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1. Introduction

Fixed point theory is one of the most dynamic research subjects in nonlinear analysis.
In this area, the first important and significant result was proved by Banach in 1922.
Due to its wide applications; the study of existence and uniqueness of fixed point of
a mapping has become a subject of great interest. Many authors proved the Banach
contraction principle in various generalized metric spaces. The notion of a generalized
metric was introduced by Branciari [1] during deriving fixed point theorems for metric-
like spaces. Some generalizations of a metric space was introduced by several authors and
they presented an application for their obtained results.

Recently, in [2] Abdeljawad, Karapnar, Panda and Mlaiki considered a new distance
structure, extended Branciari b-distance, to combine and unify several distance notions
and obtained fixed point results that cover several existing ones in the corresponding
literature. As an application of their obtained result, they presented a solution for a
fourth order differential equation boundary value problem.

More recently, Panda, Abdeljawad and Swamy in [3] introduced the notion of (ω−F )-
contraction and presented fixed point results for such contractions. Thereafter, by using
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the technique of fixed point, they proposed a simple solution for a nonlinear integral
equation. In the same year Panda, Abdeljawad and Ravichandran in [4] introduced an
extended F -metric and proved related fixed point results. Subsequently, they mainly
focused on solution for the Atangana-Baleanu fractional integral and LP -type solution
(1 < p < 1) for the linear Fredholm integral equation of the second kind.

In 1984, Wang, Li, Gao and Iseki [5] introduced the concept of expanding mappings
and proved some fixed point theorems in complete metric spaces which correspond to
some contractive mappings. In 2007, Huang and Zhang [6] introduced the concept of
cone metric spaces which generalized the concept of the metric spaces, replacing the set
of real numbers by an ordered Banach space, and obtained some fixed point theorems
for mapping satisfying different contractive conditions. Many authors, [7],[8],[9],[10] have
obtained coincidence point and fixed point results for mappings satisfying expansive type
conditions in cone metric spaces. Azam, Arshad and Beg [11] introduced the notion of
cone rectangular metric space and proved Banach contraction mapping principle in a
normal cone rectangular metric space setting. Further Kannan’s fixed point theorem,
Reich type contraction and more results were proved in [12],[13],[14] and [15] for these
spaces. Patil and Salunke [16] proved some fixed point theorems for mappings satisfying
expansive conditions for these spaces. Garg and Agarwal [17] introduced the notion of
cone pentagonal metric space and proved Banach contraction mapping principle in a
normal cone pentagonal metric space setting. Further Auwalu and Hincal [18] proved
some fixed point theorems for mappings satisfying expansive conditions in non-normal
cone pentagonal metric spaces. Recently, Garg and Agarwal [19] introduced the notion
of cone hexagonal metric space and proved Banach contraction mapping principle in a
normal cone hexagonal metric space setting. Very recently, Ampadu [20] introduced
the notion of cone heptagonal metric space and proved Chatterjea contraction mapping
principle in a normal cone heptagonal metric space setting. In the same year Auwalu and
Denker [21] proved Banach contraction principle in cone heptagonal metric space setting.
Motivated and inspired by the results of [16], [18], [20], it is our purpose in this paper to
continue the study of fixed point of mappings in cone heptagonal metric space setting.
Our results extend, improve and generalize some known results in the literature.

2. Preliminaries

We give some facts and definitions required to concepts concerning cones and cone
metric spaces.

Definition 2.1. [6] Let E be a real Banach space with the zero vector θ. A subset P of
E is called a cone if the following conditions are satisfied:

(i) P is closed, non-empty and P 6= {θ};
(ii) a, b ∈ R, a, b≥ 0, x, y ∈P ⇒ ax+ by ∈ P ;
(iii) x ∈ P and − x ∈ P ⇒ x = θ.

Given a cone P ⊂ E we define a partial ordering≤with respect to P by x≤ y if and only
if y − x ∈ P and we write x < y if x ≤ y and x 6= y. Likewise, we shall write x � y if
y − x ∈ int(P ), where int(P ) denotes the interior of P.

