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Abstract Fuzzy and anti fuzzy ideals in ordered AG-groupoid are the modern tool for handling uncer-

tainty in many decisions making problems. The purpose of this paper is to investigate, the character-

izations of different classes of non-associative ordered semigroups by using anti fuzzy left (resp. right)

interior, weakly regular, (2, 2)-regular ideals. The algebraic properties of ideals in AG-groupoid are ex-

amined for the newly introduced fuzzy algebra. The results presented are justified by providing examples

of well-defined and well-established AG-groupoid.
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1. Introduction

Semigroup is an algebraic structure formulated by defining an associative binary op-
eration of a non-empty set. If the binary operation is commutative, then the semigroup
is called a commutative semigroup. So in this case for any three elements a, b and c we
have abc = cba known as ternary commutative law. In 1972, Kazim and Naseeruddin [8]
introduced a generalization of commutative semigroup by introducing in braces on the
left side of ternary law and explored a new pseudo associative law, that is (ab)c = (cb)a
This they called the left invertive law. A groupoid S is said to be left almost semigroup
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(abbreviated as LA-semigroup) if it satisfies the left invertive law (ab)c = (cb)a. Hol-
gate [5] has called the same structure as left invertive groupoid. This structure is also
known as Abel-Grassmann’s groupoid (abbreviated as AG-groupoid) by [20]. In fact an
AG-groupoid is non-commutative and non-associative semigroup. It is a midwaystructure
between a commutative semigroup and a groupoid. Ideals in AG-groupoids have been
investigated by [19]. In [7] left( resp. right [3]) a groupoid is said to be medial (resp.
paramedial) if (ab)(cd) = (ac)(bd) (resp. (ab)(cd) = (db)(ca))). According to Kazim and
Naseeruddin [8], an AG-groupoid is medial, but in general an AG-groupoid needs not to
be paramedial. However, by [20], every AG-groupoid with left identity is paramedial and
also satisfies a(bc) = b(ac), (ab)(cd) = (dc)(ba). In [9], if (S, ·,≤) is an ordered semigroup
and A ⊆ S, we denote by (A], the subset of S defined as follows: (A] = {s ∈ S : s ≤ a for
some a ∈ A}. A non-empty subset A of S is called a subsemigroup of S if A2 ⊆ A. The
notions of ideals play a crucial role in the study of ring, semiring, near-ring, semigroup,
ordered semigroup theory etc. A non-empty subset A of S is called a left (resp. right)
ideal of S if following hold:

(1) SA ⊆ A (resp. AS ⊆ A);
(2) if a ∈ A and b ∈ S such that b ≤ a implies b ∈ A.

Equivalent definition: A is called a left (resp. right) ideal of S if (A] ⊆ A and SA ⊆ A
(resp. AS ⊆ A).
A non-empty subset A of S is called an interior ideal of S if

(1) SAS ⊆ A;
(2) if a ∈ A and b ∈ S such that b ≤ a implies b ∈ A.

An ordered semigroup S is said to be regular [11, 12] if for every a ∈ S there exists x ∈ S
such that a ≤ axa. Equivalent definitions are as follows:

(1) A ⊆ (ASA] for every A ⊆ S.
(2) a ∈ (aSa] for every a ∈ S.

An ordered semigroup S is said to be (2, 2)-regular if for every a ∈ S there exists x ∈ S
such that a ≤ a2xa2. Equivalent definitions are as follows:

(1) A ⊆ (A2SA2] for every A ⊆ S.
(2) a ∈ (a2Sa2] for every a ∈ S.

An ordered semigroup S is said to be weakly regular if for every a ∈ S there exist x, y ∈ S
such that a ≤ axay. Equivalent definitions are as follows:

(1) A ⊆ ((AS)2] for every A ⊆ S.
(2) a ∈ ((aS)2] for every a ∈ S.

An ordered semigroup S is an intra-regular [10, 12] if for every a ∈ S there exist x, y ∈ S
such that a ≤ xa2y. Equivalent definitions are as follows:

(1) A ⊆ (SA2S] for every A ⊆ S.
(2) a ∈ (Sa2S] for every a ∈ S.

The idea of ordering of AG-groupoids has initiated by Shah et al. [23], [24], have inves-
tigated the concept of m-(resp. n−, i−) systems in ordered AG-groupoids. We define
anti fuzzy left (resp. right) interior ideals in ordered AG-groupoids, basically an ordered
AG-groupoid is non-commutative and non-associative ordered semigroup.
In this present paper, we characterize regular (resp. right regular, left regular, (2, 2)-
regular, weakly regular and intra-regular) ordered AG-groupoids in terms of anti fuzzy
left (resp. right, interior) ideals. In this regard, we prove that in regular, right regular,
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weakly regular ordered AG-groupoids, the concept of anti fuzzy interior, two-sided ideals
coincide. The concept of anti fuzzy interior, two-sided ideals coincide in (2, 2) intra-regular
ordered AG-groupoids with left identity.

2. Preliminaries

Shah et al. [24] introduced ordered AG-groupoid S as a partially ordered set, at the
same time an AG-groupoid such that a ≤ b, implies ac ≤ bc and ca ≤ cb for all a, b, c ∈ S.
Two conditions are equivalent to the one condition (ca)d ≤ (cb)d for all a, b, c, d ∈ S. An
ordered AG-groupoid is also called a po-AG-groupoid for short.

Example 2.1. Consider a set S = {e, f, a, b, c} with the following multiplication “ · ”
and order relation “ ≤ ”:

· e f a b c
e e f a b c
f f f f b c
a a f c b c
b c c c f b
c b b b c f

≤ : = {(e, e), (e, a), (e, b), (e, c), (f, f), (f, b), (f, c), (a, a), (a, c), (b, b), (b, c), (c, c)}.

