Thai Journal of **Math**ematics Volume 20 Number 2 (2022) Pages 721–728

http://thaijmath.in.cmu.ac.th

On the Graded 2-Absorbing Primary Submodules of Graded Multiplication Modules

Fatemeh Soheilnia¹ and Shiroyeh Payrovi^{1,*}

¹Department of Mathematics, Imam Khomeini International University, P.O.Box 34149-16818, Qazvin, Iran. e-mail : f.soheilnia@edu.ikiu.ac.ir; shpayrovi@sci.ikiu.ac.ir

Abstract Let G be a multiplicative group, R be a G-graded commutative ring and M be a graded Rmodule. A proper graded submodule N of M is called graded 2-absorbing primary, if whenever $a, b \in h(R)$ and $m \in h(M)$ with $abm \in N$, then $ab \in (N :_R M)$ or $am \in Gr_M(N)$ or $bm \in Gr_M(N)$. Let M be a graded finitely generated multiplication R-module. It is shown that $Gr(N :_R M) = (Gr_M(N) :_R M)$. Furthermore, it is proved that $(N :_R M)$ is a graded 2-absorbing primary ideal of R, if N is a graded 2-absorbing primary submdoule of M. Moreover, it is generalized some results of graded 2-absorbing ideals over trivial extension of a ring.

MSC: 13A02; 16W50

Keywords: Graded 2-absorbing submodules; Graded 2-absorbing primary submodules; Graded multiplication modules

Submission date: 11.11.2019 / Acceptance date: 03.11.2021

1. INTRODUCTION

Let R be a commutative ring. A proper ideal I of R is called 2-absorbing, if whenever $a, b, c \in R$ with $abc \in I$, then $ab \in I$ or $bc \in I$ or $ac \in I$, see [6]. As a generalization of the concept of 2-absorbing ideal the authors in [13, 19], introduced and studied the concept of 2-absorbing submodule of a module. Let M be an R-module. A proper submodule N of M is said to be a 2-absorbing submodule, if whenever $a, b \in R$ and $m \in M$ with $abm \in N$, then $ab \in (N :_R M)$ or $am \in N$ or $bm \in N$. Recently, in [7], the concept of primary ideals have studied. A proper ideal I of R is said to be a 2-absorbing primary ideal, if whenever $a, b, c \in R$ with $abc \in I$, then $ab \in I$ or $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$. Some researchers in [11], have generalized the concept of primary ideals for submodules. A proper submodule N of M is called 2-absorbing primary, if whenever $a, b \in R$ and $m \in M$ with $abm \in N$, then $ab \in (N :_R M)$ or $am \in M$ -rad(N) or $bm \in M$ -rad(N), where M-rad(N) is the intersection of all prime submodules of M containing N. If N is not contained in any prime submodule of M, then M-rad(N) = M. All these concepts are introduced and studied in last decade and further on G-graded rings and graded R-modules, see

^{*}Corresponding author.

[1, 10, 14-17]. Let G be a multiplicative group with identity e. Then R is a G-graded ring, if there exists a family of additive subgroups $\{R_q\}_{q\in G}$ of R such that $R = \bigoplus_{g\in G} R_q$ and $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$. The elements of R_g are called homogeneous of degree g and we write $h(R) = \bigcup_{q \in G} R_q$. Let R be a G-graded ring and M be an R-module. Then M is called a graded *R*-module, if there exists a family of subgroups (as abelian groups) $\{M_g\}_{g\in G}$ of M such that $M = \bigoplus_{g\in G} M_g$ and $R_g M_h \subseteq M_{gh}$ for all $g, h \in G$. We write $h(M) = \bigcup_{g \in G} M_g$ and the elements of h(M) are called homogeneous. If $M = \bigoplus_{g \in G} M_g$ is a graded R-module, then for all $g \in G$ the subgroup M_q of M is an R_e -module. Let N be a submodule of $M = \bigoplus_{g \in G} M_g$. Then N is called a graded submodule, if $N = \bigoplus_{g \in G} N_g$ where $N_q = N \cap M_q$ for $g \in G$, see [12]. Let R be a G-graded ring. A proper graded ideal I of R is called graded 2-absorbing, if whenever $a, b, c \in h(R)$ with $abc \in I$, then $ab \in I$ or $bc \in I$ or $ac \in I$. A graded ideal I of R is said to be graded 2-absorbing primary, if whenever $a, b, c \in h(R)$ with $abc \in I$, then $ab \in I$ or $bc \in Gr(I)$ or $ac \in Gr(I)$, see [15]. The concept of graded 2-absorbing primary submodule of a graded R-module was defined in [17]. Here we find more results on the graded 2-absorbing primary submodule of a graded multiplication module. Throughout this work G is a multiplicative group with identity e, R is G-graded commutative ring with non-zero identity and M is a graded *R*-module.

