On the Graded 2-Absorbing Primary Submodules of Graded Multiplication Modules

Fatemeh Soheilnia ${ }^{1}$ and Shiroyeh Payrovi ${ }^{1, *}$
${ }^{1}$ Department of Mathematics, Imam Khomeini International University, P.O.Box 34149-16818, Qazvin, Iran. e-mail : f.soheilnia@edu.ikiu.ac.ir; shpayrovi@sci.ikiu.ac.ir

Abstract

Let G be a multiplicative group, R be a G-graded commutative ring and M be a graded R module. A proper graded submodule N of M is called graded 2-absorbing primary, if whenever $a, b \in h(R)$ and $m \in h(M)$ with $a b m \in N$, then $a b \in\left(N:_{R} M\right)$ or $a m \in G r_{M}(N)$ or $b m \in G r_{M}(N)$. Let M be a graded finitely generated multiplication R-module. It is shown that $G r\left(N:_{R} M\right)=\left(G r_{M}(N):_{R} M\right)$. Furthermore, it is proved that $\left(N:_{R} M\right)$ is a graded 2-absorbing primary ideal of R, if N is a graded 2-absorbing primary submdoule of M. Moreover, it is generalized some results of graded 2-absorbing ideals over trivial extension of a ring.

MSC: 13A02; 16W50
Keywords: Graded 2-absorbing submodules; Graded 2-absorbing primary submodules; Graded multiplication modules

Submission date: 11.11.2019 / Acceptance date: 03.11.2021

1. Introduction

Let R be a commutative ring. A proper ideal I of R is called 2-absorbing, if whenever $a, b, c \in R$ with $a b c \in I$, then $a b \in I$ or $b c \in I$ or $a c \in I$, see [6]. As a generalization of the concept of 2 -absorbing ideal the authors in [13, 19], introduced and studied the concept of 2 -absorbing submodule of a module. Let M be an R-module. A proper submodule N of M is said to be a 2-absorbing submodule, if whenever $a, b \in R$ and $m \in M$ with $a b m \in N$, then $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$. Recently, in [7], the concept of primary ideals have studied. A proper ideal I of R is said to be a 2 -absorbing primary ideal, if whenever $a, b, c \in R$ with $a b c \in I$, then $a b \in I$ or $b c \in \sqrt{I}$ or $a c \in \sqrt{I}$. Some researchers in [11], have generalized the concept of primary ideals for submodules. A proper submodule N of M is called 2-absorbing primary, if whenever $a, b \in R$ and $m \in M$ with $a b m \in N$, then $a b \in\left(N:_{R} M\right)$ or $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$, where $M-\operatorname{rad}(N)$ is the intersection of all prime submodules of M containing N. If N is not contained in any prime submodule of M, then $M-\operatorname{rad}(N)=M$. All these concepts are introduced and studied in last decade and further on G-graded rings and graded R-modules, see

[^0]$[1,10,14-17]$. Let G be a multiplicative group with identity e. Then R is a G-graded ring, if there exists a family of additive subgroups $\left\{R_{g}\right\}_{g \in G}$ of R such that $R=\oplus_{g \in G} R_{g}$ and $R_{g} R_{h} \subseteq R_{g h}$ for all $g, h \in G$. The elements of R_{g} are called homogeneous of degree g and we write $h(R)=\cup_{g \in G} R_{g}$. Let R be a G-graded ring and M be an R-module. Then M is called a graded R-module, if there exists a family of subgroups (as abelian groups) $\left\{M_{g}\right\}_{g \in G}$ of M such that $M=\oplus_{g \in G} M_{g}$ and $R_{g} M_{h} \subseteq M_{g h}$ for all $g, h \in G$. We write $h(M)=\cup_{g \in G} M_{g}$ and the elements of $h(M)$ are called homogeneous. If $M=\oplus_{g \in G} M_{g}$ is a graded R-module, then for all $g \in G$ the subgroup M_{g} of M is an R_{e}-module. Let N be a submodule of $M=\oplus_{g \in G} M_{g}$. Then N is called a graded submodule, if $N=\oplus_{g \in G} N_{g}$ where $N_{g}=N \cap M_{g}$ for $g \in G$, see [12]. Let R be a G-graded ring. A proper graded ideal I of R is called graded 2-absorbing, if whenever $a, b, c \in h(R)$ with $a b c \in I$, then $a b \in I$ or $b c \in I$ or $a c \in I$. A graded ideal I of R is said to be graded 2-absorbing primary, if whenever $a, b, c \in h(R)$ with $a b c \in I$, then $a b \in I$ or $b c \in G r(I)$ or $a c \in G r(I)$, see [15]. The concept of graded 2-absorbing primary submodule of a graded R-module was defined in [17]. Here we find more results on the graded 2 -absorbing primary submodule of a graded multiplication module. Throughout this work G is a multiplicative group with identity e, R is G-graded commutative ring with non-zero identity and M is a graded R-module.

