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On the Stability of a Cubic Functional Equation
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Abstract : In this paper, we establish the general solution of the following cubic
functional equation

f(x + 3y)− 3f(x + y) + 3f(x− y)− f(x− 3y) = 48f(y)

and examine its generalized Hyers-Ulam-Rassias stability problem on Banach spaces.
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1 Introduction

In A Collection of Mathematical Problems[7], the author, S.M. Ulam, posed
a famous question about the stability of a functional equation. The question is
that ”if we replace a given functional equation by functional inequality, when can
one assert that the solutions of the inequality lie near to the solutions of the strict
equation?” The problem has been considered for many different types of equations
in different spaces by a number of writers. For the Cauchy equation on Banach
spaces, D.H. Hyers obtained the first affirmative answer in 1941 [4]. Then in 1978,
Th. M. Rassias gave a generalization of Hyers’s theorem [6] in the way to weaken
the condition of the Cauchy differrence. Their method became a powerful tool
for studying the stability of several functional equations nowadays, and have been
called Hyers-Ulam-Rassias stability.

The Hyers-Ulam-Rassias stability problem of functional equation of cubic type
has appeared in a paper written by K.-W. Jun and H.-M. Kim in 2002 [5]. In fact,
they investigated that kind of stability for the functional equation

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x), (1.1)

in real vector spaces.
In 2005, Chang, Jun and Jung [1] introduced a cubic type functional equation

different from (1.1) as follows:

f(x + y + 2z) + f(x + y − 2z) + f(2x) + f(2y) + 7f(x) + f(−x)
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= 2f(x + y) + 4f(x + z) + f(x− z) + f(y + z) + f(y − z),

and investigated the Hyers-Ulam-Rassias stability for this equation. Recently,
Chang and Jung [2] extended there old result to the n-dimensional equation.

Consider the following functional equation:

f(x + 3y)− 3f(x + y) + 3f(x− y)− f(x− 3y) = 48f(y). (1.2)

Since the cubic function f(x) = cx3 satisfies this equation, it is said to be an-
other cubic equation and every solution will be called a cubic function. In this
paper, we establish the general solution of equation (1.2) and examine its gener-
alized Hyers-Ulam-Rassias stability problem on Banach spaces. We also obtain
2 consequent corollaries in sense of Hyers-Ulam stability and Hyers-Ulam-Rassias
stability, respectively.

2 The General Solution

Let E1 and E2 be real Banach spaces.

Theorem 2.1. A function f : E1 → E2 satisfies the functional equation (1.2) if
and only if there exists a tri-additive symmetric function A3 : E3

1 → E2 such that
f(x) = A3(x, x, x) for all x ∈ E1.

Proof. (Necessity). From (1.2), putting x = y = 0 yields f(0) = 0. Note that the
left hand side of (1.2) changes sign when y is replaced by −y. Thus f is odd.

One can verify that f(2x) = 8f(x) and f(3x) = 27f(x). By induction, we
infer that f(kx) = k3f(x) for all positive integer k.

Replacing x by x + 2y in (1.2), we have

f(x + 5y)− 3f(x + 3y) + 3f(x + y)− f(x− y) = 48f(y). (2.1)

According to (1.2) and (2.1), we obtain

f(x + 5y)− 4f(x + 3y) + 6f(x + y)− 4f(x− y) + f(x− 3y) = 0. (2.2)

The substitution x = x + 3y/2 and y = y/2 in (2.2) gives the relation

f(x + 4y)− 4f(x + 3y) + 6f(x + 2y)− 4f(x + y) + f(x) = 0. (2.3)

Thus f also satisfies the difference functional equation

∆4
yf(x) = 0. (2.4)

Here ∆y is the forward difference operator with the span y.