2. Graded 2-absorbing Primary submodule

Let R be a G-graded ring and M be a graded R-module. As noted in [1], a graded proper submodule N of M is said to be graded 2-absorbing submodule, if whenever $a, b \in h(R)$ and $m \in h(M)$ with $abm \in N$, then $ab \in (N :_R M)$ or $am \in N$ or $bm \in N$. The graded radical of a graded submodule N of a graded R-module M, which is denoted by $Gr_M(N)$, is defined to be the intersection of all graded prime submodules of M containing N. If N is not contained in any graded prime submodule of M, then $Gr_M(N) = M$.

Definition 2.1. [17] Let R be a G-graded ring, M be a graded R-module and N be a proper graded submodule of M. Then N is called a graded 2-absorbing primary submodule of M, if whenever $a, b \in h(R)$ and $m \in h(M)$ with $abm \in N$, then $ab \in (N :_R M)$ or $am \in Gr_M(N)$ or $bm \in Gr_M(N)$.

In the following we show some straightforward results.

Lemma 2.2. Let R be a G-graded ring and M be a graded R-module.

- (i) Every graded primary submodule of M is a graded 2-absorbing primary submodule of M.
- (ii) Every graded 2-absorbing submodule of M is a graded 2-absorbing primary submodule of M.

A graded *R*-module *M* is called graded multiplication module, if for every graded submodule *N* of *M*, there exists a graded ideal *I* of *R* such that N = IM. In this case, it can easily see that if *M* is a graded multiplication *R*-module, then $N = (N :_R M)M$ for every graded submodule *N* of *M*.

Lemma 2.3. Let R be a G-graded ring, M be a graded finitely generated multiplication R-module and N be a graded submodule of M. Then $(Gr_M(N):_R M) = Gr(N:_R M)$.

Proof. First we show that $(Gr_M(N) :_R M) \subseteq Gr(N :_R M)$. Let $a \in (Gr_M(N) :_R M)$. Then $aM \subseteq Gr_M(N) = Gr(N :_R M)M$, by [10, Theorem 9]. It can be easily to see that $a^t + b \in \operatorname{Ann}(M)$ for some $b \in Gr(N :_R M)$ and $t \in \mathbb{N}$. So $a^t + b \in Gr(N :_R M)$ and $a \in Gr(N :_R M)$. For the reverse inclusion assume that K is a graded prime submodule of M containing N. Then $(K :_R M)$ is a graded prime ideal of R, by [3, Proposition 2.5]. Thus $(N :_R M) \subseteq (K :_R M)$ and so $Gr(N :_R M) \subseteq (K :_R M)$. Hence, $Gr(N :_R M)M \subseteq (K :_R M)M = K$. Therefore, $Gr(N :_R M)M \subseteq Gr_M(N)$ and $Gr(N :_R M) \subseteq (Gr_M(N) :_R M)$.

