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Abstract It is known that K2n+1 is the sum of n spanning cycles. In this paper we show that when

2n + 1 is prime number we can have additional property that all lines of the first cycle have distances 1,

all lines of the second cycle have distances 2, . . . , and all lines of the n-th cycle have distances n. Also,

when 2n + 1 is not prime number, this property is not possible.
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1. Introduction

In this paper, unless state otherwise, we shall use definitions from [2]. We are discussing
particular cases of complete graph K2n+1. From [2], we have the following theorem.

Theorem 1.1. [see [2]] The graph K2n+1 is the sum of n spanning cycles.

For example, K7 is the sum of 3 spanning (hamiltonian) cycles, see Fig. 1.1.
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Fig. 1.1 Three spanning cycles of K7

Consider K5, we can have 2 hamiltonian cycles of K5 as in Fig. 1.2
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Fig. 1.2

For another example, consider K7 and its 3 hamiltonian cycles,
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All lines have distances 1
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All lines have distances 2
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Fig. 1.3

Note that K5 can have 2 hamiltonian cycles of which all lines have distances 1 for the
first hamiltonian cycle and all lines have distances 2 for the second cycle. For K7, it has
3 hamiltonian cycles of which the first, second, and third cycles have all of their lines of
distances 1, 2, and 3 respectively.

Now look at K9 (where n = 4) in Fig. 1.4
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Fig. 1.4

From Fig.1.4, we can see that K9 has no hamiltonian cycle of length 3. The reader can
verify, for example, that K15 (where n = 7) can not have hamiltonian cycle of length 5.

Definition 1.2. K2n+1 is called n sequentially hamiltonian if K2n+1 can have n spanning
cycles of which all lines of the first cycles, all lines of the second cycle, all lines of the
third cycles, . . . , all lines of the n-th cycle have distances 1, 2, 3,. . . , n respectively.

Therefore, according to Definition 1.2 , K5 and K7 are n sequentially hamiltonian,
while K9 is not. Next section, we apply Theorem 1.1 to enable us to know when Kp is n
sequently hamiltonian.
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2. Seat Arrangement Problems

We shall apply a theorem on Seat Arrangement Problems (SAP) in [1] to explain The-
orem 3.1 which is a theorem on n sequentially hamiltonian.

First, we shall briefly describe SAP and the corresponding results in [1]. Let there be
n students and n row seats. For n days, a seat is arranged for each student on each day,
and each student required to sit on different seat on each of the n days. Also, for these
n days, it is required that each student shall has one chance to sit next to every other
(n − 1) students on one of his side, and shall has one chance to sit next to every other
(n − 1) students on the other side. In [1], we provide an algorithm Seat Arrangement
Algorithm (SAA) that can arrange seats for students on each day, and also provide a
theorem related to the algorithm.

Theorem 2.1. [see [1]] The SAA are possible when the number of students n = p− 1 for
any given prime number p ≥ 3.

Here, we only need to know how to use the algorithm. Readers who are interested
in the proof for the algorithm can find details in the paper. For example, suppose there
are 6 students 1, 2, 3, 4, 5, 6 and there are 6 seats s1, s2, s3, s4, s5, s6. According to the
algorithm, we let 0 to represent the teacher who shall arrange seats for students on each
day, and let s0 to represent the seat for the teacher.

To serve the proof of Theorem 2.1, we fix the seats s0, s1, s2, s3, s4, s5, and s6 in cir-
cular form. On the first day the teacher and students 0,1,2,3,4,5,6 shall sit on seats
s0, s1, s2, s3, s4, s5, s6 respectively. Every day the teacher shall sit on s0 but students
shall be assigned by the teacher to sit on different seats every day. See Fig. 2.1 for the
arrangement for 6 days.
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Fig. 2.1

In linear form, the above arrangement can be written as

s0 s1 s2 s3 s4 s5 s6 s0
Day 1 0 1 2 3 4 5 6 0
Day 2 0 2 4 6 1 3 5 0
Day 3 0 3 6 2 5 1 4 0
Day 4 0 4 1 5 2 6 3 0
Day 5 0 5 3 1 6 4 2 0
Day 6 0 6 5 4 3 2 1 0

Fig. 2.2

In section 3, we shall apply the Seat Arrangement Algorithm in [1] for explaining
Theorem 3.1.

3.Kp that are n sequentially hamiltonian

From Fig. 2.2, we can see that each of the seat arrangement Day 1, Day 2, Day 3
represent each of the three hamiltonian cycles in Fig. 1.3. The arrangement Day 4, Day
5, Day 6 also represent the three cycles in Fig. 1.3, but in opposite directions.

So, for K7, we can see that we can find 3 hamiltonian cycles so that K7 is 3 sequentially
hamiltonian.

For general case, we fix the seats s0, s1, s2, . . . , sp−1 in circular form. We obtain the
seat arrangement for Day 1, Day 2, Day 3, . . ., Day p− 1 by using the Seat Arrangement
Algorithm (SAA), see [1]. The SAA is quoted as follow:

(1) Everyday the teacher sits at s0.

(2) For Day 1 arrangement, teacher shall assign students 1, 2, 3, . . . , p − 1 to sit
on s1, s2, s3, . . . , sp−1 respectively. Therefore, corresponding to positions of seats
s0, s1, s2, . . . , sp−1, the Day 1 arrangement is

Day 1 0 1 2 3 4 . . . p− 1 0.
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(3) For Day k arrangements (k = 2, 3, 4, . . . , p− 1), we have the arrangements as

Day k 0 k 2k 3k 4k . . . (p− 1)k 0.

Next, we represent teacher 0, students 1, 2, 3, . . . , p − 1 by p points of graph. We
then draw lines of graph according to seat arrangement for each day and obtain p − 1
hamiltonian cycles. All lines of the 1st, 2nd, 3rd, . . . , (p − 1)-th cycles have distances
1, 2, 3, . . . , p− 1 respectively.

Now, we can have Theorem 3.1

Theorem 3.1. For every p ≥ 3, Kp is n sequentially hamiltonian if and only if p is
prime number.
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