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Abstract Let G be a multiplicative group, R be a G-graded commutative ring and M be a graded R-
module. A proper graded submodule N of M is called graded 2-absorbing primary, if whenever a,b € h(R)
and m € h(M) with abm € N, then ab € (N :g M) or am € Grp(N) or bm € Grp(N). Let M be a
graded finitely generated multiplication R-module. It is shown that Gr(N :g M) = (Grp(N) :g M).
Furthermore, it is proved that (N :g M) is a graded 2-absorbing primary ideal of R, if N is a graded
2-absorbing primary submdoule of M. Moreover, it is generalized some results of graded 2-absorbing

ideals over trivial extension of a ring.
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1. INTRODUCTION

Let R be a commutative ring. A proper ideal I of R is called 2-absorbing, if whenever
a,b,c € R with abc € I, then ab € I or be € I or ac € I, see [6]. As a generalization of the
concept of 2-absorbing ideal the authors in [13, 19], introduced and studied the concept of
2-absorbing submodule of a module. Let M be an R-module. A proper submodule N of
M is said to be a 2-absorbing submodule, if whenever a,b € R and m € M with abm € N,
then ab € (N :g M) or am € N or bm € N. Recently, in [7], the concept of primary
ideals have studied. A proper ideal I of R is said to be a 2-absorbing primary ideal, if
whenever a, b, ¢ € R with abc € I, then ab € I or be € VT or ac € V/I. Some researchers in
[11], have generalized the concept of primary ideals for submodules. A proper submodule
N of M is called 2-absorbing primary, if whenever a,b € R and m € M with abm € N,
then ab € (N :g M) or am € M-rad(N) or bm € M-rad(N), where M-rad(N) is
the intersection of all prime submodules of M containing N. If NV is not contained in
any prime submodule of M, then M-rad(N) = M. All these concepts are introduced
and studied in last decade and further on G-graded rings and graded R-modules, see
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[, 10, 14-17]. Let G be a multiplicative group with identity e. Then R is a G-graded
ring, if there exists a family of additive subgroups {R,}4cc of R such that R = @4ca R,
and B4Ry, C Ry, for all g, h € G. The elements of R, are called homogeneous of degree g
and we write h(R) = UgegR,. Let R be a G-graded ring and M be an R-module. Then
M is called a graded R-module, if there exists a family of subgroups (as abelian groups)
{My}gec of M such that M = @yecqMy and RgM;, C Mgy, for all g,h € G. We write
h(M) = UgeaM, and the elements of h(M) are called homogeneous. If M = @4caM, is
a graded R-module, then for all g € G the subgroup M, of M is an R.-module. Let N be
a submodule of M = ©4eqMy. Then N is called a graded submodule, if N = ®geqNy
where Ny = NN M, for g € G, see [12]. Let R be a G-graded ring. A proper graded ideal
I of R is called graded 2-absorbing, if whenever a,b,c € h(R) with abc € I, then ab € T
or bc € I or ac € I. A graded ideal I of R is said to be graded 2-absorbing primary, if
whenever a, b, ¢ € h(R) with abc € I, then ab € I or be € Gr(I) or ac € Gr(I), see [15].
The concept of graded 2-absorbing primary submodule of a graded R-module was defined
in [17]. Here we find more results on the graded 2-absorbing primary submodule of a
graded multiplication module. Throughout this work G is a multiplicative group with
identity e, R is G-graded commutative ring with non-zero identity and M is a graded
R-module.

2. GRADED 2-ABSORBING PRIMARY SUBMODULE

Let R be a G-graded ring and M be a graded R-module. As noted in [1], a graded
proper submodule N of M is said to be graded 2-absorbing submodule, if whenever
a,b € h(R) and m € h(M) with abm € N, then ab € (N :g M) or am € N or bm € N.
The graded radical of a graded submodule NV of a graded R-module M, which is denoted by
Grar(N), is defined to be the intersection of all graded prime submodules of M containing
N. If N is not contained in any graded prime submodule of M, then Gry(N) = M.

Definition 2.1. [17] Let R be a G-graded ring, M be a graded R-module and N be a
proper graded submodule of M. Then N is called a graded 2-absorbing primary submod-
ule of M, if whenever a,b € h(R) and m € h(M) with abm € N, then ab € (N :gr M) or
am € Gray(N) or bm € Gry(N).

In the following we show some straightforward results.

Lemma 2.2. Let R be a G-graded ring and M be a graded R-module.

(i) Fvery graded primary submodule of M is a graded 2-absorbing primary sub-
module of M.