Then (S, ·,≤) is an ordered AG-groupoid with left identity e.

Let S be an ordered AG-groupoid and A ⊆ S, we define a subset (A] = {s ∈ S : s ≤ a
for some a ∈ A of S and obviously A ⊆ (A]. If A = {a}, then we write (a] instead of
({a}]. For A,B ⊆ S, then AB := {ab | a ∈ A, b ∈ B}, ((A]] = (A], (A](B] ⊆ (AB],
((A](B]] = (AB], if A ⊆ B, then (A] ⊆ (B], (A∩B] 6= (A]∩(B] in general. For ∅ 6= A ⊆ S.
Then A is called an AG-subgroupoid of S if A2 ⊆ A. A is called a left (resp. right) ideal
of S if the following hold:

(1) SA ⊆ A (resp.AS ⊆ A).
(2) If a ∈ A and b ∈ S such that b ≤ a implies b ∈ A.

Equivalent definition: Ais called a left (resp. right) ideal of S if (A] ⊆ A and SA ⊆ A
(resp. AS ⊆ A). A is called an ideal of S if A is both a left and a right ideal of S. If A,B
are ideals of S then A ∪B and A ∩B are also ideals of S.
A non-empty subset A of S is called an interior ideal of S if

(1) (SA)S ⊆ A.
(2) If a ∈ A and b ∈ S such that b ≤ a implies b ∈ A ( or(A] ⊆ A).

An ordered AG-groupoid S is said to be regular if for every a ∈ S there exists x ∈ S such
that a ≤ (ax)a. Equivalent definitions are as follows:

(1) A ⊆ ((AS)A] for every A ⊆ S.
(2) a ∈ ((aS)a] for every a ∈ S.

An ordered AG-groupoid S is left (resp. right) regular if for every a ∈ S, there exists
x ∈ S such that a ≤ xa2 (resp. a ≤ a2x). Equivalent definitions are as follows:

(1) A ⊆ (SA2] (resp. A ⊆ (A2S]) for every A ⊆ S.
(2) a ∈ (Sa2] (resp. a ∈ (a2S]) for every a ∈ S.
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An ordered AG-groupoid S is said to be completely regular if it is regular, left regular,
right regular. An ordered AG-groupoid S is said to be strongly regular if for every a ∈ S,
there exists x ∈ S such that a ≤ (ax)a and ax = xa. Every strongly regular ordered
AG-groupoid is right regular ordered AG-groupoid. An ordered AG-groupoid S is said
to be weakly regular if for every a ∈ S, there exist x, y ∈ S such that a ≤ (ax)(ay)
Equivalent definitions are as follows:

(1) A ⊆ ((AS)2] for every A ⊆ S.
(2) a ∈ ((aS)2] for every a ∈ S.

An ordered AG-groupoid S is called intra-regular if for every a ∈ S, here exist x, y ∈ S
such that a ≤ (xa2)y Equivalent definitions are as follows:

(1) A ⊆ ((SA2)S] for every A ⊆ S.
(2) a ∈ ((Sa2)S] for every a ∈ S.

We denote by L(a), R(a), I(a) the left ideal, the right ideal and the ideal of S, respectively
generated by a. We have L(a) = {s ∈ S : s ≤ a or s ≤ xa for some x ∈ S} =
(a ∪ Sa], R(a) = (a ∪ aS], I(a) = (a ∪ Sa ∪ aS ∪ (Sa)S].

Example 2.2. Let S = {a, b, c, d, e}. Define multiplication “ · ” in S as follows:

· a b c d e
a a a a a a
b a a a a a
c a a e c d
d a a d e c
e a a c d e

and ≤ : = {(a, a), (b, b), (c, c), (d, d), (e, e)}. Then S is an ordered AG-groupoid. A =
{c, d, e} is an AG-subgroupoid of S and I = {a, c, d, e} is an ideal of S.

Remark 2.3. Every ideal whether right, left or two-sided is an AG-subgroupoid but the
converse is not true in general.

An ordered AG-groupoid S is said to be locally associative if for every a ∈ S, (a.a).a =
a.(a.a).

Example 2.4. Let S = {a, b, c}. Define multiplication “ · ” in S as follows:

· a b c
a c c b
b b b b
c b b b

and≤ : = {(a, a), (b, b), (c, c)}. Then (S, ·,≤) is a locally associative ordered AG-groupoid.

In a locally associative ordered AG-groupoids S, we define powers of an element as
follow : a1 = a, an+1 = ana. If S has a left identity e, we define a0 = e, as left identity
is unique in an ordered AG-groupoid. A locally associative ordered AG-groupoid S with
left identity e has associative powers.