Theorem 2.4. Let R be a G-graded ring, M be a graded finitely generated multiplication R-module and N be a graded proper submodule of M. Then N is a graded 2-absorbing primary submodule of M if and only if $(N :_R M)$ is a graded 2-absorbing primary ideal of R.

Proof. Assume that N is a graded 2-absorbing primary submodule of M and $abc \in (N :_R M)$ for some $a, b, c \in h(R)$. Let cM = K. Then $abK \subseteq N$. By assumption N is a graded 2-absorbing primary submodule, so we conclude that $ab \in (N :_R M)$ or $aK \subseteq Gr_M(N)$ or $bK \subseteq Gr_M(N)$, see [17, Theorem 3]. If $ab \in (N :_R M)$ we are done. Suppose that $aK = acM \subseteq Gr_M(N)$, so by Lemma 2.3, $ac \in (Gr_M(N) :_R M) = Gr(N :_R M)$ as desired. If $bK = bcM \subseteq Gr_M(N)$ by a similar argument one can show $bc \in Gr(N :_R M)$. Thus $(N :_R M)$ is a graded 2-absorbing primary ideal of R. The converse follows from [17, Theorem 8].

Proposition 2.5. Let R be a G-graded ring, M be a graded R-module and N be a graded 2-absorbing primary submodule of M. Then $Gr(N :_R m) \subseteq (Gr_M(N) :_R m)$, for every $m \in h(M) \setminus N$.

Proof. Assume that $a \in Gr(N :_R m)$ and $a \in h(R)$. If $a \in Gr(N :_R M)$, then there exists some positive integer n such that $a^n M \subseteq N \subseteq Gr_M(N)$. So $aM \subseteq Gr_M(N)$ since $Gr_M(N)$ is the intersection of prime submodules of M contain N. Thus $a \in (Gr_M(N) :_R m)$. Now, assume that $a \in Gr(N :_R m) \setminus Gr(N :_R M)$. Then there exists some positive integer n such that $a^n m \in N$. Since N is a graded 2-absorbing primary submodule of M, we conclude that $am \in Gr_M(N)$ or $a^{n-1}m \in Gr_M(N)$. If $am \in Gr_M(N)$, we are done. If $a^{n-1}m \in Gr_M(N)$, then $am \in Gr_M(N)$ since $Gr_M(N)$ is the intersection of prime submodules of M contain N.

Theorem 2.6. Let R be a G-graded ring, M be a graded finitely generated multiplication R-module. If N is a graded 2-absorbing primary submodule of M, then $Gr_M(N)$ is a graded 2-absorbing submodule of M.

Proof. Assume that $a, b \in h(R)$ and $m \in h(M)$ such that $abm \in Gr_M(N)$ with $ab \notin (Gr_M(N) :_R M) = I$. Since M is a graded multiplication R-module so there exists a graded ideal J of R such that Rm = JM. Thus $abJ \subseteq I$ and $ab \notin I$. We claim that $aJ \subseteq I$ or $bJ \subseteq I$. Suppose in the contrary, $aJ \notin I$ and $bJ \notin I$. Hence, there exist $i_1, i_2 \in I$ such that $ai_1 \notin I$ and $bi_2 \notin I$. Since $abi_1 \in I$ but $ab, ai_1 \notin I$ and $I = (Gr_M(N) :_R M) = Gr(N :_R M)$ is a graded 2-absorbing ideal, see [15, Theorem 2.10], we conclude that $bi_1 \in I$. By a similar argument one can show that $ai_2 \in I$. Now, $ab(i_1 + i_2) \in I$, $ab \notin I$ and I is a graded 2-absorbing ideal, we conclude that either $a(i_1 + i_2) \in I$ or $b(i_1 + i_2) \in I$. If $a(i_1 + i_2) \in I$, then $ai_1 \in I$, which is a contradiction. Similarly, by $b(i_1 + i_2) \in I$ we get a contradiction. Hence, either $aJ \subseteq I$ or $bJ \subseteq I$. Then $am \in Gr_M(N)$ or $bm \in Gr_M(N)$, as needed. Therefore, $Gr_M(N)$ is graded 2-absorbing.