2. Graded 2-Absorbing Primary submodule

Let R be a G-graded ring and M be a graded R-module. As noted in [1], a graded proper submodule N of M is said to be graded 2-absorbing submodule, if whenever $a, b \in h(R)$ and $m \in h(M)$ with $a b m \in N$, then $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$. The graded radical of a graded submodule N of a graded R-module M, which is denoted by $G r_{M}(N)$, is defined to be the intersection of all graded prime submodules of M containing N. If N is not contained in any graded prime submodule of M, then $G r_{M}(N)=M$.

Definition 2.1. [17] Let R be a G-graded ring, M be a graded R-module and N be a proper graded submodule of M. Then N is called a graded 2-absorbing primary submodule of M, if whenever $a, b \in h(R)$ and $m \in h(M)$ with $a b m \in N$, then $a b \in\left(N:_{R} M\right)$ or $a m \in G r_{M}(N)$ or $b m \in G r_{M}(N)$.

In the following we show some straightforward results.
Lemma 2.2. Let R be a G-graded ring and M be a graded R-module.
(i) Every graded primary submodule of M is a graded 2-absorbing primary submodule of M.
(ii) Every graded 2-absorbing submodule of M is a graded 2-absorbing primary submodule of M.

A graded R-module M is called graded multiplication module, if for every graded submodule N of M, there exists a graded ideal I of R such that $N=I M$. In this case, it can easily see that if M is a graded multiplication R-module, then $N=\left(N:_{R} M\right) M$ for every graded submodule N of M.

Lemma 2.3. Let R be a G-graded ring, M be a graded finitely generated multiplication R-module and N be a graded submodule of M. Then $\left(G r_{M}(N):_{R} M\right)=G r\left(N:_{R} M\right)$.
Proof. First we show that $\left(G r_{M}(N):_{R} M\right) \subseteq G r\left(N:_{R} M\right)$. Let $a \in\left(G r_{M}(N):_{R} M\right)$. Then $a M \subseteq G r_{M}(N)=\operatorname{Gr}\left(N:_{R} M\right) M$, by [10, Theorem 9]. It can be easily to see
that $a^{t}+b \in \operatorname{Ann}(M)$ for some $b \in G r\left(N:_{R} M\right)$ and $t \in \mathbb{N}$. So $a^{t}+b \in G r\left(N:_{R} M\right)$ and $a \in \operatorname{Gr}\left(N:_{R} M\right)$. For the reverse inclusion assume that K is a graded prime submodule of M containing N. Then $\left(K:_{R} M\right)$ is a graded prime ideal of R, by [3, Proposition 2.5]. Thus $\left(N:_{R} M\right) \subseteq\left(K:_{R} M\right)$ and so $G r\left(N:_{R} M\right) \subseteq\left(K:_{R} M\right)$. Hence, $\operatorname{Gr}\left(N:_{R} M\right) M \subseteq\left(K:_{R} M\right) M=K$. Therefore, $\operatorname{Gr}\left(N:_{R} M\right) M \subseteq G r_{M}(N)$ and $G r\left(N:_{R} M\right) \subseteq\left(G r_{M}(N):_{R} M\right)$.
Theorem 2.4. Let R be a G-graded ring, M be a graded finitely generated multiplication R-module and N be a graded proper submodule of M. Then N is a graded 2-absorbing primary submodule of M if and only if $\left(N:_{R} M\right)$ is a graded 2-absorbing primary ideal of R.