Definition 2.2. [6] Let X be a nonempty set. Suppose the mapping d : X × X → E
satisfies:

(i) θ ≤ d(x, y), for all x, y ∈ X and d(x, y) = θ if and only if x = y,
(ii) d(x, y) = d(y, x) for all x, y ∈ X,
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(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X. Then d is called a cone metric on
X and (X, d) is called a cone metric space.

Definition 2.3. [11] (Azam, et al., 2009) Let X be a nonempty set. Suppose the mapping
d : X ×X → E satisfies:

(i) θ ≤ d(x, y), for all x, y ∈ X and d(x, y) = θ if and only if x = y,
(ii) d(x, y) = d(y, x) for all x, y ∈ X,
(iii) d(x, y) ≤ d(x,w) + d(w, z) + d(z, y) for all x, y, z, w ∈ X, for all distinct w, z ∈

X − {x, y}. (rectangular property)
Then d is called a cone rectangular metric on X and (X, d) is called a cone rectangular
metric space.

Remark 2.4. It is clear that any cone metric space is a cone rectangular metric space
but the converse is not true in general.

Definition 2.5. [17] Let X be a nonempty set. Suppose the mapping d : X ×X → E
satisfies:

(i) θ ≤ d(x, y), for all x, y ∈ X and d(x, y) = θ if and only if x = y,
(ii) d(x, y) = d(y, x) for all x, y ∈ X,
(iii) d(x, y) ≤ d(x, z)+d(z, w)+d(w, u)+d(u, y) for all x, y, z, u, w ∈ X, for all distinct

u,w, z ∈ X − {x, y}. [Pentagonal property]
Then d is called a cone pentagonal metric on X and the pair (X, d) is called a cone
pentagonal metric space.

Remark 2.6. Every cone rectangular metric space and so cone metric space is a cone
pentagonal metric space. The converse is not necessarily true.

Definition 2.7. [19] Let X be a nonempty set. Suppose the mapping d : X ×X → E
satisfies:

(i) θ ≤ d(x, y), for all x, y ∈ X and d(x, y) = θ if and only if x = y,
(ii) d(x, y) = d(y, x) for all x, y ∈ X,
(iii) d(x, y) ≤ d(x, z) + d(z, w) + d(w, u) + d(u, v) + d(v, y) for all x, y, z, u, v, w ∈ X,

for all distinct u, v, w, z ∈ X − {x, y}. [Hexagonal property]
Then d is called a cone hexagonal metric on X and (X, d) is called a cone hexagonal
metric space.

Definition 2.8. [20] Let X be a nonempty set. Suppose the mapping d : X ×X → E
satisfies:

(i) θ ≤ d(x, y), for all x, y ∈ X and d(x, y) = θ if and only if x = y,
(ii) d(x, y) = d(y, x) for all x, y ∈ X,
(iii) d(x, y) ≤ s[d(x, z)+d(z, w)+d(w, u)+d(u, v)+d(v, r)+d(r, y)] for all x, y, z, u, v, w, r ∈

X, for all distinct u, v, w, z, r ∈ X − {x, y}. [heptagonal property]
Then d is called a cone heptagonal metric on X and (X, d) is called a cone heptagonal
metric space.
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Remark 2.9. Every cone hexagonal metric space, cone pentagonal metric space and so
cone rectangular metric space is cone heptagonal metric space. The converse is not true.

Definition 2.10. [20] Let (X, d) be a cone heptagonal metric space. Let {xn} be a
sequence in X and x ∈ X. If for every c ∈ E with θ � c there exist n0 ∈ N and that for
all n > nθ, d(xn, x) � c, then {xn} is said to be convergent and {xn} converges to x,
and x is the limit of {xn}. We denote this by

limn→∞ xn = x or xn → x as n→∞.
Definition 2.11. [20] Let (X, d) be a cone heptagonal metric space. Let {xn} be a
sequence in X and x ∈ X. If for every c ∈ E with θ � c there exist n0 ∈ N such that for
all n,m > n0, d(xn, xm)� c, then {xn} is called Cauchy sequence in X.