Lemma 2.7. Let R be a G-graded ring, M be a graded multiplication R-module and N be a graded 2-absorbing primary submodule of M such that $Gr_M(N) = N$. Then $(N :_R m)$ is graded 2-absorbing primary, for every $m \in h(M) \setminus N$.

Proof. Assume that $m \in h(M) \setminus N, a, b, c \in h(R)$ and $abc \in (N :_R m)$. By hypothesis, N is graded 2- absorbing primary, so from $abcm \in N$, we conclude that $ab \in (N :_R M)$ or $bcm \in Gr_M(N)$ or $acm \in Gr_M(N)$. Then $ab \in (N :_R m)$ or $bc \in (Gr_M(N) :_R m) = (N :_R m) \subseteq Gr(N :_R m)$ or $ac \in (Gr_M(N) :_R m) = (N :_R m) \subseteq Gr(N :_R m)$, as desired.

Theorem 2.8. Let R be a G-graded ring, M be a graded multiplication R-module and N be a graded 2-absorbing submodule of M such that $Gr_M(N) = N$ and $Gr(N :_R M)$ is a prime ideal of R. Then the following statements hold:

- (i) If $m \in h(M) \setminus N$, then $(N :_R m)$ is a graded prime ideal.
- (ii) If $m, m' \in h(M) \setminus N$, then $(N :_R m) \subseteq (N :_R m')$ or $(N :_R m') \subseteq (N :_R m)$.

Proof. (i) Assume that $m \in h(M) \setminus N$, $a, b \in h(R)$ and $ab \in (N :_R m)$. So $abm \in N$. Thus $am \in N$ or $bm \in N$ or $ab \in (N :_R M)$ since N is graded 2-absorbing. If $am \in N$ or $bm \in N$, we are done. Now suppose that $ab \in (N :_R M)$. By [16, Theorem 2.2], $(N :_R M)$ is a graded 2-absorbing ideal of R and by hypotheses $Gr(N :_R M)$ is a graded prime ideal, see [5, Theorem 2.2]. Hence, $ab \in Gr(N :_R M)$ which implies that $a \in Gr(N :_R M)$ or $b \in Gr(N :_R M)$. If $a \in Gr(N :_R M)$, then $a \in (N :_R m)$ since $Gr(N :_R m) \subseteq (Gr_M(N) :_R m) = (N :_R m)$, by Proposition 2.5. If $b \in Gr(N :_R M)$, then $b \in (N :_R m)$, as needed.

(ii) Assume that $(N :_R m') \notin (N :_R m)$. We have to show that $(N :_R m) \subseteq (N :_R m')$. Let $a \in (N :_R m)$ and $b \in (N :_R m') \setminus (N :_R m)$. If $a(m + m') \in N$, then $am' \in N$ and we are done. Suppose that $a(m + m') \notin N$. Then by hypotheses and $b(m + m') \notin N$ it follows that $ab \in (N :_R M)$. If $b \in Gr(N :_R M)$, then $b \in Gr(N :_R m) \subseteq (Gr_M(N) :_R m) = (N :_R m)$ which is a contradiction. Hence, $a \in Gr(N :_R M) \subseteq (Gr_M(N) :_R m') = (N :_R m')$ as needed.

Theorem 2.9. Let R be a G-graded Noetherian ring and I be a graded 2-absorbing (res., 2-absorbing primary) ideal of R. Let M be a finitely generated faithful multiplication graded R-module such that $Ass_G(M/Gr(I)M)$ be a totally ordered set. Then IM is a graded 2-absorbing (res., 2-absorbing primary) submodule of M.