Proof. Assume that N is a graded 2-absorbing primary submodule of M and $a b c \in\left(N:_{R}\right.$ $M)$ for some $a, b, c \in h(R)$. Let $c M=K$. Then $a b K \subseteq N$. By assumption N is a graded 2-absorbing primary submodule, so we conclude that $a b \in\left(N:_{R} M\right)$ or $a K \subseteq G r_{M}(N)$ or $b K \subseteq G r_{M}(N)$, see [17, Theorem 3]. If $a b \in\left(N:_{R} M\right)$ we are done. Suppose that $a K=a c M \subseteq G r_{M}(N)$, so by Lemma 2.3, $a c \in\left(G r_{M}(N):_{R} M\right)=G r\left(N:_{R} M\right)$ as desired. If $b K=b c M \subseteq G r_{M}(N)$ by a similar argument one can show $b c \in G r\left(N:_{R} M\right)$. Thus $\left(N:_{R} M\right)$ is a graded 2-absorbing primary ideal of R. The converse follows from [17, Theorem 8].

Proposition 2.5. Let R be a G-graded ring, M be a graded R-module and N be a graded 2 -absorbing primary submodule of M. Then $\operatorname{Gr}\left(N:_{R} m\right) \subseteq\left(G r_{M}(N):_{R} m\right)$, for every $m \in h(M) \backslash N$.

Proof. Assume that $a \in G r\left(N:_{R} m\right)$ and $a \in h(R)$. If $a \in G r\left(N:_{R} M\right)$, then there exists some positive integer n such that $a^{n} M \subseteq N \subseteq G r_{M}(N)$. So $a M \subseteq G r_{M}(N)$ since $G r_{M}(N)$ is the intersection of prime submodules of M contain N. Thus $a \in\left(G r_{M}(N):_{R}\right.$ $m)$. Now, assume that $a \in G r\left(N:_{R} m\right) \backslash G r\left(N:_{R} M\right)$. Then there exists some positive integer n such that $a^{n} m \in N$. Since N is a graded 2-absorbing primary submodule of M, we conclude that $a m \in G r_{M}(N)$ or $a^{n-1} m \in G r_{M}(N)$. If $a m \in G r_{M}(N)$, we are done. If $a^{n-1} m \in G r_{M}(N)$, then $a m \in G r_{M}(N)$ since $G r_{M}(N)$ is the intersection of prime submodules of M contain N.

Theorem 2.6. Let R be a G-graded ring, M be a graded finitely generated multiplication R-module. If N is a graded 2-absorbing primary submodule of M, then $G r_{M}(N)$ is a graded 2-absorbing submodule of M.

Proof. Assume that $a, b \in h(R)$ and $m \in h(M)$ such that $a b m \in G r_{M}(N)$ with $a b \notin$ $\left(G r_{M}(N):_{R} M\right)=I$. Since M is a graded multiplication R-module so there exists a graded ideal J of R such that $R m=J M$. Thus $a b J \subseteq I$ and $a b \notin I$. We claim that $a J \subseteq I$ or $b J \subseteq I$. Suppose in the contrary, $a J \nsubseteq I$ and $b J \nsubseteq I$. Hence, there exist $i_{1}, i_{2} \in I$ such that $a i_{1} \notin I$ and $b i_{2} \notin I$. Since $a b i_{1} \in I$ but $a b, a i_{1} \notin I$ and $I=\left(G r_{M}(N):_{R} M\right)=G r\left(N:_{R} M\right)$ is a graded 2-absorbing ideal, see [15, Theorem 2.10], we conclude that $b i_{1} \in I$. By a similar argument one can show that $a i_{2} \in I$. Now, $a b\left(i_{1}+i_{2}\right) \in I, a b \notin I$ and I is a graded 2-absorbing ideal, we conclude that either $a\left(i_{1}+i_{2}\right) \in I$ or $b\left(i_{1}+i_{2}\right) \in I$. If $a\left(i_{1}+i_{2}\right) \in I$, then $a i_{1} \in I$, which is a contradiction. Similarly, by $b\left(i_{1}+i_{2}\right) \in I$ we get a contradiction. Hence, either $a J \subseteq I$ or $b J \subseteq I$. Then $a m \in G r_{M}(N)$ or $b m \in G r_{M}(N)$, as needed. Therefore, $G r_{M}(N)$ is graded 2-absorbing.

Lemma 2.7. Let R be a G-graded ring, M be a graded multiplication R-module and N be a graded 2-absorbing primary submodule of M such that $G r_{M}(N)=N$. Then $\left(N:_{R} m\right)$ is graded 2-absorbing primary, for every $m \in h(M) \backslash N$.

