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Abstract Moment swaps are essentially forward contracts on realized higher moments of log-returns of

a specified underlying asset, which play an important role in protection against different kinds of market

shocks, and variance, skewness, and kurtosis swaps are examples of moment swaps currently traded in

markets. To facilitate market practitioners, this work provides a simple and easy-to-use pricing formula

of moment swaps on discrete sampling under the Black-Scholes model with time-dependent parameters.

The formula is investigated for validity and compared with the fair delivery prices of moment swaps.

Furthermore, a closed-form formula for hedging moment swaps on futures is deduced. Finally, Monte

Carlo simulations are performed to support the accuracy of the pricing formula and numerical examples

are provided to check the sensitivity of the parameters and relationships of calculated prices between

moment swaps.
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1. Introduction

Moment swaps are essentially forward contracts on the realized higher moments of the
log-returns of a specified underlying asset. More specifically, their payoff is a function of
powers of the (daily) log-returns of the underlying asset at certain pre-specified discretely
sampled points. According to recent studies by Schoutens [12] and Rompolis and Tzavalis
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[7], moment swaps play such an important role in financial markets to cover different
kinds of market shocks. Speculators trade variance swaps (second order moment swaps)
as an easy way to gain exposure to future levels of variance, and they may need to hedge
against their portfolio volatility risk. Skewness swaps (third order moment swaps) provide
protection against changes in the symmetry of the underlying distribution. Kurtosis swaps
(fourth order moment swaps) provide protection against unexpected occurrences of very
large jumps or changes in the tail behavior of the underlying distribution. These studies
suggest that using variance and higher-moment swaps to hedge European options gives
better performance compared with traditional delta hedging strategies. Therefore, it is
meaningful to define and price higher-moment swaps to hedge the existing skewness and
kurtosis risks.

As a result of the increasing trading activities of variance swaps, researchers have pro-
posed various types of valuation approaches for pricing variance swaps defined either in
terms of continuous sampling or discrete sampling; for example, see Zhu and Lian [16],
[17], Rujivan and Zhu [11], [10], Zheng and Kwok [15] and Rujivan [9]. On the other
hand, Schoutens [12] defined higher-moment swaps using daily log-returns for the real-
ized moments, and claimed that moment swaps can protect against incorrectly estimated
skewness or kurtosis without deriving an exact pricing formula for moment swaps. Re-
cently, tremendous growth in the study of skewness and kurtosis risks has been witnessed,
see Neuberger [6], Kozhan et al. [5], Zhao et al. [14], Rompolis and Tzavalis [7], and Zhang
et al. [13], due to the launching of CBOE Skew Index (SKEW) to measure the skewness
risk in the financial market by the Chicago Board Options Exchange (CBOE) in 2011.

In this paper, an analytical method are derive to price the discretely-sampled moment
swaps introduced by Schoutens [12]. The study begins by considering a probability space
(Ω,F , Q) with a filtration (Ft)t≥0 and a risk-neutral probability measure Q, for finding

the conditional expectation of a random variable X with respect to a filtration Ft, EQt [X].
The dynamics of the underlying asset price St is assumed to follow the Black-Scholes (BS)
model with time-dependent parameters, referred to as the extended Black-Scholes (EBS)
model, described by

dSt = r(t)Stdt+ σ(t)StdWt (1.1)

where r(t) is the time-dependent risk-free interest rate, σ(t) is a deterministic positive
function of time interpreting the volatility, and Wt is a one-dimensional Brownian motion.
The assumption of the time-dependent parameters provides a more flexible model to
describe the potential political or economic events which may occur. Kloeden and Platen
[4] proposed the solution of the SDE (1.1) with initial price S0 in the form

St = S0e

∫ t
0

(
r(s)−σ

2(s)
2

)
ds+

∫ t
0
σ(s)dWs

. (1.2)

Schoutens [12] introduced the annualized realized m-moment, m ≥ 2, in terms of
discrete sampling over the contract life [0, T ] for a maturity time T > 0 on an underlying
asset St as

MOMS
(m)
stock = N ′ ×

N∑
i=1

lnm
(
Sti
Sti−1

)
where Sti are the closing prices of the underlying asset observed at times ti, for i =
0, 1, ..., N , and N ′ is the nominal amount, N ′ = AF

N when AF is the annualized factor
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for converting to annualized higher moments. If the sampling frequency is calculated
daily, then AF = 252, assuming that there are 252 trading days in one year; if weekly,

then AF = 52; and if monthly, then AF = 12. Typically, T =
N

AF
with equally-spaced

discrete observations ∆t = ti−ti−1 > 0, for i = 1, 2, ..., N . The annualized factor becomes

AF =
N

T
=

1

∆t
, and the typical formula for the measure of realized m-moment is

MOMS
(m)
stock =

1

T

N∑
i=1

lnm
(
Sti
Sti−1

)
=

1

T

N∑
i=1

(
Xti −Xti−1

)m
(1.3)

where Xt := lnSt, a log price process.
In a risk-neutral world, the value Vt of an m-moment swap at time t is the expected

present value of the future payoff,

Vt = EQt

[
e−
∫ T
t
r(s)ds(MOMS

(m)
stock −K

m)L
]

where Km is the annualized delivery price for the m-moment swap and L is the notional
amount of the swap. The value of V0 is zero at the beginning of the contract since there
is no cost entering into a forward contract, therefore, the fair delivery price of the m-

moment swap is Km = EQ0 [MOMS
(m)
stock]. The valuation problem for an m-moment swap

is reduced to calculating the conditional expectation of the realized m-moment (1.3) in
the risk-neutral world.

The valuation of moment swaps on discrete sampling under the EBS model (1.1) is non-
trivial, even though St is log-normally distributed, there is no analytical pricing formula
for moment swaps available. It is the purpose of this study to provide market practitioners
with a simple and easy-to-use pricing formula for moment swaps by deriving an analytical

formula of the sum of the conditional expectations EQ0
[(
Xti −Xti−1

)m]
, i = 1, ..., N , in

terms of Xk
t which satisfies a nonlinear SDE, for k = 2, ...,m.