Definition 2.12. [20] Let (X, d) be a cone heptagonal metric space. If every Cauchy
sequence is convergent in (X, d) then X is called a complete cone heptagonal metric space.

Definition 2.13. [22] Let f and g be two self maps of a nonempty set X. If fx = gx = y
for some x ∈ X, then x is called the coincidence point of f and g and y is called the point
of coincidence of f and g.

Definition 2.14. [22] Two self mappings f and g are said to be weakly compatible if
they commute at their coincidence points,that is fx = gx implies that fgx = gfx.

Remark 2.15. [23] Let P be a cone in a real Banach space E and let a, b, c ∈ P, then,
(a) If a ≤ b and b� c, then a� c.
(b) If a� b and b� c, then a� c.
(c) If θ ≤ u� c, for each c ∈ P 0, then u = θ.
(d) If c ∈ P 0, and an → θ, then there exists, n0 ∈ N such that for all n > n0 we have
an � c.
(e) If ≤ an ≤ bn, for each n and an → a; bn→ b, then a ≤ b.
(f ) If a ≤ λa where 0 < λ < 1, then a = θ.

Lemma 2.16. [22] Let T and S be weakly compatible self-mappings of nonempty set X. If
T and S have a unique point of coincidence w = Tx = Sx, then w is the unique common
fixed point of T and S.

The following definition is about expansive mapping in cone heptagonal metric space.

Definition 2.17. Let (X, d) be a cone heptagonal metric space. A mapping T : X → X
is called expansive if there exists a real constant k > 1 such that d(Tx, Ty) ≥ kd(x, y) for
all x, y ∈ X.

3. Main Results

In this section, we prove common fixed point theorems for a pair of self mappings in
cone heptagonal metric spaces.

Theorem 3.1. Let (X, d) be a cone heptagonal metric space. Suppose the mappings
S, T : X → X satisfy:

d(Sx, Sy) ≥ kd(Tx, Ty) (3.1)

for all x, y ∈ X, where k > 1. Suppose that T (X) ⊆ S(X) and either of S(X) or T (X) is
complete, then the mappings S and T have a unique point of coincidence in X. Moreover,
if S and T are weakly compatible, then they have a unique common fixed point in X.
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Proof. Let x0 be any arbitrary point in X. Since T (X) ⊆ S(X), we can choose a point
x1 ∈ X such that Sx1 = Tx0 and also we can choose x2 ∈ X such that Sx2 = Tx1.
Continuing this process in the same way, we construct a sequence {xn} and {yn} in X
such that yn = Txn = Sxn+1 for all n = 0, 1, 2, · · · .
If for some n ∈ N, yn = yn−1 then

Txn = Sxn+1 = yn = yn−1 = Txn−1 = Sxn

this implies that Txn = Sxn and xn is a coincidence point of S and T.
Now, we assume that yn 6= yn−1 for all n ∈ N. It follows from (3.1) that

d(yn, yn−1) = d(Sxn+1, Sxn)

≥ kd(Txn+1, Txn)

= kd(yn+1, yn).

This implies that,

d(yn+1, yn) ≤ λd(yn, yn−1), where λ =
1

k
∈ (0, 1). (3.2)

By (3.2) , we have

d(yn, yn−1) ≤ λd(yn−1, yn−2).

Similarly,

d(yn+1, yn) ≤ λ2d(yn−1, yn−2).

Continuing the same procedure, we get

d(yn+1, yn) ≤ λnd(y1, y0) for all n ≥ 0. (3.3)

Now we consider,

d(yn+1, yn−1) = d(Sxn+2, Sxn)

≥ kd(Txn+2, Txn)

= kd(yn+2, yn).

This implies that,

d(yn+2, yn) ≤ λd(yn+1, yn−1), where λ =
1

k
∈ (0, 1). (3.4)

By (3.4), we have

d(yn+1, yn−1) ≤ λd(yn, yn−2).

Similarly,

d(yn+2, yn) ≤ λ2d(yn, yn−2).