3. Fuzzy interior ideals in ordered AG-groupoids

A fuzzy set µ of a given set X is described as an arbitrary function µ : X → [0, 1], where
[0, 1] is the unit closed interval of real numbers. The fundamental concept of a fuzzy set,
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introduced by Zadeh [25] in 1965, which gives a natural frame work for the generalizations
of some basic notions of algebra, for example set (resp. group, semigroup, ring, near-ring,
semiring) theory, groupoids, real analysis, topology, differential equations and so forth.
Rosenfeld [21], introduced the concept of fuzzy set in groups. The study of fuzzy set
in semigroups investigated by Kuroki [15–17]. He studied fuzzy interior, bi-, quasi-,
semiprime quasi ideals in semigroups. Dib and Galham in [4], examined the definition of
fuzzy groupoid (resp. semigroup). They studied fuzzy ideals and fuzzy bi-ideals of fuzzy
semigroups. A systematic exposition of fuzzy semigroups by Mordeson et al. appeared in
[18], where one can find theoretical results on fuzzy semigroups and their use in fuzzy finite
state machines and fuzzy languages. Fuzzy sets in ordered semigroups/ordered groupoids
established by Kehayopulu and Tsingelis [13]. They also studied fuzzy bi-ideals and fuzzy
quasi-ideals in ordered semigroups [13, 14]. Biswas [2], introduced the concept of anti
fuzzy subgroups of groups and studied the basic properties of groups in terms of anti
fuzzy subgroups. Hong and Jun [6] modified the Biswas idea and applied it into BCK-
algebra. Akram and Dar defined anti fuzzy left h-ideals of hemiring and discussed the
basic properties of hemiring [1].
By a fuzzy set µ of an ordered AG-groupoid S, we mean a function µ : S → [0, 1] and
the complement of µ is denoted by µ′ is a fuzzy set in S given by µ′(x) = 1− µ(x) for all
x ∈ S.
A fuzzy set µ of S is called an anti fuzzy AG-subgroupoid of S if µ(xy) ≤ max{µ(x), µ(y)}
for all x, y ∈ S. µ is called an anti fuzzy left (resp. right) ideal of S if

(1) µ(xy) ≤ µ(y) (resp. µ(xy) ≤ µ(x)).
(2) x ≤ y implies µ(x) ≤ µ(y) for all x, y ∈ S.

µ is an anti fuzzy ideal of S if µ is both an anti fuzzy left and an anti fuzzy right ideal of
S. Equivalently, µ is called an anti fuzzy ideal of S if

(1) µ(xy) ≥ min{µ(x), µ(y)}.
(2) x ≤ y, implies µ(x) ≤ µ(y) for all x, y ∈ S.

Every anti fuzzy ideal (whether right, left, two-sided) is an anti fuzzy AG-subgroupoid
but the converse is not true in general.
A fuzzy set µ of S is called an anti fuzzy interior ideal of S if

(1) µ((xa)y) ≤ µ(a).
(2) x ≤ y, implies µ(x) ≤ µ(y) for all x, a, y ∈ S.

We denote by F (S), the set of all fuzzy subsets of S. We define an order relation “ ⊆ ”
on F (S) such that f ⊆ g if and only if f(x) ≤ g(x) for all x ∈ S. Then (F (S), ◦,⊆) is
an ordered AG-groupoid. By the symbols f ∧ g and f ∨ g, we mean the following fuzzy
subsets:

(∀x ∈ S) (f ∧ g : S → [0, 1], x 7−→ (f ∧ g)(x) = min{f(x), g(x)}) ;

(∀x ∈ S) (f ∨ g : S → [0, 1], x 7−→ (f ∨ g)(x) = max{f(x), g(x)}) .

Let a ∈ S, we define a set Aa = {(y, z) ∈ S × S | a ≤ yz}. Let f and g be fuzzy subsets
of S, the product f ◦ g of f and g is defined by:

f ◦ g : S → [0, 1], a 7−→ f ◦ g(a) =

{
∨(y,z)∈Aa

min{f(y), g(z)} if Aa 6= ∅
0 if Aa = ∅
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For a non-empty family of fuzzy subsets {fi}i∈I of S, the fuzzy subsets ∨i∈Ifi and ∧i∈Ifi
of S are defined as follows:

∨i∈Ifi : S → [0, 1], a 7→ (∨i∈Ifi)(a) : = sup
i∈I
{fi(a)}

and ∧i∈I fi : S → [0, 1], a 7→ (∧i∈Ifi)(a) : = inf
i∈I
{fi(a)}.

If I is a finite set, say I = {1, 2, ...n}, then clearly,

∨i∈Ifi(a) = max{f1(a), f2(a), ..., fn(a)}
and ∧i∈I fi(a) = min{f1(a), f2(a), ..., fn(a)}.

For S, the fuzzy subsets “0” and “1” are defined as follows:

0 : S → [0, 1], x 7→ 0(x) : = 0.

1 : S → [0, 1], x 7→ 1(x) : = 1.

Clearly, the fuzzy subset “0” (resp. “1”) of S is the least (resp. the greatest) element of
the ordered set (F (S),≤). The fuzzy subset “0” is the zero element of (F (S), ◦,≤), that
is, f ◦ 0 = 0 ◦ f = 0 and 0 ≤ f for every f ∈ F (S)). For ∅ 6= A ⊆ S,the anti characteristic
function of A is denoted by χC

A and defined by:

χC
A(a) =

{
0 if a ∈ A
1 if a /∈ A

An ordered AG-groupoid S can be considered a fuzzy subset of itself and we write S = χC
S ,

that is, S(x) = χC
S (x) = 0 for all x ∈ S. This imply that S(x) = 1 for all x ∈ S. For

A,B ⊆ S, then A ⊆ B if and only if χC
A ≥ χC

B , χC
A∩χC

B = χC
A∩B and χC

A◦χC
B = χC

(AB]. Let

µ be a fuzzy subset of S, then for all t ∈ (0, 1], we define a set L(µ; t) = {x ∈ S | µ(x) ≤ t},
which is called lower t-level cut of µ and can be used to the characterization of µ.

Example 3.1. Let S = {a, b, c, d}. Define multiplication · in S as follows:

· a b c d
a c d a b
b b c d a
c a b c d
d d a b c

and ≤ : = {(a, a), (b, b), (c, c), (d, d)}. Then S is an ordered AG-groupoid. Let µ be a
fuzzy subset of S. We define µ(a) = µ(c) = 0.7, µ(b) = µ(d) = 0. Hence µ is an anti
fuzzy AG-subgroupoid of S.