The steps start with employing the Feynman-Kac theorem to derive solutions of partial
differential equations (PDEs) as the the conditional expectations of Xk

t . The PDE is
solved analytically using the method of reduction to produce a closed-form formula for
the conditional expectations of Xk

t for all k = 1, ...,m. The formula is further simplified
especially the sum of the conditional expectations, since the number of systems of ordinary
differential equations (ODEs) that must be solved will be dramatically increased by the
value of m. Fortunately, a simple and easy-to-use analytical formula for the conditional
expectations is derived using combinatorial techniques for the fair delivery price of the
m-moment swap for all positive integer m ≥ 2.

The remaining contributions of this paper are followed. Utilizing the pricing formula for
moment swaps, the fair delivery prices of any m-moment swap with the futures price as the
underlying price is derived in closed form. We also discuss the validity of the solution in
the parameter space of the EBS model. This discussion has a practical implication in the
market, and practitioners must be aware to ensure that their model parameters, extracted
from market data, are in the correct format when the analytical pricing formula is used
to calculate the fair delivery price of a discretely-sampled moment swap. Additionally,
a comparison result for the fair delivery prices of different moment swaps is obtained,
showing that trading variance swaps are more expensive than trading any higher moment
swaps.
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The paper is organized into six sections. Section 2 presents the analytical approach
for obtaining the conditional expectation of the realized m-moment (1.3) in closed-form
formula, followed by the analytical formulas for the moment swaps with the stock price
as the underlying. Section 3 provides discussion on the validity of the formula and a com-
parison result for the fair delivery prices of different moment swaps. In Section 4, hedging
moment swaps on futures is presented. Section 5 provides some numerical examples to
support the obtained results; the correctness of the closed-form formula is confirmed by
Monte Carlo (MC) simulations and the comparison of the calculated fair prices of mo-
ment swaps. Moreover, the sensitivity for small changes of parameters is displayed in this
section. A brief conclusion is finally provided in Section 6.

2. Analytical method for pricing moment swaps

In this section, an analytical formula for pricing discretely-sampled moment swaps
under the EBS model (1.1) is derived by applying the method presented by Rujivan and
Zhu [10].

2.1. Analytical formula for m-conditional moment

From (1.3), the expectation of MOMS
(m)
stock with respect to F0 is

Km = EQ0

[
MOMS

(m)
stock

]
= EQ0

[
1

T

N∑
i=1

(
Xti −Xti−1

)m]

=
1

T

N∑
i=1

EQ0
[(
Xti −Xti−1

)m]
. (2.1)

Therefore, the problem of pricing moment swaps is reduced to calculating the conditional
expectations

EQ0
[(
Xti −Xti−1

)m]
. (2.2)

Using the fact that F0 ⊂ Fti−1 and Sti−1 is Fti−1-measurable, the binomial theorem, and
the tower property, the conditional expectation (2.2) becomes

EQ0
[(
Xti −Xti−1

)m]
= EQ0

[
m∑
k=0

(
m

k

)
(−1)m−kXm−k

ti−1
EQti−1

[
Xk
ti

]]
. (2.3)

The conditional expectations with respect to Fti−1
on the right-hand side of (2.3),

EQti−1

[
Xk
ti

]
, for 1 ≤ k ≤ m, are computed by using the following theorem.

Theorem 2.1. Suppose that k ≥ 2 is an integer and St follows the EBS model in (1.1).
We set Xt = lnSt and ∆ti = ti − t for all i = 1, 2, . . . , N . If r(t), σ(t) > 0 are integrable
on [ti−1, ti] in which r(t)− 1

2σ
2(t) is not a zero function on [ti−1, ti] then

EQti−1
[Xk

t ] = EQ[Xk
t | Xti−1

= x] =

k∑
j=0

xk−jAj(∆ti; ti, k) (2.4)
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for all t ∈ [ti−1, ti] and x ∈ (−∞,∞), where we define x0 := 1 for all x ∈ (−∞,∞) and

A0(∆ti; ti, k) = 1, (2.5)

A1(∆ti; ti, k) = k

∫ ∆ti

0

(
r(ti − η)− 1

2
σ2(ti − η)

)
dη, (2.6)

Aj(∆ti; ti, k) = (k − (j − 1))

∫ ∆ti

0

(
r(ti − η)− 1

2
σ2(ti − η)

)
Aj−1(η; ti, k)dη

+
1

2
(k − (j − 2)) (k − (j − 1))

∫ ∆ti

0

σ2(ti − η)Aj−2(η; ti, k)dη

(2.7)

for j = 2, 3, . . . , k.

Proof. We first apply Itô’s lemma to the transformation Yt = Xk
t . Thus, Yt follows the

SDE

dYt =

[(
r(t)− 1

2
σ2(t)

)
kY

1− 1
k

t +
1

2
k(k − 1)σ2(t)Y

1− 2
k

t

]
dt+ kσ(t)Y

1− 1
k

t dWt.

(2.8)

Consider a real-valued function defined by

U
(k)
i (y, t) := EQ[Yt | Yti−1

= y], (2.9)

for all (y, t) ∈ R × [ti−1, ti). Applying the Feynman-Kac formula to (2.8) and (2.9), we

have that U
(k)
i satisfies the PDE

∂U
(k)
i

∂t
+

[(
r(t)− 1

2
σ2(t)

)
ky1− 1

k +
1

2
k(k − 1)σ2(t)y1− 2

k

]
∂U

(k)
i

∂y

+
1

2

[
kσ(t)y1− 1

k

]2 ∂2U
(k)
i

∂y2
= 0 (2.10)

subject to the terminal condition

U
(k)
i (y, ti) = y (2.11)

for all (y, t) ∈ R × [ti−1, ti). Let τ = ti − t. Adopting the solution form of the PDE
proposed in Rujivan [8], we solve the PDE (2.10) subject to the terminal condition (2.11)
by assuming that the solution can be written in the form

U
(k)
i (y, t) =

k∑
j=0

y1− jkAj(τ ; ti, k) (2.12)
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where Aj(τ ; ti, k) is the function depend on τ , ti and k for j = 0, 1, . . . , k. Calculating all

partial derivatives of U
(k)
i in (2.10) by using the solution form (2.12) yields

∂U
(k)
i

∂t
= −

 k∑
j=0

y1− jk
dAj
dτ

 , (2.13)