Proof. Assume that $m \in h(M) \backslash N, a, b, c \in h(R)$ and $a b c \in\left(N:_{R} m\right)$. By hypothesis, N is graded 2- absorbing primary, so from $a b c m \in N$, we conclude that $a b \in\left(N:_{R} M\right)$ or $b c m \in G r_{M}(N)$ or $a c m \in G r_{M}(N)$. Then $a b \in\left(N:_{R} m\right)$ or $b c \in\left(G r_{M}(N):_{R} m\right)=$ $\left(N:_{R} m\right) \subseteq G r\left(N:_{R} m\right)$ or $a c \in\left(G r_{M}(N):_{R} m\right)=\left(N:_{R} m\right) \subseteq G r\left(N:_{R} m\right)$, as desired.

Theorem 2.8. Let R be a G-graded ring, M be a graded multiplication R-module and N be a graded 2-absorbing submodule of M such that $G r_{M}(N)=N$ and $\operatorname{Gr}\left(N:_{R} M\right)$ is a prime ideal of R. Then the following statements hold:
(i) If $m \in h(M) \backslash N$, then $\left(N:_{R} m\right)$ is a graded prime ideal.
(ii) If $m, m^{\prime} \in h(M) \backslash N$, then $\left(N:_{R} m\right) \subseteq\left(N:_{R} m^{\prime}\right)$ or $\left(N:_{R} m^{\prime}\right) \subseteq\left(N:_{R} m\right)$.

Proof. (i) Assume that $m \in h(M) \backslash N, a, b \in h(R)$ and $a b \in\left(N:_{R} m\right)$. So $a b m \in N$. Thus $a m \in N$ or $b m \in N$ or $a b \in\left(N:_{R} M\right)$ since N is graded 2-absorbing. If $a m \in N$ or $b m \in N$, we are done. Now suppose that $a b \in\left(N:_{R} M\right)$. By [16, Theorem 2.2], $\left(N:_{R} M\right)$ is a graded 2-absorbing ideal of R and by hypotheses $\operatorname{Gr}\left(N:_{R} M\right)$ is a graded prime ideal, see [5, Theorrem 2.2]. Hence, $a b \in G r\left(N:_{R} M\right)$ which implies that $a \in \operatorname{Gr}\left(N:_{R} M\right)$ or $b \in G r\left(N:_{R} M\right)$. If $a \in G r\left(N:_{R} M\right)$, then $a \in\left(N:_{R} m\right)$ since $G r\left(N:_{R} m\right) \subseteq\left(G r_{M}(N):_{R} m\right)=\left(N:_{R} m\right)$, by Proposition 2.5. If $b \in G r\left(N:_{R} M\right)$, then $b \in\left(N:_{R} m\right)$, as needed.
(ii) Assume that $\left(N:_{R} m^{\prime}\right) \nsubseteq\left(N:_{R} m\right)$. We have to show that $\left(N:_{R} m\right) \subseteq\left(N:_{R} m^{\prime}\right)$. Let $a \in\left(N:_{R} m\right)$ and $b \in\left(N:_{R} m^{\prime}\right) \backslash\left(N:_{R} m\right)$. If $a\left(m+m^{\prime}\right) \in N$, then $a m^{\prime} \in N$ and we are done. Suppose that $a\left(m+m^{\prime}\right) \notin N$. Then by hypotheses and $b\left(m+m^{\prime}\right) \notin N$ it follows that $a b \in\left(N:_{R} M\right)$. If $b \in \operatorname{Gr}\left(N:_{R} M\right)$, then $b \in G r\left(N:_{R} m\right) \subseteq\left(G r_{M}(N):_{R}\right.$ $m)=\left(N:_{R} m\right)$ which is a contradiction. Hence, $a \in G r\left(N:_{R} M\right) \subseteq\left(G r_{M}(N):_{R} m^{\prime}\right)=$ ($N:_{R} m^{\prime}$) as needed.

Theorem 2.9. Let R be a G-graded Noetherian ring and I be a graded 2-absorbing (res., 2-absorbing primary) ideal of R. Let M be a finitely generated faithful multiplication graded R-module such that $\operatorname{Ass}_{G}(M / G r(I) M)$ be a totally ordered set. Then $I M$ is a graded 2-absorbing (res., 2-absorbing primary) submodule of M.