(ii) Every graded 2-absorbing submodule of M is a graded 2-absorbing primary
submodule of M.

A graded R-module M is called graded multiplication module, if for every graded
submodule N of M, there exists a graded ideal I of R such that N = IM. In this case,
it can easily see that if M is a graded multiplication R-module, then N = (N :zg M)M
for every graded submodule N of M.

Lemma 2.3. Let R be a G-graded ring, M be a graded finitely generated multiplication
R-module and N be a graded submodule of M. Then (Gry(N) :r M) = Gr(N :g M).

Proof. First we show that (Gras(N) :g M) C Gr(N :g M). Let a € (Gry(N) :r M).
Then aM C Gry(N) = Gr(N :g M)M, by [10, Theorem 9]. It can be easily to see
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that a® +b € Ann(M) for some b € Gr(N :g M) and t € N. So a® +b € Gr(N :g M)
and ¢ € Gr(N :g M). For the reverse inclusion assume that K is a graded prime
submodule of M containing N. Then (K :p M) is a graded prime ideal of R, by [3,
Proposition 2.5]. Thus (N :g M) C (K :g M) and so Gr(N :g M) C (K :gp M).
Hence, Gr(N :g M)M C (K :p M)M = K. Therefore, Gr(N :g M)M C Gry(N) and
G’I‘(N ‘R M)Q(GT]V[(N) :RM). ]

Theorem 2.4. Let R be a G-graded ring, M be a graded finitely generated multiplication
R-module and N be a graded proper submodule of M. Then N is a graded 2-absorbing
primary submodule of M if and only if (N :gr M) is a graded 2-absorbing primary ideal
of R.

Proof. Assume that N is a graded 2-absorbing primary submodule of M and abc € (N :g
M) for some a,b,c € h(R). Let cM = K. Then abK C N. By assumption N is a graded
2-absorbing primary submodule, so we conclude that ab € (N :g M) or aX C Grp(N)
or bK C Gry(N), see [17, Theorem 3]. If ab € (N :g M) we are done. Suppose that
aK = acM C Gry(N), so by Lemma 2.3, ac € (Gry(N) :g M) = Gr(N :g M) as
desired. If bK = bcM C Grp(N) by a similar argument one can show be € Gr(N g M).
Thus (N :g M) is a graded 2-absorbing primary ideal of R. The converse follows from
[17, Theorem 8]. L]

Proposition 2.5. Let R be a G-graded ring, M be a graded R-module and N be a graded
2-absorbing primary submodule of M. Then Gr(N :gr m) C (Graf(N) :r m), for every
m € h(M)\ N.

Proof. Assume that a € Gr(N :g m) and a € h(R). If a € Gr(N :g M), then there
exists some positive integer n such that «” M C N C Grp(N). So aM C Grp(N) since
Gryr(N) is the intersection of prime submodules of M contain N. Thus a € (Gry(N) :r
m). Now, assume that a € Gr(N :g m)\ Gr(N :g M). Then there exists some positive
integer n such that a™m € N. Since N is a graded 2-absorbing primary submodule of M,
we conclude that am € Gry (N) or a®*m € Gry(N). If am € Gry(N), we are done.
If a"~'m € Gry(N), then am € Gry(N) since Gry(N) is the intersection of prime
submodules of M contain N. L]

Theorem 2.6. Let R be a G-graded ring, M be a graded finitely generated multiplication
R-module. If N is a graded 2-absorbing primary submodule of M, then Gras(N) is a
graded 2-absorbing submodule of M .

Proof. Assume that a,b € h(R) and m € h(M) such that abm € Gry(N) with ab ¢
(Gray(N) :r M) = I. Since M is a graded multiplication R-module so there exists
a graded ideal J of R such that Rm = JM. Thus abJ C I and ab ¢ I. We claim
that aJ C I or bJ C I. Suppose in the contrary, aJ ¢ I and bJ ¢ I. Hence, there
exist i1,io € I such that ai; ¢ I and biy ¢ I. Since abiy € I but ab,ai; ¢ I and
I = (GTM(N) ‘R M) = G?“(N ‘R M) is a graded 2-absorbing ideal, see [15, Theorem
2.10], we conclude that bi; € I. By a similar argument one can show that aiz € I. Now,
ab(iy +1i2) € I, ab ¢ I and I is a graded 2-absorbing ideal, we conclude that either
a(iy +i9) € I or b(iy +1i9) € I. If a(iy + i) € I, then ai; € I, which is a contradiction.
Similarly, by b(i; +i2) € I we get a contradiction. Hence, either aJ C I or bJ C I. Then
am € Gry(N) or bm € Gry(N), as needed. Therefore, Gry(N) is graded 2-absorbing.
m
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Lemma 2.7. Let R be a G-graded ring, M be a graded multiplication R-module and N be
a graded 2-absorbing primary submodule of M such that Gryf(N) = N. Then (N :g m)
is graded 2-absorbing primary, for every m € h(M)\N.