∂U
(k)
i

∂y
=

k−1∑
j=0

(
1− j

k

)
y−

j
kAj , (2.14)

∂2U
(k)
i

∂y2
=

k−1∑
j=0

(
1− j

k

)(
− j
k

)
y−

j
k−1Aj . (2.15)

Inserting (2.13)–(2.15) into (2.10), we can derive a system of ODEs

dA0

dτ
= 0, (2.16)

dA1

dτ
= k

(
r(ti − τ)− 1

2
σ2(ti − τ)

)
A0, (2.17)

dAj
dτ

= (k − (j − 1))

(
r(ti − τ)− 1

2
σ2(ti − τ)

)
Aj−1

+
1

2
(k − (j − 2)) (k − (j − 1))σ2(ti − τ)Aj−2 (2.18)

for j = 2, 3, ..., k, subject to the initial conditions derived from the terminal condition
(2.11) as

A0(0; ti, k) = 1 and Aj(0; ti, k) = 0 for j = 1, 2, . . . , k. (2.19)

The solution of (2.16)–(2.18) subject to the initial conditions (2.19) can be found as
expressed in (2.5), (2.6), and (2.7), respectively. This completes the proof of the theorem.

In the case that r(t)− 1
2σ

2(t) is a zero function on [ti−1, ti], an analytical formula for the
conditional expectation (2.4) can also be obtained similarly to Theorem (2.1); however,
in this case the coefficients Aj become zero when j is odd as described in the following
result.

Corollary 2.2. Suppose that k ≥ 2 is an integer and St follows the EBS model in (1.1).
We set Xt = lnSt and ∆ti = ti − t for all i = 1, 2, . . . , N . If r(t), σ(t) > 0 are integrable
on [ti−1, ti] in which r(t)− 1

2σ
2(t) is a zero function on [ti−1, ti] then

EQti−1
[Xk

t ] = EQ[Xk
t | Xti−1

= x] =

b k2 c∑
j=0

xk−2jA2j(4ti; ti, k)
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for all t ∈ [ti−1, ti] and x ∈ (−∞,∞), where we define x0 := 1 for all x ∈ (−∞,∞) and

A0(4ti; ti, k) = 1,

A2(4ti; ti, k) =
1

2
k(k − 1)

∫ 4ti
0

σ2(ti − η)dη,

A2j(4ti; ti, k) =
1

2j

(
2j−1∏
r=0

(k − r)

)
∫ 4ti

0

∫ ηj

0

· · ·
∫ η2

0

σ2(ti − η1) · · ·σ2(ti − ηj)dη1 · · · dηj

for j = 2, 3, . . . , bk2 c.

Proof. Since r(t) − 1
2σ

2(t) is a zero function [ti−1, ti], we can reduce A1(4ti; ti, k) and
Aj(4ti; ti, k) defined as (2.6) and (2.7) to the form

Aj(4ti; ti, k)

=


0 if j is odd,

1

2
(k − (j − 2)) (k − (j − 1))

∫ 4ti
0

σ2(ti − η)Aj−2(η; ti, k)dη if j is even

for j = 1, 2, . . . , k. This proof is complete.

2.2. Analytical pricing formula for m-moment swap under EBS model

The following lemma will be used to derive the fair delivery price of moment swaps
under the EBS model (1.1).

Lemma 2.3. Let τ, ζ ∈ R and j ∈ N. Then,

Aj(τ ; ζ, k1) =
k1!

(k1 − j)!
(k2 − j)!
k2!

Aj(τ ; ζ, k2) (2.20)

for all k1, k2 ∈ {j, j + 1, ...}.

Proof. We shall prove the lemma by using the strong induction principle. It easy to show
that (2.20) holds for j = 1, 2. Let n ∈ N. We assume that (2.20) holds for j = 1, 2, . . . , n.
From (2.7), we write

An+1(τ ; ζ, k1) = A′n+1(τ ; ζ, k1) +A′′n+1(τ ; ζ, k1),

where

A′n+1(τ ; ζ, k1) = (k1 − n)

∫ τ

0

(
r(ζ − η)− 1

2
σ2(ζ − η)

)
An(η; ζ, k1)dη,

A′′n+1(τ ; ζ, k1) =
1

2
(k1 − (n− 1))(k1 − n)

∫ τ

0

σ2(ζ − η)An−1(η; ζ, k1)dη.
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By the hypothesis for k1, k2 ≥ n, using (2.20) with j = n and j = n− 1 gives

A′n+1(τ ; ζ, k1) =
k1!

(k1 − (n+ 1))!

(k2 − (n+ 1))!

k2!
(k2 − n)∫ τ

0

(
r(ζ − η)− 1

2
σ2(ζ − η)

)
An(η; ζ, k2)dη,

A′′n+1(τ ; ζ, k1) =
k1!

(k1 − (n+ 1))!

(k2 − (n+ 1))!

k2!

1

2
(k2 − (n− 1))(k2 − n)∫ τ

0

σ2(ζ − η)An−1(η; ζ, k2)dη,

respectively. Therefore, from (2.7),

An+1(τ ; ζ, k1) =
k1!

(k1 − (n+ 1))!

(k2 − (n+ 1))!

k2!
An+1(τ ; ζ, k2).

This show that (2.20) holds for j = n+ 1, hence, it is true for all j ∈ N.

In the following theorem, we derive the fair delivery price of the m-moment swap under
the EBS model (1.1) by utilizing Theorem 2.1 and Lemma 2.3.

Theorem 2.4. Suppose that St follows the EBS model (1.1) and m ≥ 2 is an integer.
Then, the fair delivery price of the m-moment swap under the EBS model (1.1), denoted
by Km

EBS, can be expressed as

Km
EBS(T,N) =

1

T

N∑
i=1

Am(∆t; ti,m) (2.21)

where ∆t = T
N , ti = i∆t, i = 0, 1, ..., N , and Am(∆t; ti,m) are defined in (2.5)–(2.7).