Example 3.2. Let S = {a, b, c, d}. Define multiplication · in S as follows:

· a b c d
a a a a a
b a a a a
c a a d a
d a a c d

and ≤ : = {(a, a), (b, b), (c, c), (d, d)}. Then S is an ordered AG-groupoid. Let µ be a
fuzzy subset of S. We define µ(a) = µ(c) = µ(d) = 0, µ(b) = 0.7. Hence µ is an anti
fuzzy right ideal of S.
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Remark 3.3. Example 3.1 and 3.2 show that, every anti fuzzy ideal (whether right, left,
two-sided) is an anti fuzzy AG-subgroupoid, but the converse is not true.

Lemma 3.4. Let S be an ordered AG-groupoid and ∅ 6= A ⊆ S. Then the anti char-
acteristic function χC

(A] of (A] is a fuzzy subset of S satisfying the condition x ≤ y ⇒
χC
(A](x) ≤ χC

(A](y) for all x, y ∈ S.

Proof. By the definition, χC
(A] is a mapping of S into {0, 1} ⊆ [0, 1]. Let x ≤ y, x, y ∈ S.

If y /∈ (A], by definition χC
(A](y) = 1, thus χC

(A](x) ≤ χC
(A](y). If y ∈ (A], by definition

χC
(A](y) = 0. Since y ∈ (A], so there exists z ∈ A such that y ≤ z. Thus x ≤ z, that is,

x ∈ (A] and χC
(A](x) = 0. Hence χC

(A](x) ≤ χC
(A](y).

Proposition 3.5. Let S be an ordered AG-groupoid and ∅ 6= A ⊆ S. Then A = (A]
if and only if fuzzy subset χC

A of S has the property x ≤ y ⇒ χC
A(x) ≤ χC

A(y) for all
x, y ∈ S.

Proof. Suppose A = (A], then the anti characteristic function χC
A of A is a fuzzy subset

of S satisfying the condition x ≤ y ⇒ χC
A(x) ≤ χC

A(y), by the Lemma 3.4.
Conversely, let x ∈ (A], this imply that there exists y ∈ A such that x ≤ y. By the given
condition, we have χC

A(x) ≤ χC
A(y). Since y ∈ A, we have χC

A(y) = 0. Thus χC
A(x) = 0,

that is, x ∈ A. Hence A = (A].

Lemma 3.6. Let S be an ordered AG-groupoid and ∅ 6= A ⊆ S. Then A is an AG-
subgroupoid of S if and only if the anti characteristic function χC

A of A is an anti fuzzy
AG-subgroupoid of S.

Proof. Suppose A is an AG-subgroupoid of S and x, y ∈ S. If x, y /∈ A, by definition
χC
A(x) = 1 = χC

A(y). Thus χC
A(xy) ≤ χC

A(x) ∨ χC
A(y). If x, y ∈ A, by definition χC

A(x) =
0 = χC

A(y). xy ∈ A, A being an AG-subgroupoid of S this imply that χC
A(xy) = 0. Thus

χC
A(xy) ≤ χC

A(x)∨ χC
A(y). Hence the anti characteristic function χC

A of A is an anti fuzzy
AG-subgroupoid of S.
Conversely, let xy ∈ A2, x, y ∈ A. By definition of anti characteristic function χC

A(x) =
0 = χC

A(y). χC
A(xy) ≤ χC

A(x) ∨ χC
A(y) = 0, χC

A being an anti fuzzy AG-subgroupoid of S.
This imply that χC

A(xy) = 0, that is, xy ∈ A. Hence A is an AG-subgroupoid of S.

Lemma 3.7. Let S be an ordered AG-groupoid and ∅ 6= A ⊆ S. Then A is a left (resp.
right) ideal of S if and only if the anti characteristic function χC

A of A is an anti fuzzy
left (resp. right) ideal of S.

Proof. Suppose A is a left ideal of S and x, y ∈ S such that x ≤ y. This imply that
A = (A], A being a left ideal of S. Then χC

A(x) ≤ χC
A(y), by the Proposition 3.5. If

y /∈ A, by definition χC
A(y) = 1. Thus χC

A(xy) ≤ χC
A(y). If y ∈ A, by definition χC

A(y) = 0.
xy ∈ A, A being a left ideal, so χC

A(xy) = 0. Thus χC
A(xy) ≤ χC

A(y). Hence the anti
characteristic function χC

A of A is an anti fuzzy left ideal of S.
Conversely, let y ∈ A and x ∈ S such that x ≤ y. This imply that χC

A(x) ≤ χC
A(y),

χC
A being an anti fuzzy left ideal of S. Then A = (A], by the Proposition 3.5. Let
xy ∈ SA, where y ∈ A, x ∈ S. By definition of anti characteristic function χC

A(y) = 0.
χC
A(xy) ≤ χC

A(y) = 0, χC
A being an anti fuzzy left ideal of S. Thus χC

A(xy) = 0, that is,
xy ∈ A. Hence A is a left ideal of S.
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Proposition 3.8. Let S be an ordered AG-groupoid and ∅ 6= A ⊆ S. Then A is an
interior ideal of S if and only if the anti characteristic function χC

A of A is an anti fuzzy
interior ideal of S.

Proof. Suppose A is an interior ideal of S and a, x, y ∈ S such that x ≤ y. This imply
that A = (A], A being an interior-ideal. Then χC

A(x) ≤ χC
A(y), by the Proposition 3.5.

If a /∈ A, by definition χC
A(a) = 1. Thus χC

A((xa)y) ≤ χC
A(a). If a ∈ A, by definition

χC
A(a) = 0. (xa)y ∈ A, A being an interior ideal, this imply that χC

A((xa)y) = 0. Thus
χC
A((xa)y) ≤ χC

A(a). Hence the anti characteristic function χC
A of A is an anti fuzzy

interior ideal of S.
Conversely, let y ∈ A and x ∈ S such that x ≤ y. This imply that χC

A(x) ≤ χC
A(y),

χC
A being an anti fuzzy interior ideal of S. Then A = (A],by the Proposition 3.5.

