tk, tk+1) and jth subsystem is
activated during [tk−1, tk), respectively.

For the ith subsystem, we introduce a Lyapunov-Krasovskii functional candidates of
the form

Vi(t) = V1i(t) + V2i(t) (3.5)

where
V1i(t) = xT (t)Pix(t) ,

V2i(t) =
∫ 0

−d
∫ t
t+θ

ẋT (s)Riẋ(s)dsdθ.
We have

V1i = xT (t)Pix(t)

= xT (t)M
1
2M−

1
2PiM

− 1
2M

1
2x(t)

= xT (t)M
1
2PiM

1
2x(t)

≥ λmin(P̄i)x
TM(t)x(t), where; P̄i = M−

1
2PiM

− 1
2 .

By taking the derivative along the trajectory of system (2.1), we have



Finite-Time Stability of a Class of Uncertain Switched ... 751

V̇1i(t) = 2xT (t)Piẋ(t)
= xT (t)[(Aσ + ∆Aσ(t))TPi + Pi(Aσ + ∆Aσ(t))]x(t)

+xT (t)Pi(Bσ + ∆Bσ(t))x(t− d(t)) + xT (t− d(t))(Bσ + ∆Bσ(t))TPix(t)
+xT (t)Pi[fσ(x(t), t)− fσ(0)] + [fσ(x(t), t)− fσ(0)]TPix(t).

The inequality (2.4) can be written as :

[fi(x(t), t)− fi(0)]T [fi(x(t), t)− fi(0)] ≤ xT (t)UTi Uix(t), (3.6)

thus

V̇1i(t) ≤ xT (t)ATi Pix(t) + xT (t)PiAix(t) + xT (t)UTi Uix(t) + xTPiBix(t− d(t))

+xT (t− d(t))BTi Pix(t) + xT (t)Pi[fi(x(t), t)− fi(0)]

+[fi(x(t), t)− fi(0)]TPix(t)− [fi(x(t), t)− fi(0)]T [fi(x(t), t)− fi(0)]

+εxT (t)PiEaE
T
a Pix(t) + ε−1xT (t)HT

a Hax(t) + εxT (t)PiEbE
T
b Pix(t)

+ε−1xT (t− d(t))HT
b Hbx(t− d(t)). (3.7)

V̇2i(t) = dẋT (t)Riẋ(t)−
∫ t

t−d
ẋT (s)Riẋ(s)dθ

≤ dẋT (t)Riẋ(t)−
∫ t

t−d(t)
ẋT (s)Riẋ(s)ds. (3.8)

On the other hand, by using Newton - Leibniz formula, we have

x(t)− x(t− d(t)) =

∫ t

t−d(t)
ẋ(s)ds. (3.9)

Then, for any appropriately dimensioned matrices ψi = [WT
i , X

T
i , Y

T
i , Z

T
i ]T ,

we obtain

2ξ(t)ψi[x(t)− x(t− d(t))−
∫ t

t−d(t)
ẋ(s)ds] = 0, (3.10)

where ξ(t) = [xT (t)xT (t− d(t))[fi(x(t), t)− fi(0)]T ẋT (t)]T .
By using the following identity relation, we obtain

ẋT (t)(−2Ki)(ẋ(t)− ((Aσ + ∆Aσ(t))x(t) + (Bσ + ∆Bσ(t))x(t− d(t))

+fσ(x(t), t)− fσ(0))) = 0. (3.11)

From (3.7), (3.8), (3.10) and (3.11), we have

V̇i(t)− αV1i ≤ ξT (t)(Πi + dψiR
−1
i ψTi )ξ(t)−

∫ t

t−d(t)
[ξT (t)ψiR

−1
i ψTi ξ(t)

+ξT (t)ψiẋ(s) + ẋT (s)ψTi ξ(t) + ẋT (s)Riẋ(s)]ds, (3.12)

where

Πi =


Φ11i PiBi +XT

i −Wi Pi + Y Ti ATi K
T
i + ZTi

∗ Φ21i −Y Ti BTi K
T
i − ZTi

∗ ∗ −I KT
i

∗ ∗ ∗ Φ44i

 ,
Φ11i =ATi Pi + PiAi − αPi +WT

i +Wi + UTi Ui + εPiEaE
T
a Pi
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+εPiEbE
T
b Pi + 2ε−1HT

a H
T
a ,

Φ21i =−Xi −XT
i + 2ε−1HT

b H
T
b ,

Φ44i = dRi − 2Ki + εKiEaE
T
aK

T
i + εKiEbE

T
b K

T
i .