Proof. Assume that $a, b \in h(R)$ and $m \in h(M)$ such that $abm \in IM$. By a similar argument to that of the proof of [11, Theorem 2.12] we get that $am \in IM$ or $bm \in IM$ or $ab \in I$. Now, the result follows by [4, Lemma 3.10]. For the second part, we need to show that $Gr_M(IM) = Gr(I)M$. By [10, Theorem 8(i)] we have

$$Gr(I)M = \left(\bigcap_{\substack{I \subseteq \mathfrak{p} \\ \mathfrak{p} \text{ is prime}}} \mathfrak{p}\right)M = \bigcap_{IM \subseteq pM} \mathfrak{p}M \supseteq Gr_M(IM).$$

On the other hand,

$$Gr_M(IM) = \bigcap_{\substack{IM \subseteq Q \\ Q \text{ is prime}}} Q = \bigcap_{IM \subseteq Q} (Q :_R M)M = \left(\bigcap_{I \subseteq (Q :_R M)} (Q :_R M)\right)M.$$

So $Gr_M(IM) \supseteq Gr(I)M$ and $Gr_M(IM) = Gr(I)M$. Now, the result follows by [11, Theorem 2.12].

Let I be a graded ideal of R and N be a graded submodule of a graded R-module M. The graded residual of N by I is defined $(N:_M I) = \{m \in h(M) | mI \subseteq N\}$. In the following we show more results on graded residual submodule $(N:_M I)$.

Lemma 2.10. Let R be a G-graded ring, M be a graded R-module and N be a graded submodule of M. Then the following statements hold:

(i) $(N:_M I)$ is a graded submodule of M.

(ii) If M is a graded multiplication R-module, then

$$(N:_M I) = (N:_R IM)M = ((N:_R M):_R I)M.$$

Proof. (i) Let $m = \sum_{g \in G} m_g \in (N :_M I)$. Without loss of generality we may assume that $m = \sum_{i=1}^t m_{g_i}$, where $m_{g_i} \neq 0$ for all $1 \leq i \leq t$. Thus we conclude that $Im = \sum_{i=1}^t Im_{g_i} \subseteq N$ and so $Im_{g_i} \subseteq N$, for all $1 \leq i \leq t$. Hence, $m_{g_i} \in (N :_M I)$, for all $1 \leq i \leq t$.

(ii) Obviously, $(N :_R IM)M = ((N :_R M) :_R I)M$. Now, we have to show that $(N :_M I) = (N :_R IM)M$. Since M is a graded multiplication R-module, we have $(N :_R IM)IM = (N :_R IM)(IM :_R M)M \subseteq (N :_R M)M = N$ and hence $(N :_R IM)M \subseteq (N :_M I)$. For the reverse inclusion suppose that $m \in (N :_M I)$. Thus $I(Rm :_R M) \subseteq (Im :_R M) \subseteq (N :_R M)$. Hence $(Rm :_R M) \subseteq ((N :_R M) :_R I)$ and $Rm = (Rm :_R M)M \subseteq ((N :_R M) :_R I)M = (N :_R IM)M$. Thus $(N :_M I) \subseteq (N :_R IM)M$, as desired.

Proposition 2.11. Let R be a G-graded ring, M be a graded R-module and N be a graded submodule of M. Then the following statements are equivalent:

- (i) N is a graded 2-absorbing primary submodule of M;
- (ii) $(N :_M ab) \subseteq (Gr_M(N) :_M a) \cup (Gr_M(N) :_M b)$, for every $a, b \in h(R)$ and $m \in h(M)$ with $ab \notin (N :_R M)$.

Proof. (i) \Rightarrow (ii) Assume that $m \in (N :_M ab)$ for some $m \in h(M)$. Thus $abm \in N$. Since N is graded 2-absorbing primary and $ab \notin (N :_R M)$, we get that $am \in Gr_M(N)$ or $bm \in Gr_M(N)$. Hence, $m \in (Gr_M(N) :_R a)$ or $m \in (Gr_M(N) :_R b)$. Therefore, $(N :_M ab) \subseteq (Gr_M(N) :_M a) \cup (Gr_M(N) :_M b)$, as required.