Continuing the same procedure, we get

d(yn+2, yn) ≤ λnd(y2, y0) for all n ≥ 0. (3.5)

For the sequence {yn}, we consider d(yn, yn+p) in two cases, when p is even and it is odd.
Case (i): Suppose p is even, let p = 2m,m ≥ 2 then by (3.3), (3.5) and the heptagonal
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property we have,

d(yn, yn+p) = d(yn, yn+2m)

≤ d(yn, yn+2) + d(yn+2, yn+3) + d(yn+3, yn+4) + d(yn+4, yn+5)

+ d(yn+5, yn+6) + d(yn+6, yn+2m)

≤ d(yn, yn+2) + d(yn+2, yn+3) + d(yn+3, yn+4) + d(yn+4, yn+5)

+ d(yn+5, yn+6) + ...+ d(yn+2m−1, yn+2m)

≤ λnd(y0, y2) + λn+2d(y0, y1) + λn+3d(y0, y1) + λn+4d(y0, y1)

+ λn+5d(y0, y1) + ...+ λn+2m−1d(y0, y1)

= λnd(y0, y2) + λn[λ2 + λ3 + λ4 + λ5...+ λ2m−1]d(y1, y0)

≤ λnd(y0, y2) + (
λn+2

1− λ
)d(y1, y0).

Case (2): Suppose p is odd, let p = 2m + 1,m ≥ 1 then by (3.3) and the heptagonal
property, we have,

d(yn, yn+p) = d(yn, yn+2m+1)

≤ d(yn, yn+1) + d(yn+1, yn+2) + d(yn+2, yn+3) + d(yn+3, yn+4)

+ d(yn+4, yn+5) + d(yn+5, yn+2m+1)

≤ d(yn, yn+1) + d(yn+1, yn+2) + d(yn+2, yn+3) + d(yn+3, yn+4)

+ d(yn+4, yn+5) + ...+ d(yn+2m, yn+2m+1)

≤ λnd(y1, y0) + λn+1d(y1, y0) + λn+2d(y1, y0) + λn+3d(y1, y0)

+ λn+4d(y1, y0) + ...+ λn+2md(y1, y0)

= λn[1 + λ+ λ2 + λ3 + ...+ λ2m]d(y1, y0)

≤ (
λn

1− λ
)d(y1, y0).

Therefore, combining Case (1) and Case (2), we obtain

d(yn, yn+p) ≤ λnd(y0, y2) + (
λn+2

1− λ
)d(y1, y0) + (

λn

1− λ
)d(y1, y0)

= λnd(y0, y2) + λn(
λ2 + 1

1− λ
)d(y1, y0).

for all n, p ∈ N.
Since, λ = 1

k ∈ (0, 1), then λnd(y0, y2)→ θ and λn(λ
2+1
1−λ )d(y1, y0)→ θ as n→∞. So by

(a) and (d) of Remark 2.15, for every c ∈ E with θ � c, there exits n0 ∈ N such that
d(yn, yn+p)� c for all n > n0. Hence, {yn} is a Cauchy sequence in X. Suppose T (X) is
complete, then there exists q ∈ T (X) ⊆ S(X) such that

lim
n→∞

yn = lim
n→∞

Txn = lim
n→∞

Sxn+1 = q.

Hence, q ∈ S(X).
Let u ∈ X, be such that Su = q. For θ � c we can choose a natural number n0 ∈ N, such

that d(q, yn−1) � c

6
, d(yn, Su) � kc

6
and d(yn−1, yn) = d(yn, yn+2) = d(yn+2, yn+3) =

d(yn+1, yn+3)� c

6
for all n ≥ n0.
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By (3.1) we have

d(yn, Su) = d(Sxn+1, Su)

≥ kd(Txn+1, Tu)

= kd(yn+1, Tu).

Thus,

d(yn+1, Tu) ≤ 1

k
d(yn, Su)

for all n ≥ n0.
Now by heptagonal property we have:

d(q, Tu) ≤ d(q, yn−1) + d(yn−1, yn) + d(yn, yn+2) + d(yn+2, yn+3) + d(yn+1, yn+3)

+ d(yn+1, Tu)

≤ d(q, yn−1) + d(yn−1, yn) + d(yn, yn+2) + d(yn+2, yn+3) + d(yn+1, yn+3)

+
1

k
d(yn, Su).