Note that ∫ t

t−d(t)
[ψTi ξ(t) +Riẋ(s)]TR−1i [ψTi ξ(t) +Riẋ(s)]ds > 0. (3.13)

From Proposition 2.4., Πi < 0 is equivalent to Ωi < 0
where

Ωi =



~11i ~12i Pi + Y Ti ATi Ki + ZTi PiEa PiEb 0 0
∗ ~21i −Y Ti BTi Ki − ZTi 0 0 0 0
∗ ∗ −I Ki 0 0 0 0
∗ ∗ ∗ dRi − 2Ki 0 0 KiEa KiEb
∗ ∗ ∗ ∗ −1I

ε 0 0 0
∗ ∗ ∗ ∗ ∗ −1I

ε 0 0
∗ ∗ ∗ ∗ ∗ ∗ −1I

ε 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −1I

ε


,

where
~11i = ATi Pi + PiAi − αPi + UTi Ui +WT

i +Wi + 2ε−1HT
a Ha,

~12i = PiBi +XT
i −Wi

~21i = −Xi −XT
i + 2ε−1HT

b Hb.
From Proposition 2.4., we have (3.1) implies

Πi + dψiR
−1
i ψTi < 0. (3.14)

It follows from (3.13)- (3.14), we have

V̇i(t)− αV1i(t) < 0. (3.15)

According to (3.4) and (3.5), we get that

Vi(t) ≤ µVj(t) = µVj(t
−), (3.16)

V1i(t) ≤ µV1j(t),∀i, j ∈ N. (3.17)

From (3.15)-(3.17), for any t ∈ [tk, tk+1), we have that

V1i(t) ≤ Vi(t)

= Vi(tk) +

∫ t

tk

V̇i(s)ds

≤ µVj(t
−
k ) + α

∫ t

tk

V1i(s)ds

≤ µVj(tk−1) + µ

∫ tk

tk−1

V̇j(s)ds+ α

∫ t

tk

V1i(s)ds

≤ µVj(tk−1) + α

∫ t

tk−1

V1i(s)ds

≤ ...

≤ µkVj(t0) + α

∫ t

t0

V1i(s)ds. (3.18)
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According to Definition 2.2. and Lemma 2.3., we obtain

V1i(t) ≤ µNσ(t,t0)Vj(t0)e+α(t−t0)

≤ e(α+
ln(µ)
τa

)(t−t0)Vj(t0) (3.19)

Moreover, we have

axT (t)Mx(t) ≤ b‖x(t0)‖2he
(α+ lnµ

τa
)(t−t0), (3.20)

where a = min
i∈N

λmin(P̄i), b = max
i∈N

λmax(Pi) + d2max
i∈N

λmax(Ri).

From(3.19), we have

xT (t)Mx(t) ≤ b

a
e(α+

lnµ
τa

)T c21. (3.21)

From(3.3), we get that

xT (t)Mx(t) < c2. (3.22)

Hence, system (2.1) is FTS with respect to (c1, c2, T,M). �

4. Numerical Example

In this section, we provide numerical example to illustrate the effectiveness of our the-
oretical results.
Example 4.1 Consider the uncertain switched nonlinear systems (2.1) with the following
parameters :

A1 =

[
−2.5 2.2
−1.8 −2.2

]
, B1 =

[
−0.3 0
0.1 −0.4

]
,

E1 =

[
−0.07 0.004
0.005 0.075

]
, F1 =

[
sin(t) 0

0 sin(t)

]
, H1 =

[
0.04 −0.001
0.002 −0.05

]
,

E2 =

[
−0.045 0.002
0.001 0.04

]
, F2 =

[
sin(t) 0

0 sin(t)

]
, H2 =

[
0.03 −0.002
0.001 0.06

]
.