Proof. From (2.1) and (2.3), we have

Km
EBS =

1

T

N∑
i=1

EQ0
[(
Xti −Xti−1

)m]
=

1

T

N∑
i=1

EQ0

[
m∑
k=0

(
m

k

)
(−1)m−kXm−k

ti−1
EQti−1

[
Xk
ti

]]
. (2.22)

Utilizing Theorem 2.1, the conditional expectations with respect to Fti−1
on the right-

hand side of (2.22) can be written as

EQti−1

[
Xk
ti

]
=

k∑
j=0

Aj(∆t; ti, k)Xk−j
ti−1

(2.23)

where Aj(∆t; ti, k), j = 0, 1, ..., k, are defined in (2.5)–(2.7). This implies

m∑
k=0

(
m

k

)
(−1)m−kXm−k

ti−1
EQti−1

[
Xk
ti

]
=

m∑
k=0

(
m

k

)
(−1)m−kXm−k

ti−1

k∑
j=0

Aj(∆t; ti, k)Xk−j
ti−1

. (2.24)
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Next, we rearrange the terms in the summations on the right-hand side of (2.24) to obtain

m∑
k=0

(
m

k

)
(−1)m−kXm−k

ti−1

k∑
j=0

Aj(∆t; ti, k)Xk−j
ti−1

=

m∑
j=0

m∑
k=j

(
m

k

)
(−1)m−kAj(∆t; ti, k)Xm−j

ti−1
. (2.25)

Applying Lemma 2.3 to Aj(∆t; ti, k) gives us

Aj(∆t; ti, k) =
k!

(k − j)!j!
Aj(∆t; ti, j). (2.26)

Inserting (2.26) into (2.25), we arrive
m∑
j=0

m∑
k=j

(
m

k

)
(−1)m−kAj(∆t; ti, k)Xm−j

ti−1

=

m∑
j=0

 m∑
k=j

(
m

k

)
(−1)m−k

k!

(k − j)!

 1

j!
Aj(∆t; ti, j)X

m−j
ti−1

. (2.27)

The following identity is useful to reduce the summation terms on the right-hand side of
(2.27)

m∑
k=j

(
m

k

)
(−1)m−k

k!

(k − j)!
= 0 for 0 ≤ j < m. (2.28)

Applying the identity (2.28) to the right-hand side of (2.27) gives us

m∑
j=0

 m∑
k=j

(
m

k

)
(−1)m−k

k!

(k − j)!

 1

j!
Aj(∆t; ti, j)X

m−j
ti−1

= Am(∆t; ti,m). (2.29)

Utilizing (2.24)-(2.29), we have that the conditional expectation EQ0
[(
Xti −Xti−1

)m]
can

be simplified to a simple form as

EQ0
[(
Xti −Xti−1

)m]
= EQ0 [Am(∆t; ti,m)] = Am(∆t; ti,m). (2.30)

We insert (2.30) into the right-hand side of (2.22) to complete the proof.

2.3. Analytical pricing formula for m-moment swap under BS model

Next, we consider the BS model described by the SDE as

dSt = rStdt+ σStdWt (2.31)

where r and σ > 0 are constants. From Theorem 2.1, the ODEs (2.16)-(2.18) subject to
the initial conditions (2.19) can be solved analytically as proposed in the following lemma.

Lemma 2.5. Suppose that St follows the BS model (2.31) such that r 6= 1
2σ

2 and k ≥ 1
is an integer. Then, the solutions of ODEs (2.16)-(2.18) subject to the initial conditions
(2.19) can be expressed as

Aj(τ ; ti, k) =
k!

(k − j)!

b j2c∑
n=0

σ2n

2nn!(j − 2n)!

(
r − 1

2
σ2

)j−2n

τ j−n (2.32)
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for τ ≥ 0 and j = 0, 1, ..., k.

Proof. following the same proof of Theorem2.1 that Aj(τ ; ti, k), it is easy to see that
(2.32) satisfies the ODEs (2.16)-(2.18) subject to the initial conditions (2.19) when the
parameter functions are constant.

Applying Theorem 2.4 and Lemma 2.5, the fair delivery price of moment swaps under
the BS model (2.31) can be deduced as follows.

Theorem 2.6. Suppose that St follows the BS model (2.31) such that r 6= 1
2σ

2 and m ≥ 2
is an integer. Then, the fair delivery price of the m-moment swap under the BS model
(2.31), denoted by Km

BS, can be expressed as

Km
BS(T,N) =

bm2 c∑
n=0

m!

2nn!(m− 2n)!
σ2n

(
r − 1

2
σ2

)m−2n

(∆t)
m−n−1

(2.33)

where ∆t = T
N . In particular, the fair delivery prices of variance, skewness, and kurtosis

swaps under the BS model (2.31) can be expressed as

K2
BS(T,N) =

(
r − σ2

2

)2
T

N
+ σ2, (2.34)

K3
BS(T,N) =

(
r − σ2

2

)3
T 2

N2
+ 3σ2

(
r − σ2

2

)
T

N
, (2.35)

K4
BS(T,N) =

(
r − σ2

2

)4
T 3

N3
+ 6σ2

(
r − σ2

2

)2
T 2

N2
+ 3σ4 T

N
, (2.36)

respectively.

Proof. Utilizing (2.32) in Lemma 2.5, we have

Am(∆t; ti,m) =

bm2 c∑
n=0

σ2n

2nn!(m− 2n)!

(
r − 1

2
σ2

)m−2n

(∆t)m−n. (2.37)

Inserting (2.37) into the right-hand side of (2.21), we immediately obtain (2.33).

3. Validity of the solution

3.1. Positivity of the solution

The construction of the formula for pricing moment swaps under the EBS model (2.21)
presents some interesting discussions in terms of the validity of the solution. The purpose
of such an examination is to ensure that one of the fundamental assumptions that the fair
delivery price of a moment swap is finite and strictly positive for a given set of parameters
determined from market data.

Theorem 3.1. According to Theorem 2.4, if the parameter functions r(t), σ(t) > 0 are
integrable on [0, T ] and satisfy∫ ti

ti−1

(
r(t)− 1

2
σ2(t)

)
dt > 0 (3.1)
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for all i = 1, ..., N . Then,

0 < Km
EBS(T,N) <∞ (3.2)

for all integer m ≥ 2. In particular, if m is even then the inequality (3.2) holds without
assuming the condition (3.1).