 $(ii) \Rightarrow (i)$ Assume that $a, b \in h(R), m \in h(M)$ and $abm \in N$. Assume that $ab \notin (N :_R M)$. By hypotheses $(N :_M ab) \subseteq (Gr_M(N) :_M a) \cup (Gr_M(N) :_M b)$, we conclude that $am \in Gr_M(N)$ or $bm \in Gr_M(N)$, as needed.

Proposition 2.12. Let R be a G-graded ring, M be a graded multiplication R-module and N be a graded 2-absorbing primary submodule of M such that $Gr_M(N) = N$. Then $(N:_M I)$ is a graded 2-absorbing primary submodule of M.

Proof. Assume that $a, b \in h(R), m \in h(M)$ and $abm \in (N :_M I)$ with $abM \notin (N :_M I)$. So from $abmI \subseteq N$, we obtain $abI \subseteq (N :_R m)$. By Lemma 2.7, $(N :_R m)$ is a graded 2-absorbing primary ideal. Suppose that $ab \notin (N :_R m)$. Hence $aI \subseteq Gr(N :_R m)$ or $bI \subseteq Gr(N :_R m)$, by [15, Proposition 2.28]. If $aI \subseteq Gr(N :_R m) \subseteq (Gr_M(N) :_R m) = (N :_R m)$, then $am \in (N :_M I)$, by Proposition 2.5. If $bI \subseteq Gr(N :_R m)$, then by a similar argument we get that $bm \in (N :_M I)$. Therefore, the proof is complete. **Theorem 2.13.** Let R be a G-graded ring, I be a graded multiplication ideal and M be a finitely generated graded multiplication R-module. Then N is a graded 2-absorbing primary submodule of IM if and only if $(N :_M I)$ is a graded 2-absorbing primary submodule of M.

Proof. By [8, Corollary 2.8], IM is a graded multiplication R-module. By Lemma 2.10(ii), we get that $(N :_R IM) = ((N :_M I) :_R M)$. Then N is a graded 2-absorbing primary submodule of IM if and only if $(N :_M I)$ is a graded 2-absorbing primary submodule of M, by Theorem 2.4.

3. Graded 2-absorbing ideals of trivial extension of a ring

Let R be a ring with identity and M be an R-module. Then R(+)M with addition (a,m) + (b,n) = (a+b,m+n) and multiplication (a,m)(b,n) = (ab,an+bm) is a commutative ring. The ring R(+)M is said to be trivial extension of R by M or the idealization of M. We view R as a subring of R(+)M via $r \to (r,0)$.

Let $R = \bigoplus_{g \in G} R_g$ be a *G*-graded commutative ring and $M = \bigoplus_{g \in G} M_g$ be a graded *R*-module. Then $R(+)M = \bigoplus_{g \in G} (R(+)M)_g$ is a graded ring, denoted by GR(M), where $(R(+)M)_g = R_g \oplus M_g$ and $(R(+)M)_g (R(+)M)_h = (R_g \oplus M_g)(R_h \oplus M_h) = R_g R_h \oplus (R_g M_h + R_h M_g) \subseteq R_{gh} \oplus M_{gh}$ for all $g, h \in G$, see [9, 18].

Theorem 3.1. Let R be a G-graded ring, I be a graded proper ideal and M be a graded R-module. Then the following statement are equivalent:

- (i) I is a graded 2-absorbing ideal of R;
- (ii) I(+)M is a graded 2-absorbing ideal of GR(M).

Proof. (i) ⇒ (ii) Assume that $(a_1, m_1)(a_2, m_2)(a_3, m_3) \in I(+)M$ for some (a_1, m_1) , $(a_2, m_2), (a_3, m_3) \in h(R(+)M)$. Thus $a_1a_2a_3 \in I$, where $a, b, c \in h(R)$. Since *I* is graded 2-absorbing, we conclude that $a_1a_2 \in I$ or $a_2a_3 \in I$ or $a_1a_3 \in I$. Hence, $(a_1, m_1)(a_2, m_2) \in I(+)M$ or $(a_2, m_2)(a_3, m_3) \in I(+)M$ or $(a_1, m_1)(a_3, m_3) \in I(+)M$, as needed.