Thus,

d(q, Tu)� c

6
+
c

6
+
c

6
+
c

6
+
c

6
+
c

6
= c

for all n ≥ n0.
Thus Tu = q hence Tu = Su = q, which means that q is a point of coincidence of T and
S. Next, we show that q is unique. Suppose, there exists another point of coincidence q∗

such that Tu∗ = Su∗ = u∗ for some u∗ ∈ X. Then, from (3.1), we have

d(q, q∗) = d(Su, Su∗)

≥ kd(Tu, Tu∗)

= kd(q, q∗).

Since k > 1, we have d(q, q∗) = θ. This implies that q = q∗. Therefore S and T have a
unique point of coincidence in X. Since S and T are weakly compatible, then by Lemma
2.16, S and T have a unique common fixed point in X.

Theorem 3.2. Let (X, d) be a cone heptagonal metric space. Suppose the mappings
S, T : X → X satisfy:

d(Sx, Sy) ≥ k1d(Tx, Sx) + k2d(Ty, Sy) + k3d(Tx, Ty) + k4d(Sx, Ty) (3.6)

for all x, y ∈ X, x 6= y where k1, k2, k4 ≥ 0 with k1, k2, k4 < 1 and k3 > 1. Suppose that
T (X) ⊆ S(X) and either of S(X) or T (X) is complete, then the mappings S and T have
a unique point of coincidence in X. Moreover, if S and T are weakly compatible, then
they have a unique common fixed point in X.

Proof. Let x0 be any arbitrary point in X. Since T (X) ⊆ S(X), we can choose a point
x1 ∈ X such that Sx1 = Tx0 and also we can choose x2 ∈ X such that Sx2 = Tx1.
Continuing this process in the same way, we construct a sequence {xn} and {yn} in X
such that yn = Txn = Sxn+1 for all n = 0, 1, 2, · · · .
If for some n ∈ N, yn = yn−1 then

Txn = Sxn+1 = yn = yn−1 = Txn−1 = Sxn
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this implies that Txn = Sxn and xn is a coincidence point of S and T.
Now, we assume that yn 6= yn−1 for all n ∈ N. It follows from (3.6) that

d(yn, yn−1) = d(Sxn+1, Sxn)

≥ k1d(Txn+1, Sxn+1) + k2d(Txn, Sxn) + k3d(Txn+1, Txn) + k4d(Sxn+1, Txn)

= k1d(yn+1, yn) + k2d(yn, yn−1) + k3d(yn+1, yn) + k4d(yn, yn)

= k1d(yn+1, yn) + k2d(yn, yn−1) + k3d(yn+1, yn).

This implies that,

d(yn+1, yn) ≤ λd(yn, yn−1), where λ =
1− k2
k1 + k3

∈ (0, 1). (3.7)

By (3.7), we have

d(yn, yn−1) ≤ λd(yn−1, yn−2).

Similarly,

d(yn+1, yn) ≤ λ2d(yn−1, yn−2).

Continuing the same procedure, we get

d(yn+1, yn) ≤ λnd(y1, y0) for all n ≥ 0. (3.8)

Now we consider,

d(yn+1, yn−1) = d(Sxn+2, Sxn)

≥ k1d(Txn+2, Sxn+2) + k2d(Txn, Sxn) + k3d(Txn+2, Txn) + k4d(Sxn+2, Txn)

= k1d(yn+2, yn+2) + k2d(yn, yn−1) + k3d(yn+1, yn) + k4d(yn, yn)

= k1d(yn+2, yn+1) + k2d(yn, yn−1) + k3d(yn+2, yn) + k4d(yn+1, yn).

This implies that,

d(yn+2, yn) ≤ 1

k3
d(yn+1, yn−1)− k1

k3
d(yn+2, yn+1)− k2

k3
d(yn, yn−1)− k4

k3
d(yn+1, yn).