Let t ∈ (SA)S, implies t = (xa)y, where a ∈ A and x, y ∈ S. By definition of anti
characteristic function χC

A(a) = 0. χC
A((xa)y) ≤ χC

A(a) = 0, χC
A being an anti fuzzy

interior ideal of S. Thus χC
A((xa)y) = 0, that is, (xa)y ∈ A. Hence A is an interior ideal

of S.

Lemma 3.9. Let µbe a fuzzy subset of an ordered AG-groupoid S. Then µ is an anti
fuzzy AG-subgroupoid of S if and only if lower t-level L(µ; t) of µ is an AG-subgroupoid
of S for all t ∈ (0, 1].

Proof. Suppose µ is an anti fuzzy AG-subgroupoid of S and x, y ∈ L(µ; t), this imply that
µ(x), µ(y) ≤ t. µ(xy) ≤ µ(x) ∨ µ(y) ≤ t, µ being an anti fuzzy AG-subgroupoid, that is,
xy ∈ L(µ; t). Hence L(µ; t) is an AG-subgroupoid of S.
Conversely, we have to show that µ(xy) ≤ µ(x)∨µ(y), x, y ∈ S. We suppose a contradic-
tion µ(xy) > µ(x) ∧ µ(y). Assume µ(x) = t = µ(y), this imply that µ(x), µ(y) ≤ t, that
is, x, y ∈ L(µ; t). But µ(xy) > t, that is, xy /∈ U(µ; t) which is a contradiction. Hence
µ(xy) ≤ µ(x) ∨ µ(y).

Lemma 3.10. Let µ be a fuzzy subset of an ordered AG-groupoid S. Then µ is an anti
fuzzy left (resp. right) ideal of S if and only if lower t-level L(µ; t) of µ is a left (resp.
right) ideal of S for all t ∈ (0, 1].

Proof. Suppose µ is an anti fuzzy left ideal of S. Let y ∈ L(µ; t) and x ∈ S such that
x ≤ y, this imply that µ(y) ≤ t. µ(x) ≤ µ(y) ≤ t and µ(xy) ≤ µ(y) ≤ t, µ being an anti
fuzzy left ideal of S. Thus x, xy ∈ L(µ; t). Hence L(µ; t) is a left ideal of S.
Conversely, suppose L(µ; t) is a left ideal of S and x, y ∈ S such that x ≤ y. We have to
show that µ(x) ≤ µ(y) and µ(xy) ≤ µ(y). We suppose a contradiction µ(x) > µ(y) and
µ(xy) > µ(y). Let µ(y) = t, this imply that µ(y) ≤ t, that is, y ∈ L(µ; t). But µ(x) > tand
µ(xy) > t, that is, x, xy /∈ L(µ; t), which is a contradiction. Hence µ(x) ≤ µ(y) and
µ(xy) ≤ µ(y).

Proposition 3.11. Let µ be a fuzzy subset of an ordered AG-groupoid S. Then µ is an
anti fuzzy interior ideal of S if and only if the lower t-level L(µ; t) of µ is an interior
ideal of S for all t ∈ (0, 1].

Proof. Suppose µ is an anti fuzzy interior ideal of S. Let y ∈ L(µ; t) and x ∈ S such
that x ≤ y, this imply that µ(y) ≤ t. µ(x) ≤ µ(y) ≤ t, µ being an anti fuzzy interior
ideal of S. Thus µ(x) ≤ t, that is, x ∈ L(µ; t). Let a ∈ L(µ; t) and x, y ∈ S, by
definition µ(a) ≤ t. µ((xa)y) ≤ µ(a) ≤ t, µ being an anti fuzzy interior ideal of S. Thus
µ((xa)y) ≤ t, that is, (xa)y ∈ L(µ; t). Hence L(µ; t) is an interior ideal of S.
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Conversely, suppose L(µ; t) is an interior ideal of S and x, y, a ∈ S such that x ≤ y. We
have to show that µ(x) ≤ µ(y), we suppose a contradiction µ(x) > µ(y). Let µ(y) = t,
this imply that µ(y) ≤ t, that is, y ∈ L(µ; t). But µ(x) > t,, that is, x /∈ L(µ; t),
which is a contradiction. Hence µ(x) ≤ µ(y). We have to show that µ((xa)y) ≤ µ(a), we
suppose a contradiction µ((xa)y) > µ(a). Let µ(a) = t, this imply that µ(a) ≤ t, that is,
a ∈ L(µ; t). But µ((xa)y) > t, that is, (xa)y /∈ L(µ; t), which is a contradiction. Hence
µ((xa)y) ≤ µ(a).

Lemma 3.12. Every anti fuzzy right ideal of an ordered AG-groupoid S with left identity
e, is an anti fuzzy ideal of S.

Proof. Let µ be an anti fuzzy right ideal of S and x, y ∈ S. Now µ(xy) = µ((ex)y) =
µ((yx)e) ≤ µ(yx) ≤ µ(y).. Hence µ is an anti fuzzy ideal of S.

Remark 3.13. The concept of anti fuzzy (right, two-sided) ideals coincide in ordered
AG-groupoids S with left identity.

Lemma 3.14. Every anti fuzzy ideal of an ordered AG-groupoid S is an anti fuzzy interior
ideal of S.

Proof. Let µ be an anti fuzzy two-sided ideal of S and x, a, y ∈ S.. Now µ((xa)y) ≤
µ(xa) ≤ µ(a). Hence µ is an anti fuzzy interior ideal of S.

Proposition 3.15. Let S be an ordered AG-groupoid with left identity e. Then µ is an
anti fuzzy interior ideal if and only if µ is an anti fuzzy ideal of S.