(ii) \Rightarrow (i) Assume that $abc \in I$ for some $a, b, c \in h(R)$. Then $(a, 0)(b, 0)(c, 0) \in I(+)M$. Since I(+)M is a graded 2-absorbing ideal, we get that $(a_1, 0)(a_2, 0) \in I(+)M$ or $(a_2, 0)(a_3, 0) \in I(+)M$ or $(a_1, 0)(a_3, 0) \in I(+)M$ and hence $ab \in I$ or $bc \in I$ or $ac \in I$. Then I is a graded 2-absorbing ideal of R.

Example 3.2. Let $R = \mathbb{Z} \oplus \mathbb{Z}$ be a \mathbb{Z}_2 -graded ring and $M = \mathbb{Z} \oplus \mathbb{Z}$ be a graded *R*-module. Suppose that $I = 15\mathbb{Z} \oplus \{0\}$ and $N = 12\mathbb{Z} \oplus \{0\}$. Then I(+)N is a graded ideal of GR(M) but is not 2-absorbing. Since $(3, 2)(3, 2)(5, 4) \in I(+)N$, but $(3, 2)(5, 4) \notin I(+)N$ and $(3, 2)(3, 2)I(+)M \notin I(+)N$. Notice to the fact that I is a 2-absorbing ideal of R and N is not a 2-absorbing submodule of M.

An ideal H of R(+)M is said to be homogeneous, if H = I(+)N for some ideal I of R and some submodule N of M and $IM \subseteq N$, see [2].

Theorem 3.3. Let R be a G-graded ring and I be a graded ideal of R, let N be a graded submodule of M. If I(+)N is a graded homogeneous 2-absorbing ideal of GR(M), then I and N are graded 2-absorbing too.

Proof. Assume that I(+)N is a graded 2-absorbing ideal of GR(M). Let $a, b, c \in h(R)$ such that $abc \in I$. Then $(a, 0)(b, 0)(c, 0) \in I(+)N$. Since I(+)N is a graded 2-absorbing ideal, we conclude that $(a, 0)(b, 0) \in I(+)N$ or $(b, 0)(c, 0) \in I(+)N$ or $(a, 0)(c, 0) \in I(+)N$.

So $ab \in I$ or $bc \in I$ or $ac \in I$. Hence, I is a graded 2-absorbing ideal of R. Now, suppose that $abm \in N$ for some $a, b \in h(R)$ and $m \in h(M)$. Since I(+)N is a graded homogenous 2-absorbing ideal, we have $(a, 0)(b, 0)(0, m) \in I(+)N$. Then $(a, 0)(b, 0) \in I(+)N$ or $(a, 0)(0, m) \in I(+)N$ or $(b, 0)(0, m) \in I(+)N$. Thus $ab \in I \subseteq (N :_R M)$ and hence $am \in N$ or $bm \in N$, as needed.

Proposition 3.4. Let R be a G-graded ring and I be a graded ideal of R, let N be a graded submodule of M. Then the following statements hold:

- (i) I is a prime ideal if and only if I(+)N is a graded prime ideal of GR(M).
- (ii) If I(+)N is a graded homogeneous ideal of GR(M), then

$$Gr(I(+)N) = Gr(I)(+)M.$$

Proof. (i) The proof is satisfy by [18, Proposition 3.1].

(ii) Let $(a,m) \in Gr(I(+)N)$. Then there exists positive integer n such that $(a,m)^n \in I(+)M$. Thus $(a,m)^n = (a^n, na^{n-1}m) \in I(+)M$. Hence, $Gr(I(+)N) \subseteq Gr(I)(+)M$.