Proof. Assume that m € h(M)\ N,a,b,c € h(R) and abc € (N :g m). By hypothesis,
N is graded 2- absorbing primary, so from abem € N, we conclude that ab € (N :g M)
or bem € Gry(N) or acm € Grps(N). Then ab € (N :g m) or be € (Gry(N) :g m) =
(N:gm) CGr(N:gm)orace (Gry(N):gm)=(N:gm)C Gr(N:gpm), as desired.

Theorem 2.8. Let R be a G-graded ring, M be a graded multiplication R-module and N
be a graded 2-absorbing submodule of M such that Gras(N) = N and Gr(N :g M) is a
prime ideal of R. Then the following statements hold:

(i) If m € h(M)\ N, then (N :g m) is a graded prime ideal.

(i) If mym’ € h(M)\ N, then (N :g m) C (N :gm/) or (N :gm') C (N :gm).

Proof. (i) Assume that m € h(M)\ N, a,b € h(R) and ab € (N :g m). So abm € N.
Thus am € N or b € N or ab € (N :g M) since N is graded 2-absorbing. If am € N
or bm € N, we are done. Now suppose that ab € (N :g M). By [16, Theorem 2.2],
(N :g M) is a graded 2-absorbing ideal of R and by hypotheses Gr(N :g M) is a
graded prime ideal, see [5, Theorrem 2.2]. Hence, ab € Gr(N :g M) which implies that
a € Gr(N :g M)orbe Gr(N :g M). If a € Gr(N :g M), then a € (N :g m) since
Gr(N :g m) C (Gry(N) :g m) = (N :g m), by Proposition 2.5. If b € Gr(N :g M),
then b € (N :g m), as needed.

(ii) Assume that (N :g m') € (N :g m). We have to show that (N :g m) C (N :g m/).
Let a € (N:gm)and be (N :gm/)\ (N:gm). If aflm+ m') € N, then am’ € N and
we are done. Suppose that a(m +m’) € N. Then by hypotheses and b(m +m’) € N it
follows that ab € (N :g M). If b € Gr(N :g M), then b € Gr(N :g m) C (Gry(N) :r
m) = (N :g m) which is a contradiction. Hence, a € Gr(N :g M) C (Gry(N) :g m') =
(N :g m') as needed. ]

Theorem 2.9. Let R be a G-graded Noetherian ring and I be a graded 2-absorbing (res.,
2-absorbing primary) ideal of R. Let M be a finitely generated faithful multiplication
graded R-module such that Assg(M/Gr(I)M) be a totally ordered set. Then IM is a
graded 2-absorbing (res., 2-absorbing primary) submodule of M.

Proof. Assume that a,b € h(R) and m € h(M) such that abm € IM. By a similar
argument to that of the proof of [11, Theorem 2.12] we get that am € IM or bm € IM
or ab € I. Now, the result follows by [4, Lemma 3.10]. For the second part, we need to
show that Gras(IM) = Gr(I)M. By [10, Theorem 8(i)] we have

Gr(I)M = ( N p)M = () »M2Gru(IM).
ICp IMCpM
p is prime

On the other hand,
Gru(IM)= (| Q= () (Q:rM)M= ( (| (@Q:=r M))M.

IMCQ IMCQ IC(Q:rM)
Q is prime
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So Grayf(IM) 2 Gr(I)M and Gry(IM) = Gr(I)M. Now, the result follows by [11,
Theorem 2.12]. ]

Let I be a graded ideal of R and N be a graded submodule of a graded R-module
M. The graded residual of N by I is defined (N :ps I) = {m € h(M)|mI C N}. In the
following we show more results on graded residual submodule (N :p; I).