Proof. Let µ be an anti fuzzy interior ideal of S and x, y ∈ S. Now µ(xy) = µ((ex)y) ≤
µ(x). Thus µ is an anti fuzzy right ideal of S. Hence µ is an anti fuzzy ideal of S by
Lemma 3.12. Converse is true by Lemma 3.14.

Lemma 3.16. Every anti fuzzy right ideal of a regular ordered AG-groupoid S, is an anti
fuzzy ideal of S.

Proof. Let µ be an anti fuzzy right ideal of S and x, y ∈ S, this imply that there exists
a ∈ S such that x ≤ (xa)x. Now µ(xy) ≤ µ(((xa)x)y) = µ((yx)(xa)) ≤ µ(yx) ≤ µ(y).
Hence µ is an anti fuzzy ideal of S.

Remark 3.17. The concept of anti fuzzy (large right, two-sided) ideals coincide in regular
ordered AG-groupoids S.

Proposition 3.18. Let S be a regular ordered AG-groupoid. Then µ is an anti fuzzy
interior ideal if and only if µ is an anti fuzzy ideal of S.

Proof. Let µ be an anti fuzzy interior ideal of S and x, y ∈ S, this imply that there exists
a ∈ S such that x ≤ (xa)x. Now µ(xy) ≤ µ(((xa)x)y) = µ((yx)(xa)) ≤ µ(x). Thus µ
is an anti fuzzy right ideal of S. Hence µ is an anti fuzzy ideal of S by Lemma 3.16.
Converse is true by Lemma 3.14.

Lemma 3.19. Every anti fuzzy right (resp. left) ideal of (2, 2)-regular ordered AG-
groupoid S is an anti fuzzy ideal of S.

Proof. Let µ be an anti fuzzy right ideal of S and x, y ∈ S, this imply that there exists
a ∈ S such that x ≤ (x2a)x2. Now µ(xy) ≤ µ(((x2a)x2)y) = µ((yx2)(x2a)) ≤ µ(yx2) ≤
µ(y). Hence µ is an anti fuzzy ideal of S. Let µ be an anti fuzzy left ideal of S. Now
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µ(xy) ≤ µ(((x2a)x2)y) = µ((yx2)(x2a) ≤ µ((xx)a) = µ((ax)x) ≤ µ(x). Hence µ is an
anti fuzzy ideal of S.

Remark 3.20. The concept of anti fuzzy (right, left, two-sided) ideals coincide in (2, 2)
-regular ordered AG-groupoids S.

Proposition 3.21. Let S be a (2, 2)-regular ordered AG-groupoid with left identity e.
Then µ is an anti fuzzy interior ideal if and only if µ is an anti fuzzy ideal of S.

Proof. Let µ be an anti fuzzy interior ideal of S and x, y ∈ S, this imply that there exists
a ∈ S such that x ≤ (x2a)x2. Now

µ(xy) ≤ µ(((x2a)x2)y) = µ((yx2)(x2a)) ≤ µ(x2)

= µ(xx) = µ((ex)x) ≤ µ(x).

Thus µ is an anti fuzzy right ideal of S. Hence µ is an anti fuzzy ideal of S by Lemma
3.19. Converse is true by Lemma 3.14.

Lemma 3.22. Let S be a right regular ordered AG-groupoid. Then every anti fuzzy right
(resp. left) ideal of S is an anti fuzzy ideal of S.

Proof. Let µ be an anti fuzzy right ideal of S and x, y ∈ S, this imply that there exists
a ∈ S such that x ≤ x2a. Now

µ(xy) ≤ µ((x2a)y) = µ(((xx)a)y) = µ(((ax)x)y)

= µ((yx)(ax)) ≤ µ(yx) ≤ µ(y).

Hence µ is an anti fuzzy ideal of S. Let µ be an anti fuzzy left ideal of S. Now

µ(xy) ≤ µ((x2a)y) = µ(((xx)a)y) = µ(((ax)x)y)

= µ((yx)(ax)) ≤ µ(ax) ≤ µ(x).

Hence µ is an anti fuzzy ideal of S.

Remark 3.23. The concept of anti fuzzy (right, left, two-sided) ideals coincide in right
regular ordered AG-groupoids S.

Proposition 3.24. Let S be a right regular ordered AG-groupoid. Then µ is an anti
fuzzy interior ideal if and only if µis an anti fuzzy ideal of S.

Proof. Let µ be an anti fuzzy interior ideal of S and x, y ∈ S, this imply that there exists
a ∈ S such that x ≤ x2a. Now µ(xy) ≤ µ((x2a)y) = µ(((xx)a)y) = µ(((ax)x)y) ≤ µ(x).
Thus µ is an anti fuzzy right ideal of S. Hence µ is an anti fuzzy ideal of S by Lemma
3.22. Converse is true by Lemma 3.14.

Lemma 3.25. Let S be a left regular ordered AG-groupoid with left identity e. Then
every anti fuzzy right (resp. left) ideal of S is an anti fuzzy ideal of S.

Proof. Let µ be an anti fuzzy right ideal of S and x, y ∈ S, this imply that there exists
a ∈ S such that x ≤ ax2. Now

µ(xy) ≤ µ((ax2)y) = µ((a(xx))y) = µ((x(ax))y)

= µ((y(ax))x) ≤ µ(y(ax)) ≤ µ(y).
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Hence µ is an anti fuzzy ideal of S. Let µ be an anti fuzzy left ideal of S. Now

µ(xy) ≤ µ((ax2)y) = µ((a(xx))y) = µ((x(ax))y)

= µ((y(ax))x) ≤ µ((ax)x) ≤ µ(x).

Hence µ is an anti fuzzy ideal of S.