For the reverse inclusion, suppose that $(a,m) \in Gr(I)(+)M$. Thus $a^n \in I$, for some positive integer n. Consider that $(a,m)^{n+1} = (a^{n+1},(n+1)a^nm)$ and $(a,m)^{n+1} \in I(+)IM \subseteq I(+)N$ since N is a graded homogeneous submodule of M. Thus $(a,m) \in Gr(I(+)N)$ and so $Gr(I)(+)M \subseteq Gr(I(+)N)$.

Theorem 3.5. Let R be a G-graded ring, I be a graded proper ideal of R and M be a graded R-module. Then the following statement are equivalent:

- (i) I is a graded 2-absorbing primary ideal of R;
- (ii) I(+)M is a graded 2-absorbing primary ideal of GR(M).

Proof. By Proposition 3.4 we have Gr(I(+)M) = Gr(I)(+)M, now the complete proof is satisfy with similar way such as Theorem 3.1.

ACKNOWLEDGEMENTS

We would like to thank the referees for careful reading.

References

- K. Al-Zoubi, R. Abu-Dawwas, On graded 2-absorbing and weakly graded 2-absorbing submodules, J. Math. Sciences: Advances and Applications 28 (2014) 45–60.
- [2] D.D. Anderson, M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009) 3–56.
- [3] S.E. Atani, F. Farzalipour, On graded secondary modules, Turk. J. Math. 31 (2007) 371–378.
- [4] S.E. Atani, R.E. Atani, Graded multiplication modules and the graded ideal $\Theta_g(M)$, Turk. J. Math. 33 (2009) 1–9.
- [5] S. Babaei, Sh. Payrovi, Two absorbing ideals in graded rings, The 45-th Annual Iranian Mathematics Conference, 26–29 August 2014.
- [6] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007) 417–429.
- [7] A. Badawi, U. Tekir, E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc. 51 (2014) 1163—1173.

- [8] J. Escoriza, B. Torrecillas, Multiplication graded rings, Algebra and Number Theory, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York - Basel (2000), 127–136.
- [9] J.A. Huckaba, Commutative rings with zero-divisors, Monographs and textbooks in Pure and Applied mathematics, Marcel Dekker, Now York, 1988.
- [10] K. Hakan Oral, U. Tekir, A.G. Agargun, On Graded Prime and Primary Submodules, Turk. J. Math. 35 (2011) 159–167.
- [11] H. Mostafanasab, E. Yetkin, U. Tekir, A. Yousefan Darani, On 2-Absorbing primary submodules of modules over commutative rings, An. Univ. Constanta. 24 (2016) 335–351.
- [12] C. Nastasescu, F. Van Oystaeyen, Graded ring theory, Mathematical Library 28, North Holand, Amsterdam, 1982.
- [13] Sh. Payrovi, S. Babaei, On 2-absorbing submodules, Algebra Collq. 19 (2012) 913– 920.
- [14] M. Refai, K. Al-Zoubi, On graded primary ideals, Turk. J. Math. 28 (2004) 217–229.
- [15] F. Soheilnia, A. Yousefian Darani, On graded 2-absorbing primary and graded weakly 2-absorbing primary ideals, Kyungpook Math. J. 57 (2017) 559–580.
- [16] F. Soheilnia, A. Yousefian Darani, On graded 2-absorbing submodules over Grmultiplication modules, Matematicki Vesnik 70 (2018) 364–376.
- [17] E. Yetkin Celikel, On graded 2-absorbing primary submodules, International Journal of Pure and Applied Mathematics 109 (2016) 869–879.
- [18] A. Yousefian Darani, Graded primal submodules of graded modules, J. Korean Math. Soc. 48 (2011) 927–938.
- [19] A. Yousefian Darani, F. Soheilnia, On 2-absorbing and weakly 2-absorbing submodules, Thai J. Math. 9 (2011) 577–584.