Proof. Assume that $a, b \in h(R)$ and $m \in h(M)$ such that $a b m \in I M$. By a similar argument to that of the proof of [11, Theorem 2.12] we get that $a m \in I M$ or $b m \in I M$ or $a b \in I$. Now, the result follows by [4, Lemma 3.10]. For the second part, we need to show that $G r_{M}(I M)=G r(I) M$. By [10, Theorem 8(i)] we have

$$
G r(I) M=\left(\bigcap_{\substack{I \subseteq \mathfrak{p} \\ \mathfrak{p} \text { is prime }}} \mathfrak{p}\right) M=\bigcap_{I M \subseteq p M} \mathfrak{p} M \supseteq G r_{M}(I M)
$$

On the other hand,

$$
G r_{M}(I M)=\bigcap_{\substack{I M \subseteq Q \\ \mathrm{Q} \text { is prime }}} Q=\bigcap_{I M \subseteq Q}\left(Q:_{R} M\right) M=\left(\bigcap_{I \subseteq\left(Q::_{R} M\right)}\left(Q:_{R} M\right)\right) M .
$$

So $G r_{M}(I M) \supseteq G r(I) M$ and $G r_{M}(I M)=G r(I) M$. Now, the result follows by [11, Theorem 2.12].

Let I be a graded ideal of R and N be a graded submodule of a graded R-module M. The graded residual of N by I is defined $\left(N:_{M} I\right)=\{m \in h(M) \mid m I \subseteq N\}$. In the following we show more results on graded residual submodule ($N:_{M} I$).
Lemma 2.10. Let R be a G-graded ring, M be a graded R-module and N be a graded submodule of M. Then the following statements hold:
(i) $\left(N:_{M} I\right)$ is a graded submodule of M.
(ii) If M is a graded multiplication R-module, then

$$
\left(N:_{M} I\right)=\left(N:_{R} I M\right) M=\left(\left(N:_{R} M\right):_{R} I\right) M .
$$

Proof. (i) Let $m=\sum_{g \in G} m_{g} \in\left(N:_{M} I\right)$. Without loss of generality we may assume that $m=\sum_{i=1}^{t} m_{g_{i}}$, where $m_{g_{i}} \neq 0$ for all $1 \leq i \leq t$. Thus we conclude that $I m=$ $\sum_{i=1}^{t} I m_{g_{i}} \subseteq N$ and so $I m_{g_{i}} \subseteq N$, for all $1 \leq i \leq t$. Hence, $m_{g_{i}} \in\left(N:_{M} I\right)$, for all $1 \leq i \leq t$.
(ii) Obviously, $\left(N:_{R} I M\right) M=\left(\left(N:_{R} M\right):_{R} I\right) M$. Now, we have to show that $\left(N:_{M} I\right)=\left(N:_{R} I M\right) M$. Since M is a graded multiplication R-module, we have $\left(N:_{R} I M\right) I M=\left(N:_{R} I M\right)\left(I M:_{R} M\right) M \subseteq\left(N:_{R} M\right) M=N$ and hence $\left(N:_{R}\right.$ $I M) M \subseteq\left(N:_{M} I\right)$. For the reverse inclusion suppose that $m \in\left(N:_{M} I\right)$. Thus $I\left(R m:_{R} M\right) \subseteq\left(I m:_{R} M\right) \subseteq\left(N:_{R} M\right)$. Hence $\left(R m:_{R} M\right) \subseteq\left(\left(N:_{R} M\right):_{R} I\right)$ and $R m=\left(R m:_{R} M\right) M \subseteq\left(\left(N:_{R} M\right):_{R} I\right) M=\left(N:_{R} I M\right) M$. Thus $\left(N:_{M} I\right) \subseteq\left(N:_{R}\right.$ $I M) M$, as desired.

Proposition 2.11. Let R be a G-graded ring, M be a graded R-module and N be a graded submodule of M. Then the following statements are equivalent:
(i) N is a graded 2-absorbing primary submodule of M;
(ii) $\left(N:_{M} a b\right) \subseteq\left(G r_{M}(N):_{M} a\right) \cup\left(G r_{M}(N):_{M} b\right)$, for every $a, b \in h(R)$ and $m \in h(M)$ with $a b \notin\left(N:_{R} M\right)$.