(3.9)

By (3.9) and heptagonal property,

d(yn+2, yn) ≤ 1

k3
[d(yn+1, yn−1)− k1d(yn+2, yn+1)− k2d(yn, yn−1)− k4d(yn+1, yn)]

≤ 1

k3
[d(yn−1, yn+5) + d(yn+5, yn+4) + d(yn+4, yn+3) + d(yn+3, yn+2)]

+
1

k3
[d(yn+2, yn) + d(yn, yn+1)]− k1

k3
d(yn+2, yn+1)− k2

k3
d(yn, yn−1)

− k4
k3
d(yn+1, yn). (3.10)

Again by heptagonal property,

d(yn−1, yn+5) ≤ d(yn−1, yn) + d(yn, yn+1) + d(yn+1, yn+2) + d(yn+2, yn+3)

+ d(yn+3, yn+4) + d(yn+4, yn+5). (3.11)
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By (3.10) and (3.11) we have

d(yn+2, yn) ≤ 1− k2
k3 − 1

d(yn−1, yn) +
2− k4
k3 − 1

d(yn, yn+1) +
1− k1
k3 − 1

d(yn+1, yn+2)

+
2

k3 − 1
d(yn+2, yn+3) +

2

k3 − 1
d(yn+3, yn+4)

+
2

k3 − 1
d(yn+4, yn+5)

= αd(yn−1, yn) + βd(yn, yn+1) + δd(yn+1, yn+2)

+ ηd(yn+2, yn+3) + γd(yn+3, yn+4)

+ φd(yn+4, yn+5). (3.12)

Where,

α =
1− k2
k3 − 1

, β =
2− k4
k3 − 1

, δ =
1− k1
k3 − 1

, η =
2

k3 − 1
,

γ =
2

k3 − 1
and φ =

2

k3 − 1
.

For the sequence {yn}, we consider d(yn, yn+p) in two cases, when p is even and it is odd.
Case (i): Suppose p is even, let p = 2m,m ≥ 2 then by (3.8), (3.12) and the heptagonal
property we have,

d(yn, yn+p) = d(yn, yn+2m)

≤ d(yn, yn+2) + d(yn+2, yn+3) + d(yn+3, yn+4) + d(yn+4, yn+5)

+ d(yn+5, yn+6) + d(yn+6, yn+2m)

≤ d(yn, yn+2) + d(yn+2, yn+3) + d(yn+3, yn+4) + d(yn+4, yn+5)

+ d(yn+5, yn+6) + ...+ d(yn+2m−1, yn+2m)

≤ αd(yn−1, yn) + βd(yn, yn+1) + δd(yn+1, yn+2) + ηd(yn+2, yn+3)

+ γd(yn+3, yn+4) + φd(yn+4, yn+5) + d(yn+2, yn+3) + d(yn+3, yn+4)

+ d(yn+4, yn+5) + d(yn+5, yn+6) + ...+ d(yn+2m−1, yn+2m)

≤ αλn−1d(y1, y0) + βλnd(y1, y0) + δλn+1d(y1, y0) + ηλn+2d(y1, y0)

+ γλn+3d(y1, y0) + φλn+4d(y1, y0) + λn+2d(y1, y0) + λn+3d(y1, y0)

+ λn+4d(y1, y0) + λn+5d(y1, y0) + ...+ λn+2m−1d(y1, y0)

= αλn−1d(y1, y0) + βλnd(y1, y0) + δλn+1d(y1, y0) + (1 + η)λn+2d(y1, y0)

+ (1 + γ)λn+3d(y1, y0) + (1 + φ)λn+4d(y1, y0)

+ λn+5[1 + λ+ λ2 + λ3 + ...+ λn+2m−2]d(y1, y0)

≤ αλn−1d(y1, y0) + βλnd(y1, y0) + δλn+1d(y1, y0) + (1 + η)λn+2d(y1, y0)

+ (1 + γ)λn+3d(y1, y0) + (1 + φ)λn+4d(y1, y0)

+ (
λn+5

1− λ
)d(y1, y0).
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Case (2): Suppose p is odd, let p = 2m + 1,m ≥ 1 then by (3.8) and the heptagonal
property we have,

d(yn, yn+p) = d(yn, yn+2m+1)