Proof. The integrability of r(t) − 1
2σ

2(t) on [0, T ] implies that the coefficient functions
Aj(t; ti,m), i = 1, ..., N , and j = 1, 2, ..,m, which can be computed by using (2.6)-(2.7),
are bounded on [0, T ] and so is Km

EBS(T,N). In addition the condition (3.1) implies
Aj(t; ti,m) > 0 for all t ∈ [ti−1, ti], i = 1, ..., N , and j = 1, 2, ..,m. Hence, we immediately
obtain that 0 < Km

EBS(T,N). Moreover, when m is even, the RHS of (2.7) is always
positive without assuming the condition (3.1). This result yields (3.2).

3.2. Comparisons of fair delivery prices of moment swaps

This section provides a comparison theorem for the fair delivery prices of different
moment swaps under the BS model. The following theorem demonstrates that trading
variance swaps are more expensive than trading any higher moment swaps.

Theorem 3.2. According to Theorem 2.6 and 3.1, we suppose that r > 1
2σ

2 and m,n
are integers such that 2 ≤ n < m− 1. Then,

Km
BS(T,N) < Kn

BS(T,N) (3.3)

for T
N ∈ (0, τ∗m,n) where τ∗m,n is the smallest positive root of a polynomial function of

degree m− n+
⌊
n
2

⌋
with respect to τ defined by

Pm−n+bn2 c(s) :=

bm2 c∑
j=0

Cm,js
m−(n+j)+bn2 c −

bn2 c∑
j=0

Cn,js
bn2 c−j (3.4)

Cl,j :=
l!

2jj!(l − 2j)!
σ2j

(
r − 1

2
σ2

)l−2j

(3.5)

for l = m,n. In particular,

Km
BS(T,N) = Kn

BS(T,N) (3.6)

when T
N = τ∗m,n.

Proof. Using (2.33), one can derive the following relation

Km
BS(T,N)−Kn

BS(T,N) = τn−b
n
2 c−1Pm−n+bn2 c(τ) (3.7)

for τ = T
N . To obtain (3.3), we shall show that lim

s→0+
Pm−n+bn2 c(s) < 0. Since 2 ≤ n <

m− 1 and r > 1
2σ

2, the limit can be deduced from (3.4) and (3.5) that

lim
s→0+

Pm−n+bn2 c(s) = −Cn,bn2 c = − n!

2b
n
2 c⌊n

2

⌋
!
(
n− 2

⌊
n
2

⌋)
!
σ2bn2 c

(
r − 1

2
σ2

)n−2bn2 c
< 0.

(3.8)
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Next, we consider the coefficient of sm−(n+j)+bn2 c for j = 0 in (3.4). We note from (3.5)
that Cm,0 = (r − 1

2σ
2)m > 0 and this implies

lim
s→∞

Pm−n+bn2 c(s) =∞. (3.9)

From (3.8) and (3.9), we immediately obtain that Pm−n+bn2 c(s) has at least one positive

root. We let τ∗m,n be the smallest positive root. Therefore, (3.3) and (3.6) hold for
T
N ∈ (0, τ∗m,n) and T

N = τ∗m,n, respectively.

Corollary 3.3. According to Theorem 3.2, if r > 1
2σ

2 then (3.3) and (3.6) hold for all
integers m,n such that m is odd and 2 ≤ n < m.

Proof. The proof is complete following the fact that when m is odd, (3.8) and (3.9) hold
for 2 ≤ n < m.

Corollary 3.4. According to Theorem 3.2, if r > 3
2σ

2 then (3.3) and (3.6) hold for all
integers m,n such that 2 ≤ n < m.

Proof. Since r > 3
2σ

2 > 1
2σ

2. Thus, we have the following facts: (i) (3.8) and (3.9) hold
for 2 ≤ n < m − 1 and (ii) (3.8) and (3.9) hold for m is odd and 2 ≤ n < m. Next, we
consider lim

s→0+
Pm−n+bn2 c(s) under the case that m is even and n = m− 1. The limit can

be deduced from (3.4) and (3.5) that

lim
s→0+

Pm−n+bn2 c(s) = Cm,bm2 c − Cn,bn2 c
= C2h,h − C2h−1,h−1

= − (2h)!

2hh!
σ2h−2

(
r − 3

2
σ2

)
< 0 (3.10)

where m = 2h for some positive integer h. Using (3.9) and (3.10), we now obtain (3.3)
and (3.6) for T

N ∈ (0, τ∗m,n) and T
N = τ∗m,n, respectively.

4. Hedging moment swaps

The present section considers moment swaps with the futures price as the underlying
price. We assume that futures which expire at time T are available on the underlying
asset where the price St follows the EBS model (1.1). Under the risk-neutral valuation,
the price process of the futures is given by

Ft = EQt [ST ] = Ste
∫ T
t
r(s)ds (4.1)

for 0 ≤ t ≤ T . According to Schoutens [12] and (4.1), we introduce the realized m-moment
on futures as

MOMS
(m)
futures =

1

T

N∑
i=1

lnm
(
Fti
Fti−1

)
=

1

T

N∑
i=1

(
(Xti −Xti−1

) +Ri
)m

(4.2)

where we define

Ri := −
∫ ti

ti−1

r(s)ds. (4.3)
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In the following theorem, we demonstrate that the fair delivery price of a moment swap
on futures can be expressed in terms of a linear combination of the fair delivery prices of
moment swaps on its corresponding underlying stock.

Theorem 4.1. Suppose that St follows the EBS model (1.1) and m ≥ 1 is a positive
integer. Then, the fair delivery price of the m-moment swap on futures which expire at
time T under the EBS model (1.1), defined by

FmEBS := EQ0

[
MOMS

(m)
futures

]
(4.4)

can be expressed as

FmEBS(T,N)

=

m∑
n=0

(
m

n

)
Km−n

EBS (T,N) +

m∑
n=1

(
m

n

) n∑
j=1

(
n

j

)
1

T

N∑
i=1

(−Mi)
jAm−n(∆t; ti,m− n)

(4.5)

where we define K0
EBS(T,N) := 1 and Mi := 1 − Ri = 1 +

∫ ti
ti−1

r(s)ds, and let ∆t =
T
N , ti = i∆t, i = 0, 1, ..., N , and Am−n(∆t; ti,m− n) can be computed using (2.5)–(2.7).