A2 =

[
−1.6 0.1
0.2 −1.81

]
, B2 =

[
−0.4 0.1

0 −0.2

]
,

E1 =

[
−0.07 0.004
0.005 0.075

]
, F1 =

[
sin(t) 0

0 sin(t)

]
, H1 =

[
0.04 −0.001
0.002 −0.05

]
,

E2 =

[
−0.045 0.002
0.001 0.04

]
, F2 =

[
sin(t) 0

0 sin(t)

]
, H2 =

[
0.03 −0.002
0.001 0.06

]
.

We assume that α = 1 and d(t) = 1 + sin2(t),

f1 =

[
0.1cos(0.01x1)
0.1cos(0.01x2)

]
, f2 =

[
0.2cos(0.01x1)
0.2cos(0.01x2)

]
,

where f1(0) = [0.10.1]T 6= 0, f2(0) = [0.20.2]T 6= 0.
The Lipschitz matrices are given by

U1 =

[
0.1 0
0 0.1

]
, U2 =

[
0.2 0
0 0.2

]
.
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By using LMI Control Toolbox in MATLAB, LMIs (3.1) and the condition (3.2), (3.3)
are feasible with solutions given by

d = 1, ε = 3, T = 8, c1 = 0.03, c2 = 6,M =

[
1 0
0 1

]
,

P1 =

[
0.8033 0.0049
0.0049 0.8171

]
, P2 =

[
0.8057 0.0053
0.0053 0.8158

]
,

R1 =

[
0.2792 0.0138
0.0138 0.2996

]
, R2 =

[
0.2869 0.0140
0.0140 0.2883

]
,

K1 =

[
0.3095 −0.0049
0.0203 0.3472

]
,K2 =

[
0.3325 0.0209
−0.0024 0.3208

]
,

W1 =

[
0.3395 −0.0107
−0.0265 0.3621

]
,W2 =

[
0.3571 −0.0156
0.0012 0.3493

]
,

X1 =

[
0.2495 −0.0065
0.0011 0.2833

]
, X2 =

[
0.2764 0.0036
−0.0052 0.2428

]
,

Y1 =

[
−0.0943 −0.0130
0.0080 −0.1127

]
, Y2 =

[
−0.1083 0.0061
−0.0139 −0.0942

]
,

Z1 =

[
0.0587 −0.0970
0.0822 0.0721

]
, Z2 =

[
0.0718 0.0851
−0.0957 0.0684

]
.

Thus, from Theorem 3.1., the uncertain switched nonlinear systems is FTS with re-
spect to (c1, c2, T,M). From (3.2), we get τa > τ∗a = lnµ

(ln(
c2a

c21b
)· 1T )−α = 1.8589. In this case,

we choose τa = 2. The trajectories of solution of the switched is given in Figure 3. In
Figure 4, it is shown that if the initial condition satisfies

sup
−d≤ θ≤0

{‖x(t0 + θ)‖, ‖ẋ(t0 + θ)‖} < c1,

then we have

xT (t)Mx(t) < c2,∀t ∈ [0, 8],

where x(0) =

[
0.03
−0.03

]
, ϕ(s) =

[
0.03 + sin(s)
−0.03 + sin(s)

]
, s ∈ [−d, 0).
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Figure 1. The trajectory of solution of subsystem 2.
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Figure 2. The trajectory of solution of subsystem 2.
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Figure 3. The trajectory of solution of switched system.
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Figure 4. Bounds of xT (t)Mx(t) where x(t) is the state of switched systems.
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5. Conclusion

In this paper, the problem of finite- time stability for a class of uncertain switched non-
linear systems with time-varying delay have been studied. By introducing an appropriate
Lyapunov-Krasovskii functional and using Gronwall-Bellman inequality, the conditions
for FTS of the systems have been established in terms of LMIs which could be solved by
various available algorithms.
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