Remark 3.26. The concept of anti fuzzy (right, left, two-sided) ideals coincide in left
regular ordered AG-groupoids with left identity.

Proposition 3.27. Let S be a left regular ordered AG-groupoid with left identity e. Then
µ is an anti fuzzy interior ideal if and only if µ is an anti fuzzy ideal of S.

Proof. Let µ be an anti fuzzy interior ideal of S and x, y ∈ S, this imply that there exists
a ∈ S such that x ≤ ax2. Now

µ(xy) ≤ µ((ax2)y) = µ((a(xx))y)

= µ((x(ax))y) = µ(((ex)(ax))y)

= µ(((xx)(ae))y) = µ((((ae)x)x)y) ≤ µ(x).

Thus µ is an anti fuzzy right ideal of S. Hence µ is an anti fuzzy ideal of S by Lemma
3.25. Converse is true by Lemma 3.14.

Theorem 3.28. Let S be a right regular locally associative ordered AG-groupoid with left
identity e. Then for every anti fuzzy interior ideal µ of S, µ(an) = µ(a2n), where n is
any positive integer, for all a ∈ S.

Proof. For n = 1, let a ∈ S, this imply that there exists x ∈ S such that a ≤ a2x. Thus
µ(a) ≤ µ(a2x) = µ((ea2)x) ≤ µ(a2) ≤ max{µ (a) , µ (a)} = µ (a) , (µ is an anti fuzzy ideal
of S by Proposition 3.24). Hence µ (a) = µ

(
a2
)
. Now a2 = aa ≤ (a2x)(a2x) = a4x2, then

the result is true for n = 2. Suppose that result is true for n = k, that is, µ(ak) = µ(a2k).
Now ak+1 = aka ≤ (a2kxk)(a2x) = a2(k+1)x(k+1). Thus

µ(ak+1) ≤ µ(a2(k+1)x(k+1)) = µ((ea2(k+1))x(k+1))

≤ µ(a2(k+1)) = µ(a2k+2) = µ(ak+1ak+1)

≤ max{µ
(
ak+1

)
, µ

(
ak+1

)
} = µ

(
ak+1

)
.

Therefore µ(ak+1) = µ(a2(k+1)). Hence by induction method, the result is true for all
positive integers.

Lemma 3.29. Let S be a right regular locally associative ordered AG-groupoid with left
identity e. Then for every anti fuzzy interior ideal µ of S, µ(ab) = µ(ba) for all a, b ∈ S.

Proof. Let a, b ∈ S. By using Theorem for n = 1. Now

µ(ab) = µ((ab)2) = µ((ab)(ab))

= µ((ba)(ba)) = µ((ba)2) = µ(ba).

Theorem 3.30. Let S be a regular and right regular locally associative ordered AG-
groupoid with left identity e. Then for every anti fuzzy interior ideal µ of S, µ(an) =
µ(a3n), where n is any positive integer, for all a ∈ S.
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Proof. For n = 1, let a ∈ S, this imply that there exists x ∈ S such that a ≤ (ax)a and
a ≤ a2x. Now a ≤ (ax)a ≤ (ax)(a2x) = a3x2. Thus

µ(a) ≤ µ(a3x2) = µ((ea3)x2) ≤ µ(a3)

= µ(aa2) ≤ max{µ (a) , µ
(
a2
)
}

≤ max{µ (a) , µ (a) , µ (a)} = µ (a) .

Hence µ (a) = µ
(
a3
)
. Now a2 = aa ≤ (a3x2)(a3x2) = a6x4, then the result is true for

n = 2. Suppose that result is true for n = k, that is, µ(ak) = µ(a3k). Nowak+1 = aka ≤
(a3kx2k)(a3x2) = a3(k+1)x2(k+1). Thus

µ(ak+1) ≤ µ(a3(k+1)x2(k+1)) = µ((ea3(k+1))x2(k+1)) ≤ µ(a3(k+1))

= µ(a3k+3) = µ(ak+1a2k+2) ≤ maxµ
(
ak+1

)
, µ

(
a2k+2

)
}

≤ max{µ
(
ak+1

)
, µ

(
ak+1

)
, µ

(
ak+1

)
} = µ

(
ak+1

)
.

Therefore µ(ak+1) = µ(a3(k+1)). Hence by induction method, the result is true for all
positive integers.

Lemma 3.31. Let S be a weakly regular ordered AG-groupoid. Then every anti fuzzy
right (resp. left) ideal is an anti fuzzy ideal of S.

Proof. Let µ be an anti fuzzy right ideal of S and x, y ∈ S, this imply that there exist
a, b ∈ S such that x ≤ (xa)(xb). Now

µ(xy) ≤ µ(((xa)(xb))y) = µ((((xb)a)x)y)

= µ((((ab)x)x)y) = µ((yx)((ab)x))

= µ((yx)(nx)) say ab = n

≤ µ(yx) ≤ µ(y).

Hence µ is an anti fuzzy ideal of S. Let µ be an anti fuzzy left ideal of S. Now

µ(xy) ≤ µ(((xa)(xb))y) = µ((((xb)a)x)y)

= µ((((ab)x)x)y) = µ((yx)((ab)x))

= µ((yx)(nx)) say ab = n

≤ µ(nx) ≤ µ(x).

Hence µ is an anti fuzzy ideal of S.

Remark 3.32. The concept of anti fuzzy (right, left, two-sided) ideals coincide in weakly
regular ordered AG-groupoids S.

Proposition 3.33. Let S be a weakly regular ordered AG-groupoid. Then µ is an anti
fuzzy interior ideal if and only if µ is an anti fuzzy ideal of S.