Proof. (i) \Rightarrow (ii) Assume that $m \in\left(N:_{M} a b\right)$ for some $m \in h(M)$. Thus $a b m \in N$. Since N is graded 2-absorbing primary and $a b \notin\left(N:_{R} M\right)$, we get that $a m \in G r_{M}(N)$ or $b m \in G r_{M}(N)$. Hence, $m \in\left(G r_{M}(N):_{R} a\right)$ or $m \in\left(G r_{M}(N):_{R} b\right)$. Therefore, $\left(N:_{M} a b\right) \subseteq\left(G r_{M}(N):_{M} a\right) \cup\left(G r_{M}(N):_{M} b\right)$, as required.
$(i i) \Rightarrow(i)$ Assume that $a, b \in h(R), m \in h(M)$ and $a b m \in N$. Assume that $a b \notin\left(N:_{R}\right.$ $M)$. By hypotheses $\left(N:_{M} a b\right) \subseteq\left(G r_{M}(N):_{M} a\right) \cup\left(G r_{M}(N):_{M} b\right)$, we conclude that $a m \in G r_{M}(N)$ or $b m \in G r_{M}(N)$, as needed.

Proposition 2.12. Let R be a G-graded ring, M be a graded multiplication R-module and N be a graded 2-absorbing primary submodule of M such that $\operatorname{Gr}_{M}(N)=N$. Then $\left(N:_{M} I\right)$ is a graded 2-absorbing primary submodule of M.

Proof. Assume that $a, b \in h(R), m \in h(M)$ and $a b m \in\left(N:_{M} I\right)$ with $a b M \nsubseteq\left(N:_{M} I\right)$. So from $a b m I \subseteq N$, we obtain $a b I \subseteq\left(N:_{R} m\right)$. By Lemma 2.7, $\left(N:_{R} m\right)$ is a graded 2 -absorbing primary ideal. Suppose that $a b \notin\left(N:_{R} m\right)$. Hence $a I \subseteq G r\left(N:_{R} m\right)$ or $b I \subseteq G r\left(N:_{R} m\right)$, by [15, Proposition 2.28]. If $a I \subseteq G r\left(N:_{R} m\right) \subseteq\left(G r_{M}(N):_{R} m\right)=$ $\left(N:_{R} m\right)$, then $a m \in\left(N:_{M} I\right)$, by Proposition 2.5. If $b I \subseteq G r\left(N:_{R} m\right)$, then by a similar argument we get that $b m \in\left(N:_{M} I\right)$. Therefore, the proof is complete.

Theorem 2.13. Let R be a G-graded ring, I be a graded multiplication ideal and M be a finitely generated graded multiplication R-module. Then N is a graded 2 -absorbing primary submodule of IM if and only if $\left(N:_{M} I\right)$ is a graded 2-absorbing primary submodule of M.

Proof. By [8, Corollary 2.8], $I M$ is a graded multiplication R-module. By Lemma 2.10(ii), we get that $\left(N:_{R} I M\right)=\left(\left(N:_{M} I\right):_{R} M\right)$. Then N is a graded 2-absorbing primary submodule of $I M$ if and only if $\left(N:_{M} I\right)$ is a graded 2-absorbing primary submodule of M, by Theorem 2.4.

3. GRaded 2-ABSORBING IDEALS OF TRIVIAL EXTENSION OF A RING

Let R be a ring with identity and M be an R-module. Then $R(+) M$ with addition $(a, m)+(b, n)=(a+b, m+n)$ and multiplication $(a, m)(b, n)=(a b, a n+b m)$ is a commutative ring. The ring $R(+) M$ is said to be trivial extension of R by M or the idealization of M. We view R as a subring of $R(+) M$ via $r \rightarrow(r, 0)$.

Let $R=\oplus_{g \in G} R_{g}$ be a G-graded commutative ring and $M=\oplus_{g \in G} M_{g}$ be a graded R-module. Then $R(+) M=\oplus_{g \in G}(R(+) M)_{g}$ is a graded ring, denoted by $G R(M)$, where $(R(+) M)_{g}=R_{g} \oplus M_{g}$ and $(R(+) M)_{g}(R(+) M)_{h}=\left(R_{g} \oplus M_{g}\right)\left(R_{h} \oplus M_{h}\right)=R_{g} R_{h} \oplus$ $\left(R_{g} M_{h}+R_{h} M_{g}\right) \subseteq R_{g h} \oplus M_{g h}$ for all $g, h \in G$, see [9, 18].

Theorem 3.1. Let R be a G-graded ring, I be a graded proper ideal and M be a graded R-module. Then the following statement are equivalent:
(i) I is a graded 2-absorbing ideal of R;
(ii) $I(+) M$ is a graded 2-absorbing ideal of $G R(M)$.