Lemma 2.10. Let R be a G-graded ring, M be a graded R-module and N be a graded
submodule of M. Then the following statements hold:

(i) (N :p I) is a graded submodule of M.
(i) If M is a graded multiplication R-module, then

(N ‘M I) = (N ‘R IM)MZ ((N ‘R M) ‘R I)M

Proof. (i) Let m = 3 .omg € (N :p I). Without loss of generality we may assume
that m = Zle myg,, where my, # 0 for all 1 < ¢ < ¢. Thus we conclude that Im =
St Img, C N and so Imgy, C N, for all 1 < i < t. Hence, my, € (N :ps I), for all
1< <t

(ii) Obviously, (N :g IM)M = ((N :g M) :g I)M. Now, we have to show that
(N :p I) = (N :g IM)M. Since M is a graded multiplication R-module, we have
(N :g IM)IM = (N :g IMYIM :g M)M C (N :g M)M = N and hence (N :p
IMYM C (N :p I). For the reverse inclusion suppose that m € (N :pr I). Thus
I(Rm :g M) C (Im :g M) C (N :g M). Hence (Rm :g M) C ((N :g M) :g I) and
Rm = (Rm:g M)M C (N :g M) :g )M = (N :g IM)M. Thus (N :py I) C (N g
IM)M, as desired. n

Proposition 2.11. Let R be a G-graded ring, M be a graded R-module and N be a graded
submodule of M. Then the following statements are equivalent:

(i) N is a graded 2-absorbing primary submodule of M ;
(i) (N :pr ab) C (Gry(N) iy a) U (Grayy(N) iy b), for every a,b € h(R) and
m € h(M) with ab ¢ (N :gp M).

Proof. (i) = (i) Assume that m € (N :p ab) for some m € h(M). Thus abm € N.
Since N is graded 2-absorbing primary and ab ¢ (N :g M), we get that am € Gry/(N)
or bm € Gry(N). Hence, m € (Gry(N) :g a) or m € (Gry(N) :g b). Therefore,
(N :pr ab) C(Grar(N) :pr a) U (Grag(N) :pr ), as required.

(#i) = (¢) Assume that a,b € h(R), m € h(M) and abm € N. Assume that ab ¢ (N :g
M). By hypotheses (N :ps ab) € (Grar(N) :ar a) U (Grag(N) :ar b), we conclude that
am € Gras(N) or bm € Gry(N), as needed. ]

Proposition 2.12. Let R be a G-graded ring, M be a graded multiplication R-module
and N be a graded 2-absorbing primary submodule of M such that Grpy(N) = N. Then
(N :p I) is a graded 2-absorbing primary submodule of M.

Proof. Assume that a,b € h(R), m € h(M) and abm € (N :p I) with abM ¢ (N :p I).
So from abmI C N, we obtain abl C (N :g m). By Lemma 2.7, (N :g m) is a graded
2-absorbing primary ideal. Suppose that ab ¢ (N :g m). Hence al C Gr(N :g m) or
bI C Gr(N :g m), by [15, Proposition 2.28]. If aI C Gr(N :g m) C (Gry(N) :g m) =
(N :g m), then am € (N :pr I), by Proposition 2.5. If bI C Gr(N :g m), then by a
similar argument we get that bm € (N :p; I). Therefore, the proof is complete. [
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Theorem 2.13. Let R be a G-graded ring, I be a graded multiplication ideal and M be
a finitely generated graded multiplication R-module. Then N is a graded 2-absorbing pri-

mary submodule of IM if and only if (N :pr I) is a graded 2-absorbing primary submodule
of M.

Proof. By [8, Corollary 2.8], IM is a graded multiplication R-module. By Lemma 2.10(ii),
we get that (N :g IM) = (N :p I) :r M). Then N is a graded 2-absorbing primary
submodule of T M if and only if (N :ps I) is a graded 2-absorbing primary submodule of
M, by Theorem 2.4. L]

3. GRADED 2-ABSORBING IDEALS OF TRIVIAL EXTENSION OF A RING

Let R be a ring with identity and M be an R-module. Then R(+)M with addition
(a,m) + (byn) = (a + b,m + n) and multiplication (a,m)(b,n) = (ab,an + bm) is a
commutative ring. The ring R(+)M is said to be trivial extension of R by M or the
idealization of M. We view R as a subring of R(+)M via r — (r,0).

Let R = ©4eqRy be a G-graded commutative ring and M = ©4caM,; be a graded
R-module. Then R(+)M = @4ecc(R(+)M), is a graded ring, denoted by GR(M ), where
(R(+)M)y = Ry @ My and (R(+)M)y4(R(+)M)n = (Ry ® My)(Ry, ® My) = RyRy ®
(RgMp, + Ry My) € Rgp, @ My, for all g, h € G, see [9, 18].

