A Property of $K_{2 n+1}$ as the Sum of n Spanning Cycles

Hatairat Yingtaweesittikul and Vites Longani*
Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail : hatairat.y@gmail.com (H. Yingtaweesittikul); vites.@@cmu.ac.th (V. Longani))

Abstract

It is known that $K_{2 n+1}$ is the sum of n spanning cycles. In this paper we show that when $2 n+1$ is prime number we can have additional property that all lines of the first cycle have distances 1 , all lines of the second cycle have distances $2, \ldots$, and all lines of the n-th cycle have distances n. Also, when $2 n+1$ is not prime number, this property is not possible.

MSC: 05B99
Keywords: spanning cycles; complete graph

Submission date: 29.09.2019 / Acceptance date: 10.09.2020

1. Introduction

In this paper, unless state otherwise, we shall use definitions from [2]. We are discussing particular cases of complete graph $K_{2 n+1}$. From [2], we have the following theorem.

Theorem 1.1. [see [2]] The graph $K_{2 n+1}$ is the sum of n spanning cycles.
For example, K_{7} is the sum of 3 spanning (hamiltonian) cycles, see Fig. 1.1.

K_{7}

(a)

[^0]

Fig. 1.1 Three spanning cycles of K_{7}

Consider K_{5}, we can have 2 hamiltonian cycles of K_{5} as in Fig. 1.2

Fig. 1.2

For another example, consider K_{7} and its 3 hamiltonian cycles,

All lines have distances 1

Fig. 1.3

Note that K_{5} can have 2 hamiltonian cycles of which all lines have distances 1 for the first hamiltonian cycle and all lines have distances 2 for the second cycle. For K_{7}, it has 3 hamiltonian cycles of which the first, second, and third cycles have all of their lines of distances 1,2 , and 3 respectively.

Now look at K_{9} (where $n=4$) in Fig. 1.4

Fig. 1.4

From Fig.1.4, we can see that K_{9} has no hamiltonian cycle of length 3. The reader can verify, for example, that K_{15} (where $n=7$) can not have hamiltonian cycle of length 5 .
Definition 1.2. $K_{2 n+1}$ is called n sequentially hamiltonian if $K_{2 n+1}$ can have n spanning cycles of which all lines of the first cycles, all lines of the second cycle, all lines of the third cycles, \ldots, all lines of the n-th cycle have distances $1,2,3, \ldots, n$ respectively.

Therefore, according to Definition $1.2, K_{5}$ and K_{7} are n sequentially hamiltonian, while K_{9} is not. Next section, we apply Theorem 1.1 to enable us to know when K_{p} is n sequently hamiltonian.

2. Seat Arrangement Problems

We shall apply a theorem on Seat Arrangement Problems (SAP) in [1] to explain Theorem 3.1 which is a theorem on n sequentially hamiltonian.

First, we shall briefly describe SAP and the corresponding results in [1]. Let there be n students and n row seats. For n days, a seat is arranged for each student on each day, and each student required to sit on different seat on each of the n days. Also, for these n days, it is required that each student shall has one chance to sit next to every other $(n-1)$ students on one of his side, and shall has one chance to sit next to every other ($n-1$) students on the other side. In [1], we provide an algorithm Seat Arrangement Algorithm (SAA) that can arrange seats for students on each day, and also provide a theorem related to the algorithm.

Theorem 2.1. [see [1]] The SAA are possible when the number of students $n=p-1$ for any given prime number $p \geq 3$.

Here, we only need to know how to use the algorithm. Readers who are interested in the proof for the algorithm can find details in the paper. For example, suppose there are 6 students $1,2,3,4,5,6$ and there are 6 seats $s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}$. According to the algorithm, we let 0 to represent the teacher who shall arrange seats for students on each day, and let s_{0} to represent the seat for the teacher.

To serve the proof of Theorem 2.1, we fix the seats $s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}$, and s_{6} in circular form. On the first day the teacher and students $0,1,2,3,4,5,6$ shall sit on seats $s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}$ respectively. Every day the teacher shall sit on s_{0} but students shall be assigned by the teacher to sit on different seats every day. See Fig. 2.1 for the arrangement for 6 days.

Day 1

Day 2

Day 3

Fig. 2.1

In linear form, the above arrangement can be written as

	s_{0}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{0}
Day 1	0	1	2	3	4	5	6	0
Day 2	0	2	4	6	1	3	5	0
Day 3	0	3	6	2	5	1	4	0
Day 4	0	4	1	5	2	6	3	0
Day 5	0	5	3	1	6	4	2	0
Day 6	0	6	5	4	3	2	1	0

Fig. 2.2
In section 3, we shall apply the Seat Arrangement Algorithm in [1] for explaining Theorem 3.1.

3. K_{p} THAT ARE n SEQUENTIALLY HAMILTONIAN

From Fig. 2.2, we can see that each of the seat arrangement Day 1, Day 2, Day 3 represent each of the three hamiltonian cycles in Fig. 1.3. The arrangement Day 4, Day 5, Day 6 also represent the three cycles in Fig. 1.3, but in opposite directions.

So, for K_{7}, we can see that we can find 3 hamiltonian cycles so that K_{7} is 3 sequentially hamiltonian.

For general case, we fix the seats $s_{0}, s_{1}, s_{2}, \ldots, s_{p-1}$ in circular form. We obtain the seat arrangement for Day 1, Day 2, Day 3, ..., Day $p-1$ by using the Seat Arrangement Algorithm (SAA), see [1]. The SAA is quoted as follow:
(1) Everyday the teacher sits at s_{0}.
(2) For Day 1 arrangement, teacher shall assign students $1,2,3, \ldots, p-1$ to sit on $s_{1}, s_{2}, s_{3}, \ldots, s_{p-1}$ respectively. Therefore, corresponding to positions of seats $s_{0}, s_{1}, s_{2}, \ldots, s_{p-1}$, the Day 1 arrangement is
$\begin{array}{lllllllll}\text { Day } 1 & 0 & 1 & 2 & 3 & 4 & \ldots & p-1 & 0 .\end{array}$
(3) For Day k arrangements $(k=2,3,4, \ldots, p-1)$, we have the arrangements as

$$
\begin{array}{lllllllll}
\text { Day } k & 0 & k & 2 k & 3 k & 4 k & \ldots & (p-1) k & 0 .
\end{array}
$$

Next, we represent teacher 0 , students $1,2,3, \ldots, p-1$ by p points of graph. We then draw lines of graph according to seat arrangement for each day and obtain $p-1$ hamiltonian cycles. All lines of the 1st, $2 \mathrm{nd}, 3 \mathrm{rd}, \ldots,(p-1)$-th cycles have distances $1,2,3, \ldots, p-1$ respectively.

Now, we can have Theorem 3.1
Theorem 3.1. For every $p \geq 3, K_{p}$ is n sequentially hamiltonian if and only if p is prime number.

References

[1] V. Longani, H. Yingtaweesittikul, Seat Arrangement Problems, Thai Journal of Mathematics 14(2) (2016) 383-390.
[2] F. Harary, "Graph Theory", Addison-Wesley Publishing Company, Boston, 1969.

[^0]: *Corresponding author.