Proof. From (4.2)-(4.4), we apply the Binomial theorem to obtain

FmEBS =
1

T

N∑
i=1

EQ0
[(

(Xti −Xti−1
) +Ri

)m]
=

1

T

N∑
i=1

m∑
n=0

(
m

n

)
(Ri)

nEQ0

[(
Xti −Xti−1

)m−n]
=

1

T

N∑
i=1

m∑
n=0

(
m

n

)
(1−Mi)

nEQ0

[(
Xti −Xti−1

)m−n]

=
1

T

N∑
i=1

m∑
n=0

(
m

n

)1 +

n∑
j=1

(
n

j

)
(−Mi)

j

EQ0

[(
Xti −Xti−1

)m−n]
. (4.6)

Using (2.30) gives EQ0

[(
Xti −Xti−1

)m−n]
= Am−n(∆t; ti,m− n) and

FmEBS =
1

T

N∑
i=1

m∑
n=0

(
m

n

)1 +

n∑
j=1

(
n

j

)
(−Mi)

j

Am−n(∆t; ti,m− n)

=

m∑
n=0

(
m

n

)
1

T

N∑
i=1

Am−n(∆t; ti,m− n)

+

m∑
n=1

(
m

n

) n∑
j=1

(
n

j

)
1

T

N∑
i=1

(−Mi)
jAm−n(∆t; ti,m− n). (4.7)

Utilizing (2.21) in Theorem 2.4, we replace 1
T

∑N
i=1Am−n(∆t; ti,m − n) in (4.7) by

Km−n
EBS (T,N) to obtain (4.5).
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Next, we consider the fair delivery price of the m-moment swap on futures when r and
σ > 0 are constants.

Corollary 4.2. Suppose that St follows the BS model (2.31) and m ≥ 1 is a positive
integer. Then, the fair delivery price of the m-moment swap on futures which expire at
time T under the BS model (2.31), defined by

FmBS := EQ0

[
MOMS

(m)
futures

]
can be expressed as

FmBS(T,N) = Km
BS(T,N) +

m∑
n=1

(
m

n

)
(−r∆t)nKm−n

BS (T,N) (4.8)

where we define K0
BS(T,N) := 1.

Proof. Under the BS model (2.31), we have Ri = −r∆t in (4.3) and

FmBS =
1

T

N∑
i=1

m∑
n=0

(
m

n

)
(Ri)

nEQ0

[(
Xti −Xti−1

)m−n]
=

m∑
n=0

(
m

n

)
(−r∆t)n 1

T

N∑
i=1

Am−n(∆t; ti,m− n). (4.9)

The proof is complete by replacing 1
T

∑N
i=1Am−n(∆t; ti,m− n) in (4.9) by Km−n

BS (T,N)
to obtain (4.8).

The following theorem is very useful for hedging moment swaps on futures.

Theorem 4.3. According to Theorem 4.1, the fair delivery price of the m-moment swap
on futures which expire at time T under the EBS model (1.1) can be approximated as

FmEBS(T,N,m) =

m+1∑
j=1,j 6=m

(
−m!

j!

)
F jEBS(T,N, j) +R

(m)
EBS(T,N) (4.10)

for m ≥ 1, where we define the remainder term as

R
(m)
EBS(T,N) := −

∞∑
j=m+2

(
m!
j!

) 1

T

N∑
i=1

j∑
n=0

(
j

n

)
(−1)j−ne

1
2 (n−1)n

∫ ti
ti−1

σ2(s)ds
. (4.11)

Moreover, lim
N→∞

R
(m)
EBS(T,N) = 0 for m ≥ 2.

Proof. We first consider the power series representation of the exponential function as

ey = 1 +

∞∑
j=1

yj

j!
(4.12)

for y ∈ R. Substituting y in (4.12) by ln
(

Fti
Fti−1

)
leads to(

Fti − Fti−1

Fti−1

)
=

m+1∑
j=1

1

j!
lnj
(
Fti
Fti−1

)
+

∞∑
j=m+2

1

j!

(
Fti − Fti−1

Fti−1

)j
(4.13)
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where we approximate lnj
(

Fti
Fti−1

)
by
(
Fti−Fti−1

Fti−1

)j
for j ≥ m+ 2. From (4.2) and (4.13),

1

T

N∑
i=1

(
Fti − Fti−1

Fti−1

)
=

m+1∑
j=1

1
j!MOMS

(j)
futures +

1

T

N∑
i=1

∞∑
j=m+2

1

j!

(
Fti − Fti−1

Fti−1

)j
.

(4.14)

Applying the binomial theorem to give(
Fti − Fti−1

Fti−1

)j
=

(
Sti
Sti−1

eRi − 1

)j
=

j∑
n=0

(
j

n

)
(−1)j−nenRi

(
Sti
Sti−1

)n
. (4.15)

From the solution of the SDE (1.1) as written in (1.2), we have(
Sti
Sti−1

)n
= e

n
∫ ti
ti−1

(
r(s)− 1

2σ
2(s)

)
ds+n

∫ ti
ti−1

σ(s)dWs

= e
∫ ti
ti−1

(
nr(s)+

1
2 (n−1)nσ2(s)

)
ds × eMti

− 1
2 〈M〉ti (4.16)

where Mt := n
∫ t
ti−1

σ(s)dWs and its quadratic variation 〈M〉t := n2
∫ t
ti−1

σ2(s)ds. Ap-

plying the proposition proposed by Karatzas and Shreve [2] (see on page 198), we have

EQ0

[
eMti

− 1
2 〈M〉ti

]
= EQ0

[
EQti−1

[
eMti

− 1
2 〈M〉ti

]]
= EQ0 [1] = 1. (4.17)

Applying (4.17) to (4.16) and (4.15), respectively, leads to

EQ0

[(
Fti − Fti−1

Fti−1

)j]
=

j∑
n=0

(
j

n

)
(−1)j−ne

1
2 (n−1)n

∫ ti
ti−1

σ2(s)ds
(4.18)

for j ∈ N. Taking the conditional expectation with respect to F0 to both side of (4.14) and

using (4.18) give (4.10) and (4.11). To show that lim
N→∞

R
(m)
EBS(T,N) = 0, we set ti−ti−1 =

T
N for all i = 1, ..., N . From (4.11), we have e

1
2 (n−1)n

∫ ti
ti−1

σ2(s)ds
= e

1
2 (n−1)n

∫ T
N

0 σ2(ti−s)ds

converges to 1 for large N . Using this result with the identity
∑j
n=0

(
j
n

)
(−1)j−n = 0 for

j ≥ 1, the limit is obtained as desired.