Theorem 3.1. Let R be a G-graded ring, I be a graded proper ideal and M be a graded
R-module. Then the following statement are equivalent:

(i) I is a graded 2-absorbing ideal of R;

(ii) I(+)M is a graded 2-absorbing ideal of GR(M).

Proof. ()= (ii) Assume that (a1, m1)(az, m2)(as, m3) € I(+)M for some (a1, m1),

(az, m2), (az,ms) € h(R(+)M). Thus ayazas € I, where a,b,c € h(R). Since I is graded
2-absorbing, we conclude that ajas € I or asas € I or ajas € I. Hence, (a1, m1)(az, ma) €
I(+)M or (az,m2)(as,ms) € [(+)M or (a1, m1)(az, m3) € I(+)M, as needed.

(ii)= (i) Assume that abc € I for some a,b,c € h(R). Then (a,0)(b,0)(c,0) €
I(+)M. Since I(+)M is a graded 2-absorbing ideal, we get that (a1,0)(as,0) € I(+)M
or (az,0)(as,0) € I(+)M or (a1,0)(as,0) € I(+)M and hence ab € I or bc € I or ac € I.
Then I is a graded 2-absorbing ideal of R. =

Example 3.2. Let R = Z®Z be a Zs-graded ring and M = Z&®Z be a graded R-module.
Suppose that I = 15Z @ {0} and N = 12Z & {0}. Then I(+)N is a graded ideal of
GR(M) but is not 2-absorbing. Since (3,2)(3,2)(5,4) € I(+)N, but (3,2)(5,4) ¢ I(+)N
and (3,2)(3,2)I(+)M € I(+)N. Notice to the fact that I is a 2-absorbing ideal of R and
N is not a 2-absorbing submodule of M.

An ideal H of R(+)M is said to be homogeneous, if H = I(+)N for some ideal I of R
and some submodule NV of M and IM C N, see [2].

Theorem 3.3. Let R be a G-graded ring and I be a graded ideal of R, let N be a graded
submodule of M. If I(+)N is a graded homogeneous 2-absorbing ideal of GR(M), then I
and N are graded 2-absorbing too.

Proof. Assume that I(+)N is a graded 2-absorbing ideal of GR(M). Let a,b,c € h(R)
such that abe € I. Then (a,0)(b,0)(c,0) € I(+)N. Since I(+)N is a graded 2-absorbing
ideal, we conclude that (a,0)(b,0) € I(+)N or (b,0)(c,0) € I(+)N or (a,0)(c,0) € I(+)N.
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Soabée I orbceloracée . Hence, I is a graded 2-absorbing ideal of R. Now, suppose
that abm € N for some a,b € h(R) and m € h(M). Since I(+)N is a graded homogenous
2-absorbing ideal, we have (a,0)(b,0)(0,m) € I(+)N. Then (a,0)(b,0) € I(+)N or
(a,0)(0,m) € I(+)N or (b,0)(0,m) € I(+)N. Thus ab € I C (N :p M) and hence
am € N or bm € N, as needed. =

Proposition 3.4. Let R be a G-graded ring and I be a graded ideal of R, let N be a
graded submodule of M. Then the following statements hold:
(i) I is a prime ideal if and only if I(+)N is a graded prime ideal of GR(M).
(i) If I(+)N is a graded homogeneous ideal of GR(M), then

Gr(I(+)N) = Gr(I)(+)M.
Proof. (i) The proof is satisfy by [18, Proposition 3.1].
(ii) Let (a,m) € Gr(I(+)N). Then there exists positive integer n such that (a, m)™ €
I(+)M. Thus (a,m)" = (a™,na" 'm) € I(+)M. Hence, Gr(I(+)N) C Gr(I)(+)M.
For the reverse inclusion, suppose that (a,m) € Gr(I)(+)M. Thus o™ € I, for some

positive integer n. Consider that (a,m)"*! = (a"*! (n + 1)a™m) and (a,m)"*! €
I(+)IM C I(4+)N since N is a graded homogeneous submodule of M. Thus (a,m) €
Gr(I(+)N) and so Gr(I)(+)M C Gr(I(+)N). "

Theorem 3.5. Let R be a G-graded ring, I be a graded proper ideal of R and M be a
graded R-module. Then the following statement are equivalent:

(i) I is a graded 2-absorbing primary ideal of R;
(i) I(+)M is a graded 2-absorbing primary ideal of GR(M).

Proof. By Proposition 3.4 we have Gr(I(+)M) = Gr(I)(+)M, now the complete proof
is satisfy with similar way such as Theorem 3.1. =
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