Proof. (i) \Rightarrow (ii) Assume that $\left(a_{1}, m_{1}\right)\left(a_{2}, m_{2}\right)\left(a_{3}, m_{3}\right) \in I(+) M$ for some $\left(a_{1}, m_{1}\right)$, $\left(a_{2}, m_{2}\right),\left(a_{3}, m_{3}\right) \in h(R(+) M)$. Thus $a_{1} a_{2} a_{3} \in I$, where $a, b, c \in h(R)$. Since I is graded 2 -absorbing, we conclude that $a_{1} a_{2} \in I$ or $a_{2} a_{3} \in I$ or $a_{1} a_{3} \in I$. Hence, $\left(a_{1}, m_{1}\right)\left(a_{2}, m_{2}\right) \in$ $I(+) M$ or $\left(a_{2}, m_{2}\right)\left(a_{3}, m_{3}\right) \in I(+) M$ or $\left(a_{1}, m_{1}\right)\left(a_{3}, m_{3}\right) \in I(+) M$, as needed.
(ii) \Rightarrow (i) Assume that $a b c \in I$ for some $a, b, c \in h(R)$. Then $(a, 0)(b, 0)(c, 0) \in$ $I(+) M$. Since $I(+) M$ is a graded 2-absorbing ideal, we get that $\left(a_{1}, 0\right)\left(a_{2}, 0\right) \in I(+) M$ or $\left(a_{2}, 0\right)\left(a_{3}, 0\right) \in I(+) M$ or $\left(a_{1}, 0\right)\left(a_{3}, 0\right) \in I(+) M$ and hence $a b \in I$ or $b c \in I$ or $a c \in I$. Then I is a graded 2 -absorbing ideal of R.

Example 3.2. Let $R=\mathbb{Z} \oplus \mathbb{Z}$ be a \mathbb{Z}_{2}-graded ring and $M=\mathbb{Z} \oplus \mathbb{Z}$ be a graded R-module. Suppose that $I=15 \mathbb{Z} \oplus\{0\}$ and $N=12 \mathbb{Z} \oplus\{0\}$. Then $I(+) N$ is a graded ideal of $G R(M)$ but is not 2-absorbing. Since $(3,2)(3,2)(5,4) \in I(+) N$, but $(3,2)(5,4) \notin I(+) N$ and $(3,2)(3,2) I(+) M \nsubseteq I(+) N$. Notice to the fact that I is a 2 -absorbing ideal of R and N is not a 2 -absorbing submodule of M.

An ideal H of $R(+) M$ is said to be homogeneous, if $H=I(+) N$ for some ideal I of R and some submodule N of M and $I M \subseteq N$, see [2].

Theorem 3.3. Let R be a G-graded ring and I be a graded ideal of R, let N be a graded submodule of M. If $I(+) N$ is a graded homogeneous 2-absorbing ideal of $G R(M)$, then I and N are graded 2-absorbing too.
Proof. Assume that $I(+) N$ is a graded 2-absorbing ideal of $G R(M)$. Let $a, b, c \in h(R)$ such that $a b c \in I$. Then $(a, 0)(b, 0)(c, 0) \in I(+) N$. Since $I(+) N$ is a graded 2-absorbing ideal, we conclude that $(a, 0)(b, 0) \in I(+) N$ or $(b, 0)(c, 0) \in I(+) N$ or $(a, 0)(c, 0) \in I(+) N$.

So $a b \in I$ or $b c \in I$ or $a c \in I$. Hence, I is a graded 2-absorbing ideal of R. Now, suppose that $a b m \in N$ for some $a, b \in h(R)$ and $m \in h(M)$. Since $I(+) N$ is a graded homogenous 2 -absorbing ideal, we have $(a, 0)(b, 0)(0, m) \in I(+) N$. Then $(a, 0)(b, 0) \in I(+) N$ or $(a, 0)(0, m) \in I(+) N$ or $(b, 0)(0, m) \in I(+) N$. Thus $a b \in I \subseteq\left(N:_{R} M\right)$ and hence $a m \in N$ or $b m \in N$, as needed.