Proof. Let µ be an anti fuzzy interior ideal of S and x, y ∈ S, this imply that there exist
a, b ∈ S such that x ≤ (xa)(xb). Now µ(xy) ≤ µ(((xa)(xb))y) = µ((((xb)a)x)y) ≤ µ(x).
Thus µ is an anti fuzzy right ideal of S. Hence µ is an anti fuzzy ideal of S by Lemma
3.31. Converse is true by Lemma 3.14.

Theorem 3.34. Let S be an ordered AG-groupoid with left identity e. Then S is a weakly
regular if and only if S is completely regular.
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Proof. Suppose Sis a weakly regular ordered AG-groupoid. Let a ∈ S, . Then there
exist x, y ∈ S such that a ≤ (ax)(ay). Now a ≤ (ax)(ay) = (aa)(xy) = a2t, for some
t ∈ S, this imply that a ≤ a2t. Thus S is a right regular ordered AG-groupoid. Now
a ≤ (ax)(ay) = (yx)(aa) = ta2, for some t ∈ S, this imply that a ≤ ta2. Thus S is a left
regular ordered AG-groupoid. Now

a ≤ (ax)(ay) = (aa)(xy) = a2t = (aa)t = (ta)a

≤ (t(ta2))a = (t(t(aa)))a = (t(a(ta)))a

= (a(t(ta)))a = (as)a, say t(ta) = s

This imply that a ≤ (as)a, for some s ∈ S. Thus S is a regular ordered AG-groupoid.
Hence S is a completely regular ordered AG-groupoid.
Conversely, let Sbe a completely regular ordered AG-groupoid. Let a ∈ S, then there
exists x ∈ S such that a ≤ (ax)a, a ≤ a2x and a ≤ xa2. Now

a ≤ (ax)a ≤ (ax)(xa2) = (ax)(x(aa))

= (ax)(a(xa)) = (ax)(ay), say xa = y

This imply that a ≤ (ax)(ay), for some x, y ∈ S. Hence Sis weakly regular ordered
AG-groupoid.

Lemma 3.35. Every anti fuzzy right ideal of an intra-regular ordered AG-groupoid S is
an anti fuzzy ideal of S.

Proof. Let µ be an anti fuzzy right ideal of S and x, y ∈ S, this imply that there exist
a, b ∈ S such that x ≤ (ax2)b. Now µ(xy) ≤ µ(((ax2)b)y) = µ((yb)(ax2)) ≤ µ(yb) ≤ µ(y).
Hence µ is an anti fuzzy ideal of S.

Remark 3.36. The concept of anti fuzzy (right, two-sided) ideals coincide in intra-regular
ordered AG-groupoids S.

Proposition 3.37. Let S be an intra-regular ordered AG-groupoid with left identity e.
Then µ is an anti fuzzy interior ideal if and only if µ is an anti fuzzy ideal of S.

Proof. Let µ be an anti fuzzy interior ideal of S and x, y ∈ S, this imply that there exist
a, b ∈ S such that x ≤ (ax2)b. Now

xy ≤ ((ax2)b)y = (yb)(ax2) = n(a(xx)) = n(x(ax)), say yb = n

= (en)(x(ax)) = (ex)(n(ax)) = (ex)m, say n(ax) = m

Thus µ(xy) ≤ µ((ex)m) ≤ µ(x). Hence µ is an anti fuzzy ideal of S. Converse is true by
Lemma 3.14.

Theorem 3.38. Let S be an intra-regular locally associative ordered AG-groupoid. Then
for every anti fuzzy interior ideal µ of S, µ(an) = µ(a2n), where n is any positive integer,
for all a ∈ S.

Proof. For n = 1. Let a ∈ S, this imply that there exist x, y ∈ S such that a ≤ (xa2)y.
Thus µ (a) ≤ µ((xa2)y) ≤ µ(a2) = µ(aa) ≤ max{µ (a) , µ (a)} = µ (a) , (µ is an anti fuzzy
ideal of S by Proposition 3.37). Hence µ(a) = µ(a2). Now a2 = aa ≤ ((xa2)y)((xa2)y) =
((xa2)(xa2))y2 = (x2a4)y2, then the result is true for n = 2. Suppose that the result
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is true for n = k, that is, µ(ak) = µ(a2k). Now ak+1 = aka ≤ ((xka2k)yk)((xa2)y) =
(xk+1a2(k+1))yk+1. Thus

µ
(
ak+1

)
≤ µ((xk+1a2(k+1))yk+1) ≤ µ(a2(k+1)) = µ(a(k+1)a(k+1))

≤ max{µ
(
a(k+1)

)
, µ

(
a(k+1)

)
} = µ

(
a(k+1)

)
.

Therefore µ(ak+1) = µ(a2(k+1)). Hence by induction method, the result is true for all
positive integers.

Lemma 3.39. Let S be an intra-regular locally associative ordered AG-groupoid with left
identity e. Then for every anti fuzzy interior ideal µ of S, µ(ab) = µ(ba) for all a, b ∈ S.

Proof. Same as Lemma 3.29.

4. Conclusion

AG-groupoid is a widely studied algebraic structure as a generalization of both the
group and semigroup. The ideals are defined similarly as in semigroups. Partial order
is an important feature of several real-life problems subject to various contradicting cri-
teria. The partially ordered algebraic structure have been a matter of great concern for
researchers over the years. Fuzzy sets are defined to coop uncertainty and vagueness in a
very better than the classical probability theory. In the preset study the authors exam-
ined fuzzy interior ideals in ordered AG-groupoids. The relation between AG-subgroupoid
and anti fuzzy AG-subgroupoid is established by using anti characteristic function. It is
proved that A is an interior ideal of S if and only if the anti characteristic functions are
anti fuzzy interior ideal of S. Same properties are tested for regular, weakly regular and
(2, 2)- regular ideals. The results discuss in this article provides an essential background
for several allied areas including rings, and AG-groupoid rings.
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