5. Numerical results

For the purpose of demonstrating the accuracy of the closed-form formulas (2.21) and
(2.33), we present some numerical examples in this section. We compare the results ob-
tained from the formulas and those from MC simulations. Although theoretically there
would be no need to discuss the accuracy of the closed-form formulas and present nu-
merical results, some comparisons with the MC simulations may give readers a sense of
verification for the newly found solutions. This is particularly so for some market prac-
titioners who are very used to MC simulations and would not trust analytical solutions
that may contain algebraic errors unless they have seen numerical evidence of such a
comparison.
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In the MC simulations, we consider the dynamics of the log price process Xt = lnSt
derived by using (2.8) with k = 1 as

dXt =

(
r(t)− 1

2
σ2(t)

)
dt+ σ(t)dWt. (5.1)

We employ the simple Euler-Maruyama discretization for the log price process (5.1) on
the time interval [0, T ] as

Xtj (ω) = Xtj−1
(ω) +

(
r(tj)−

1

2
σ2(tj)

)
∆t+ σ(tj)

√
∆tZtj (ω), (5.2)

for ω ∈ Ω,∆t = T
Me

and tj = j∆t, j = 0, 1, ...,Me where Me is a positive integer repre-
senting the number of time steps used in the discretization and Ztj is the standard normal
random variable. For simplicity, we set Me = N and this gives us the approximate of Xti

at the observation time ti, i = 1, 2, ..., N, used to compute the realized m-moment defined
in (1.3).

Next, we introduce an approximate of Km
EBS(T,N) obtained by MC simulations as

Km
MC(T,N ;Np) :=

Np∑
p=1

(
1

T

N∑
i=1

(
Xti(ωp)−Xti−1

(ωp)
)m)

Np
, (5.3)

for ωp ∈ Ω and p = 1, 2, ..., Np where Np is the number of sample paths used in MC
simulations. Moreover, we shall construct a standard method in order to measure the
level of accuracy of the closed-form formulas (2.21) and (5.3). Define the percentage
relative error (εm) from using MC simulations by

εm(T,N ;Np) :=

∣∣∣∣Km
EBS(T,N)−Km

MC(T,N ;Np)

Km
EBS(T,N)

∣∣∣∣× 100%.

The presented numerical examples are performed on a quad-processor Intel Core i7 3.4
GHz with 32 GB of main memory using Mathematica V9.0 under Microsoft Windows 10
64-bit.

Example 5.1. (Comparison to MC simulations) In this example, we confirm the closed-
form formula (2.21) by comparing with MC simulations. The parameters used in the
experiment are N = 252, and for various T = 0.1, 0.2, . . . , 1.0. The testing is taken on
the EBS with the parameter functions r(t) = 0.075 + 0.05t and σ(t) =

√
0.03 + 0.02t

satisfying the condition (3.1). The comparisons for m = 2, 3, 4 as displayed in Figure 1.
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Figure 1. Comparisons of fair delivery prices from the closed-form solu-
tion Km

EBS and the MC simulations for pricing Km
MC: (A) variance swaps,

(B) skewness swaps, and (C) kurtosis swaps

Figure 1 shows that the results from the closed-form solution and the MC simulations
perfectly match, illustrating that the closed-form formula does not contain any algebraic
errors and practitioners can confidently use the formula for pricing moment swaps.

In addition to the comparisons in Figure 1, the levels of accuracy, measured in terms
of εm, is shown in the Table 1 for Np = 10, 000, 30, 000, 50, 000, and T = 1.
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mth Km
MC Km

EBS

moment Np εm(%) Comp. (s) Comp. (s)

10, 000 0.074 6403.919
m = 2 30, 000 0.053 19840.584 0.406

50, 000 0.033 34406.980
10, 000 4.421 6861.916

m = 3 30, 000 1.970 20313.791 3.609
50, 000 1.024 33784.318
10, 000 0.169 6314.332

m = 4 30, 000 0.087 18831.897 10.297
50, 000 0.050 31651.802

Table 1. Percentage relative errors εm and computational times
(Comp.) of MC simulations for pricing variance swaps (m = 2), skewness
swaps (m = 3) and kurtosis swaps (m = 4) for Np = 10, 000, 30, 000, and
50, 000, comparing with computational times of the closed-form formula

Table 1 confirms in addition that the results from the closed-form formula and the
MC simulations match with high accuracy with very small εm for all cases of m and Np,
the highest εm is 4.4% when m = 3 and Np = 10, 000. Moreover, the accuracy for MC
simulations is improved when Np increases, trade-off with increasing in computational
times. The experiment showed that the computational time from closed-form formula is
extremely faster than that from MC simulations, around 600 times faster.

Example 5.2. (Sensitivity of parameters)In this study, we investigate the sensitivity
of fair prices for moment swaps (m = 2, 3, 4) based on small changes of parameters
r(t) = r0 + r1t and σ(t) =

√
σ0 + σ1t in the EBS. Here, we use the same parameters

provided in Example 5.1 with r0 = 0.075, r1 = 0.050, σ0 = 0.030, and σ1 = 0.020. To
check the sensitivity of each parameter separately, the change of fair price is computed
corresponding to the change of one parameter while the other three parameters are fixed.
The sensitivity is measured based on the percentage relative errors of the fair price Km

EBS

and parameter ∆P , defined by

∆P :=

∣∣∣∣P − P ′P

∣∣∣∣× 100%,∆Km
EBS(P, P ′) :=

∣∣∣∣Km
EBS(P )−Km

EBS(P ′)

Km
EBS(P )

∣∣∣∣× 100%,

with fixed T = 1 and N = 252. The results are shown in Tables 2–3.
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P P ′ ∆P (%) ∆K2
EBS(P, P ′)(%) ∆K3

