Thai Journal of **Math**ematics Volume 20 Number 2 (2022) Pages 715–720

http://thaijmath.in.cmu.ac.th

A Property of K_{2n+1} as the Sum of n Spanning Cycles

Hatairat Yingtaweesittikul and Vites Longani*

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail : hatairat.y@gmail.com (H. Yingtaweesittikul); vites.l@cmu.ac.th (V. Longani))

Abstract It is known that K_{2n+1} is the sum of *n* spanning cycles. In this paper we show that when 2n + 1 is prime number we can have additional property that all lines of the first cycle have distances 1, all lines of the second cycle have distances 2,..., and all lines of the n-th cycle have distances *n*. Also, when 2n + 1 is not prime number, this property is not possible.

MSC: 05B99 Keywords: spanning cycles; complete graph

Submission date: 29.09.2019 / Acceptance date: 10.09.2020

1. INTRODUCTION

In this paper, unless state otherwise, we shall use definitions from [2]. We are discussing particular cases of complete graph K_{2n+1} . From [2], we have the following theorem.

Theorem 1.1. [see [2]] The graph K_{2n+1} is the sum of n spanning cycles.

For example, K_7 is the sum of 3 spanning (hamiltonian) cycles, see Fig. 1.1.

^{*}Corresponding author.

Published by The Mathematical Association of Thailand. Copyright \bigodot 2022 by TJM. All rights reserved.

Fig. 1.1 Three spanning cycles of ${\cal K}_7$

Fig. 1.2

For another example, consider ${\cal K}_7$ and its 3 hamiltonian cycles,

Fig. 1.3

Note that K_5 can have 2 hamiltonian cycles of which all lines have distances 1 for the first hamiltonian cycle and all lines have distances 2 for the second cycle. For K_7 , it has 3 hamiltonian cycles of which the first, second, and third cycles have all of their lines of distances 1, 2, and 3 respectively.

Now look at K_9 (where n = 4) in Fig. 1.4

Fig. 1.4

From Fig.1.4, we can see that K_9 has no hamiltonian cycle of length 3. The reader can verify, for example, that K_{15} (where n = 7) can not have hamiltonian cycle of length 5.

Definition 1.2. K_{2n+1} is called n sequentially hamiltonian if K_{2n+1} can have n spanning cycles of which all lines of the first cycles, all lines of the second cycle, all lines of the third cycles, ..., all lines of the *n*-th cycle have distances 1, 2, 3,..., *n* respectively.

Therefore, according to Definition 1.2, K_5 and K_7 are *n* sequentially hamiltonian, while K_9 is not. Next section, we apply Theorem 1.1 to enable us to know when K_p is *n* sequently hamiltonian.

2. Seat Arrangement Problems

We shall apply a theorem on Seat Arrangement Problems (SAP) in [1] to explain Theorem 3.1 which is a theorem on n sequentially hamiltonian.

First, we shall briefly describe SAP and the corresponding results in [1]. Let there be n students and n row seats. For n days, a seat is arranged for each student on each day, and each student required to sit on different seat on each of the n days. Also, for these n days, it is required that each student shall has one chance to sit next to every other (n-1) students on one of his side, and shall has one chance to sit next to every other (n-1) students on the other side. In [1], we provide an algorithm Seat Arrangement Algorithm (SAA) that can arrange seats for students on each day, and also provide a theorem related to the algorithm.

Theorem 2.1. [see [1]] The SAA are possible when the number of students n = p - 1 for any given prime number $p \ge 3$.

Here, we only need to know how to use the algorithm. Readers who are interested in the proof for the algorithm can find details in the paper. For example, suppose there are 6 students 1, 2, 3, 4, 5, 6 and there are 6 seats $s_1, s_2, s_3, s_4, s_5, s_6$. According to the algorithm, we let 0 to represent the teacher who shall arrange seats for students on each day, and let s_0 to represent the seat for the teacher.

To serve the proof of Theorem 2.1, we fix the seats $s_0, s_1, s_2, s_3, s_4, s_5$, and s_6 in circular form. On the first day the teacher and students 0,1,2,3,4,5,6 shall sit on seats $s_0, s_1, s_2, s_3, s_4, s_5, s_6$ respectively. Every day the teacher shall sit on s_0 but students shall be assigned by the teacher to sit on different seats every day. See Fig. 2.1 for the arrangement for 6 days.

Fig. 2.1

In linear form, the above arrangement can be written as

	s_0	s_1	s_2	s_3	s_4	s_5	s_6	s_0
Day 1	0	1	2		4	5	6	0
Day 2	0	2	4	6	1	3	5	0
Day 3	0	3	6	2	5	1	4	0
Day 4	0	4	1	5	2	6	3	0
Day 5	0	5	3		6	4	2	0
Day 6	0	6	5	4	3	2	1	0

Fig. 2.2

In section 3, we shall apply the Seat Arrangement Algorithm in [1] for explaining Theorem 3.1.

3. K_p that are *n* sequentially hamiltonian

From Fig. 2.2, we can see that each of the seat arrangement Day 1, Day 2, Day 3 represent each of the three hamiltonian cycles in Fig. 1.3. The arrangement Day 4, Day 5, Day 6 also represent the three cycles in Fig. 1.3, but in opposite directions.

So, for K_7 , we can see that we can find 3 hamiltonian cycles so that K_7 is 3 sequentially hamiltonian.

For general case, we fix the seats $s_0, s_1, s_2, \ldots, s_{p-1}$ in circular form. We obtain the seat arrangement for Day 1, Day 2, Day 3, ..., Day p-1 by using the Seat Arrangement Algorithm (SAA), see [1]. The SAA is quoted as follow:

(1) Everyday the teacher sits at s_0 .

(2) For Day 1 arrangement, teacher shall assign students $1, 2, 3, \ldots, p-1$ to sit on $s_1, s_2, s_3, \ldots, s_{p-1}$ respectively. Therefore, corresponding to positions of seats $s_0, s_1, s_2, \ldots, s_{p-1}$, the Day 1 arrangement is

Day 1 0 1 2 3 4 ... p-1 0.

(3) For Day k arrangements (k = 2, 3, 4, ..., p - 1), we have the arrangements as

Day k 0 k 2k 3k 4k ... (p-1)k 0.

Next, we represent teacher 0, students $1, 2, 3, \ldots, p-1$ by p points of graph. We then draw lines of graph according to seat arrangement for each day and obtain p-1 hamiltonian cycles. All lines of the 1st, 2nd, 3rd, $\ldots, (p-1)$ -th cycles have distances $1, 2, 3, \ldots, p-1$ respectively.

Now, we can have Theorem 3.1

Theorem 3.1. For every $p \ge 3$, K_p is n sequentially hamiltonian if and only if p is prime number.

References

- V. Longani, H. Yingtaweesittikul, Seat Arrangement Problems, Thai Journal of Mathematics 14(2) (2016) 383–390.
- [2] F. Harary, "Graph Theory", Addison-Wesley Publishing Company, Boston, 1969.