Proposition 3.4. Let R be a G-graded ring and I be a graded ideal of R, let N be a graded submodule of M. Then the following statements hold:
(i) I is a prime ideal if and only if $I(+) N$ is a graded prime ideal of $G R(M)$.
(ii) If $I(+) N$ is a graded homogeneous ideal of $G R(M)$, then

$$
G r(I(+) N)=G r(I)(+) M
$$

Proof. (i) The proof is satisfy by [18, Proposition 3.1].
(ii) Let $(a, m) \in G r(I(+) N)$. Then there exists positive integer n such that $(a, m)^{n} \in$ $I(+) M$. Thus $(a, m)^{n}=\left(a^{n}, n a^{n-1} m\right) \in I(+) M$. Hence, $\operatorname{Gr}(I(+) N) \subseteq G r(I)(+) M$.

For the reverse inclusion, suppose that $(a, m) \in G r(I)(+) M$. Thus $a^{n} \in I$, for some positive integer n. Consider that $(a, m)^{n+1}=\left(a^{n+1},(n+1) a^{n} m\right)$ and $(a, m)^{n+1} \in$ $I(+) I M \subseteq I(+) N$ since N is a graded homogeneous submodule of M. Thus $(a, m) \in$ $G r(I(+) N)$ and so $G r(I)(+) M \subseteq G r(I(+) N)$.

Theorem 3.5. Let R be a G-graded ring, I be a graded proper ideal of R and M be a graded R-module. Then the following statement are equivalent:
(i) I is a graded 2-absorbing primary ideal of R;
(ii) $I(+) M$ is a graded 2-absorbing primary ideal of $G R(M)$.

Proof. By Proposition 3.4 we have $G r(I(+) M)=G r(I)(+) M$, now the complete proof is satisfy with similar way such as Theorem 3.1.

Acknowledgements

We would like to thank the referees for careful reading.

References

[1] K. Al-Zoubi, R. Abu-Dawwas, On graded 2-absorbing and weakly graded 2-absorbing submodules, J. Math. Sciences: Advances and Applications 28 (2014) 45-60.
[2] D.D. Anderson, M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009) 3-56.
[3] S.E. Atani, F. Farzalipour, On graded secondary modules, Turk. J. Math. 31 (2007) 371-378.
[4] S.E. Atani, R.E. Atani, Graded multiplication modules and the graded ideal $\Theta_{g}(M)$, Turk. J. Math. 33 (2009) 1-9.
[5] S. Babaei, Sh. Payrovi, Two absorbing ideals in graded rings, The 45-th Annual Iranian Mathematics Conference, 26-29 August 2014.
[6] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007) 417-429.
[7] A. Badawi, U. Tekir, E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc. 51 (2014) 1163-1173.
[8] J. Escoriza, B. Torrecillas, Multiplication graded rings, Algebra and Number Theory, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York - Basel (2000), 127-136.
[9] J.A. Huckaba, Commutative rings with zero-divisors, Monographs and textbooks in Pure and Applied mathematics, Marcel Dekker, Now York, 1988.
[10] K. Hakan Oral, U. Tekir, A.G. Agargun, On Graded Prime and Primary Submodules, Turk. J. Math. 35 (2011) 159-167.
[11] H. Mostafanasab, E. Yetkin, U. Tekir, A. Yousefan Darani, On 2-Absorbing primary submodules of modules over commutative rings, An. Univ. Constanta. 24 (2016) 335-351.
[12] C. Nastasescu, F. Van Oystaeyen, Graded ring theory, Mathematical Library 28, North Holand, Amsterdam, 1982.
[13] Sh. Payrovi, S. Babaei, On 2-absorbing submodules, Algebra Collq. 19 (2012) 913920.
[14] M. Refai, K. Al-Zoubi, On graded primary ideals, Turk. J. Math. 28 (2004) 217-229.
[15] F. Soheilnia, A. Yousefian Darani, On graded 2-absorbing primary and graded weakly 2-absorbing primary ideals, Kyungpook Math. J. 57 (2017) 559-580.
[16] F. Soheilnia, A. Yousefian Darani, On graded 2-absorbing submodules over Grmultiplication modules, Matematicki Vesnik 70 (2018) 364-376.
[17] E. Yetkin Celikel, On graded 2-absorbing primary submodules, International Journal of Pure and Applied Mathematics 109 (2016) 869-879.
[18] A. Yousefian Darani, Graded primal submodules of graded modules, J. Korean Math. Soc. 48 (2011) 927-938.
[19] A. Yousefian Darani, F. Soheilnia, On 2-absorbing and weakly 2-absorbing submodules, Thai J. Math. 9 (2011) 577-584.

[^0]: *Corresponding author.