EBS(P, P ′)(%) ∆K4
EBS(P, P ′)(%)

r0 r′0 = 1.02r0 2 2.402× 10−3 1.838 4.800× 10−3

r′0 = 1.04r0 4 4.848× 10−3 3.675 9.688× 10−3

r′0 = 1.06r0 6 7.339× 10−3 5.513 1.463× 10−2

r′0 = 1.08r0 8 9.875× 10−3 7.350 1.973× 10−2

r′0 = 1.10r0 10 1.246× 10−2 9.188 2.488× 10−2

r1 r′1 = 1.02r1 2 8.625× 10−4 0.664 1.852× 10−3

r′1 = 1.04r1 4 1.732× 10−3 1.327 3.718× 10−3

r′1 = 1.06r1 6 2.607× 10−3 1.991 5.600× 10−3

r′1 = 1.08r1 8 3.490× 10−3 2.654 7.494× 10−3

r′1 = 1.10r1 10 4.379× 10−3 3.318 9.404× 10−3

σ0 σ′0 = 1.02σ0 2 1.499 1.096 2.958
σ′0 = 1.04σ0 4 2.997 2.181 5.960
σ′0 = 1.06σ0 6 4.496 3.255 9.006
σ′0 = 1.08σ0 8 5.994 4.318 12.095
σ′0 = 1.10σ0 10 7.493 5.370 15.229

σ1 σ′1 = 1.02σ1 2 0.500 0.397 1.063
σ′1 = 1.04σ1 4 0.999 0.792 2.133
σ′1 = 1.06σ1 6 1.499 1.186 3.210
σ′1 = 1.08σ1 8 1.998 1.578 4.293
σ′1 = 1.10σ1 10 2.498 1.968 5.382

Table 2. The percentage relative errors of the fair prices of moment
swaps ∆Km

EBS(m = 2, 3, 4) for ∆P = 2, 4, 6, 8, 10% of parameters
r0, r1, σ0 and σ1

Moreover, since Table 2 shows that ∆Km
EBS depends linearly on ∆P , the order of

sensitivity Smp of each parameter is computed as the average of
∆Km

EBS

∆P ,

SmP :=
1

n

n∑
i=1

∆Km
EBS(Pi, P

′
i )

∆Pi
,

shown in Table 3.

Moment swaps Smr0 Smr1 Smσ0
Smσ1

m = 2 1.223× 10−3 4.346× 10−4 0.749 0.250
m = 3 0.919 0.332 0.543 0.198
m = 4 2.443× 10−3 9.331× 10−4 1.501 0.535

Table 3. The orders of sensitivity of fair prices for m = 2, 3, 4 corre-
sponding to parameters r0, r1, σ0, σ1

Table 2 shows that ∆Km
EBS depends linearly on ∆P for all cases (m = 2, 3, 4 and all

parameters). The results show that Km
EBS is more sensitive to the parameter σ0 than the

others. When comparing using the orders of sensitivity, the results display that when
m = 2, 4, Km

EBS is more sensitive to the volatility σ(t) than interest rate r(t), which is not
the case when m = 3.
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Example 5.3. (Comparison fair prices) In this example, we compare the fair prices
Km

BS to illustrate Corollary 3.4 for the BS model. The fair prices Km
BS,K

n
BS are compared

based on two sets of parameters for various pairs (m,n) with m > n. The first set (I)
of parameters is from Broadie and Jain [1], r = 0.0319 and σ = 0.1326. The second set

(II) is from Khaled and Samai [3], r = 0.0013 and σ =
√

0.0009, which were used in the
likelihood function for the share price of gold for the period from April 2–December 31,
2007. The evaluation is performed with T = 1 and N = 252 to find τ∗m,n, the smallest
positive root defined in Theorem 3.2, for each pair of Km

BS and Kn
BS, where the existing of

τ∗m,n implies the order Km
BS(T,N) < Kn

BS(T,N) for all T
N ∈ (0, τ∗m,n). Note that the first

set of parameters satisfies r > 3
2σ

2, while the second set 1
2σ

2 < r < 3
2σ

2. The results of
τ∗m,n for several (m,n) pairs are shown in Table 4.

(m,n) (3, 2) (4, 2) (4, 3) (6, 2) (6, 3) (6, 4) (6, 5)

τ∗m,n I 19.10 14.12 6.36 11.56 8.72 9.38 4.59
II 481.71 305.35 – 245.78 156.90 196.34 –

Table 4. The τ∗m,n of various pairs of Km
BS and Kn

BS for the two sets of
parameters

The results from Table 4 show that for the set I of parameters, r > 3
2σ

2, the τ∗m,n
exists for all (m,n) pairs, which supports Corollary 3.4 that τ∗m,n always exists in this

case. However, for the set II of parameters, 1
2σ

2 < r < 3
2σ

2, the τ∗m,n exists for all pairs
(m,n) except for the pairs (4, 3) and (6, 5), where n = m− 1 is odd. This illustrates that
when the set of parameters does not satisfy the condition of Corollary 3.4, the existence
of τ∗m,n depends on (m,n) according to Theorem 3.2 and Corollary 3.3, namely, the τ∗m,n
exists for all (m,n) except when n = m− 1 is odd.

6. Conclusions

This study presented a simple and easy-to-use pricing formula for discretely-sampled
moment swaps when the realized higher moments defined in terms of mth-moment of the
log-returns of a specified underlying asset described by BS model with time-dependent
parameters. The obtained analytical method is developed based on the Feynman-Kac
theorem, where the PDE is solved analytically, and some combinatorial techniques are
used to simplify the sum of the conditional expectations. In terms of validation purposes,
we have demonstrated that a pricing formula is financially meaningful, whilst also showing
that the fair prices for moment swaps are always finite and positive in the parameter space.
A comparison theorem has been proved to show that trading variance swaps are more
expensive than trading any higher moment swaps under the BS model. Furthermore,
we have presented a particularly useful formula for hedging moment swaps on futures
expressed in terms of a linear combination of the fair delivery prices of moment swaps on
its corresponding underlying stock. The first and third numerical examples support the
validity of the results. Namely, the first experiment shows that MC simulations produced
the same results as our formula, while the third experiment illustrates the comparison
results of moments for BS model. Moreover, the second example provides the sensitivity
of the fair prices with respect to the parameters, with the results showing that the fair
price is more sensitive to the volatility parameters when m = 2, 4 (even).
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