≤ d(yn, yn+1) + d(yn+1, yn+2) + d(yn+2, yn+3) + d(yn+3, yn+4)

+ d(yn+4, yn+5) + d(yn+5, yn+2m+1)

≤ d(yn, yn+1) + d(yn+1, yn+2) + d(yn+2, yn+3) + d(yn+3, yn+4)

+ d(yn+4, yn+5) + ...+ d(yn+2m, yn+2m+1)

≤ λnd(y1, y0) + λn+1d(y1, y0) + λn+2d(y1, y0) + λn+3d(y1, y0)

+ λn+4d(y1, y0) + ...+ λn+2md(y1, y0)

= λn[1 + λ+ λ2 + λ3 + ...+ λ2m]d(y1, y0)

≤ (
λn

1− λ
)d(y1, y0).

Therefore, combining Case (1) and Case (2), we obtain

d(yn, yn+p) ≤ αλn−1d(y1, y0) + βλnd(y1, y0) + δλn+1d(y1, y0) + (1 + η)λn+2d(y1, y0)

+ (1 + γ)λn+3d(y1, y0) + (1 + φ)λn+4d(y1, y0)

+ (
λn+5

1− λ
)d(y1, y0) + (

λn

1− λ
)d(y1, y0)

= [αλn−1 + βλn + δλn+1 + (1 + η)λn+2 + (1 + γ)λn+3 + (1 + φ)λn+4]d(y1, y0)

+ [(
λn+5

1− λ
) + (

λn

1− λ
)]d(y1, y0)

for all n, p ∈ N.
Since, α, β, δ, η, γ, φ ≥ 0 and λ = 1−k2

k1+k3
∈ (0, 1), then

[αλn−1+βλn+δλn+1+(1+η)λn+2+(1+γ)λn+3+(1+φ)λn+4+(
λn+5

1− λ
)+(

λn

1− λ
)]d(y1, y0)→ θ

as n → ∞, so by (a) and (d) of Remark 2.15, for every c ∈ E with θ � c, there exits
n0 ∈ N such that d(yn, yn+p)� c for all n > n0. Hence, {yn} is a Cauchy sequence in X.
Suppose T (X) is complete, then there exists q ∈ T (X) ⊆ S(X) such that

lim
n→∞

yn = lim
n→∞

Txn = lim
n→∞

Sxn+1 = q.

Hence, q ∈ S(X).
Let u ∈ X, be such that Su = q. For θ � c we can choose a natural number n0 ∈ N, such

that d(q, yn−1) � c

6
, d(yn, Su) � k3c

6
and d(yn−1, yn) = d(yn, yn+2) = d(yn+2, yn+3) =

d(yn+1, yn+3)� c

6
for all n ≥ n0.

By (3.6) we have

d(yn, Su) = d(Sxn+1, Su)

≥ k1d(Txn+1, Sxn+1) + k2d(Tu, Su) + k3d(Txn+1, Tu) + k4d(Sxn+1, Tu)

= k1d(yn+1, yn) + k2d(Tu, Su) + k3d(yn+1, Tu) + k4d(yn, Tu)

≥ k3d(yn+1, Tu).
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Thus,

d(yn+1, Tu) ≤ 1

k3
d(yn, Su)

for all n ≥ n0.
Now by heptagonal property we have:

d(q, Tu) ≤ d(q, yn−1) + d(yn−1, yn) + d(yn, yn+2) + d(yn+2, yn+3) + d(yn+1, yn+3)

+ d(yn+1, Tu)

≤ d(q, yn−1) + d(yn−1, yn) + d(yn, yn+2) + d(yn+2, yn+3) + d(yn+1, yn+3)

+
1

k3
d(yn, Su).

Thus,

d(q, Tu)� c

6
+
c

6
+
c

6
+
c

6
+
c

6
+
c

6
= c

for all n ≥ n0.
Thus Tu = q hence Tu = Su = q, which means that q is a point of coincidence of T and
S. Next, we show that q is unique. Suppose, there exists another point of coincidence q∗

such that Tu∗ = Su∗ = u∗ for some u∗ ∈ X.
Then, from (3.6), we have

d(q, q∗) = d(Su, Su∗)

≥ k1d(Tu, Su) + k2d(Tu∗, Su∗) + k3d(Tu, Tu∗) + k4d(Su, Tu∗)

= k1d(q, q) + k2d(q∗, q∗) + k3d(q, q∗) + k4d(q, q∗)

= (k3 + k4)d(q, q∗).

Since k3 + k4 > 1, we have d(q, q∗) = θ. This implies that q = q∗. Therefore S and T
have a unique point of coincidence in X. Since S and T are weakly compatible, then by
Lemma 2.16, S and T have a unique common fixed point in X.

The following is an example in support of Theorem 3.1

Example 3.3. Let X = {1, 2, 3, 4, 5, 6, 7}, E = R2 and P = {(x, y) ∈ E : x, y ≥ θ}, then
P is a cone in E.
We define d : X ×X → E as follows:

d(x, x) = θ,∀x ∈ X,
(14, 42) = d(1, 2) = d(2, 1),

(1, 3) = d(1, 3) = d(3, 1) = d(1, 4) = d(4, 1) = d(1, 5) = d(5, 1) = d(1, 6) = d(6, 1)

= d(2, 3) = d(3, 2) = d(3, 5) = d(5, 3) = d(6, 3) = d(3, 6) = d(4, 5) = d(5, 4)

= d(2, 5) = d(5, 2) = d(6, 5) = d(5, 6) = d(6, 2) = d(2, 6),

(5, 15) = d(1, 7) = d(7, 1) = d(2, 7) = d(7, 2) = d(3, 7) = d(7, 3) = d(4, 7) = d(7, 4)

= d(5, 7) = d(7, 5) = d(6, 7) = d(7, 6) = d(2, 4) = d(4, 2) = d(3, 4) = d(4, 3)

= d(4, 6) = d(6, 4).
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Then (X, d) is a complete cone heptagonal metric space but not a cone hexagonal metric
space because it lacks the hexagonal property as

(14, 42) = d(1, 2) > d(1, 3) + d(3, 4) + d(4, 5) + d(5, 6) + d(6, 2)

= (1, 3) + (5, 15) + (1, 3) + (1, 3) + (1, 3)

= (9, 27).

Since,(14, 42)− (9, 27) = (5, 15) ∈ P.
Now define mappings S, T : X → X as follows:

T (x) =

{
2 if x = 4,

6 if x 6= 4.

S(x) =



7 if x = 1,

4 if x = 3,

2 if x is either 7 or 2,

6 if x is either 5 or 6,

3 if otherwise.

Clearly T (X) ⊆ S(X) and the mappings S and T are weakly compatible. Hence, all
conditions of Theorem 3.1 hold for all x, y ∈ X, with k ∈ (1, 5] and 6 ∈ X is the unique
common fixed point of S and T.

Corollary 3.4. Let (X, d) be a complete cone heptagonal metric space and let S : X → X
be an onto mapping which satisfies:

d(Sx, Sy) ≥ k(d(x, y))

for all x, y ∈ X where k > 1 is a constant. Then S has a unique fixed point in X.

Proof. The result follows by taking T = I (Identity map on X ) in Theorem 3.1

Corollary 3.5. Let (X, d) be a complete cone heptagonal metric space and let S : X → X
be an onto mapping which satisfies:

d(Sx, Sy) ≥ k1d(x, Sx) + k2d(y, Sy) + k3d(x, y) + k4d(Sx, y) (3.13)

for all x, y ∈ X, x 6= y where k1, k2, k4 ≥ 0 with k1, k2, k4 < 1 and k3 > 1. Then S has a
unique fixed point in X.

Proof. The result follows by taking T = I (Identity map on X ) in Theorem 3.2

Conclusion:

We introduced and proved new theorems of common fixed point for expansive mappings
in cone heptagonal metric spaces under a set of conditions. Our results generalize several
well known comparable results in the literature. Also, we provided an example to support
the validity of our main result.
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