For each n = 0, 1, 2, . . ., let An : En
1 → E2 be a symmetric n-additive function

and let An : E1 → E2 be its diagonalization. Let s ∈ N, it is known that [3] the
general solution of the difference functional equation

∆s+1
y f(x) = 0.
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is given by a generalized polynomial of degree at most s such that

f(x) =
s∑

n=0

An(x).

Hence the general solution of (2.4) is in the form

f(x) = A0(x) + A1(x) + A2(x) + A3(x), (2.5)

where A0(x) ≡ A0 is taken to be a constant.

Making use of the oddness of f , we have A0 = 0 and A2(x) = 0, for all x ∈ E1.
Thus (2.5) is reduced to

f(x) = A1(x) + A3(x). (2.6)

Substitute (2.6) into (1.2) to obtain

A1(x + 3y) + A3(x + 3y)− 3A1(x + y)− 3A3(x + y)
+3A1(x− y) + 3A3(x− y)−A1(x− 3y)−A3(x− 3y)

= 48A1(y) + 48A3(y).

On account of the additivity of A1, it follows that

A3(x + 3y)− 3A3(x + y) + 3A3(x− y)−A3(x− 3y) = 48A1(y) + 48A3(y).

Finally, replacing y by x in the above equation, we arrive at

A3(4x)− 3A3(2x)−A3(−2x) = 48A1(x) + 48A3(x).

Observing that A3(nx) = n3A3(x) for all n ∈ Z and all x ∈ E1, the above equation
turns into

48A3(x) = 48A1(x) + 48A3(x).

Now we can conclude that A1(x) ≡ 0 for all x ∈ E1. That is
f(x) = A3(x) = A3(x, x, x) for all x ∈ E1.

(Sufficiency). Assume that there exists a tri-additive symmetric function A3 :
E3

1 → E2 such that f(x) = A3(x, x, x) for all x ∈ E1. Making use of the fact that

∆3
yA3(x) = 3!A(y)

[3], we have

f(x+3y)−3f(x+ y)+3f(x− y)− f(x− 3y) = ∆3
2yf(x− 3y) = 3!f(2y) = 48f(y).

That is f satisfies the equation (1.2). This completes the proof of the
theorem. 2
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3 The Generalized Hyers-Ulam-Rassias Stability

Theorem 3.1. Let an even function φ : E1 × E1 → [0,∞) satisfy the following
conditions

∞∑

k=0

φ(0, 3ky)
27k

< ∞ and lim
n→∞

φ(3nx, 3ny)
27n

= 0, (3.1)

or
∞∑

k=1

27kφ(0,
y

3k
) < ∞ and lim

n→∞
27nφ(

x

3n
,

y

3n
) = 0, (3.2)

for all x, y ∈ E1. Suppose that a function f : E1 → E2 satisfies

‖f(x + 3y)− 3f(x + y) + 3f(x− y)− f(x− 3y)− 48f(y)‖ ≤ φ(x, y) (3.3)

for all x, y ∈ E1. Then there exists a unique cubic function C : E1 → E2 which
satisfies the inequality

‖f(y)− C(y)‖ ≤





1
48

∞∑

k=0

1
27k

(
φ(0, 3ky) +

φ(0, 3k+1y)
27

)
if (3.1) holds,

1
48

n∑

k=1

27k

(
φ(0,

y

3k
) +

1
27

φ(0,
y

3k−1
)
)

if (3.2) holds,

(3.4)
for all y ∈ E1.

Proof. Replacing y by −y in (3.3) and adding the result to (3.3) yield

‖f(y) + f(−y)‖ ≤ φ(x, y)/24 (3.5)

for all x ∈ E1. Since (3.3) and (3.5) hold for any x, let us fix x = 0 for convenience.
Thus, from the two inequalities, we have that

‖2f(3y)− 54f(y)‖ ≤ φ(0, y) + ‖f(3y) + f(−3y)− 3(f(y) + f(−y))‖
≤ φ(0, y) + ‖f(3y) + f(−3y)‖+ 3‖f(y) + f(−y)‖
≤ 27

24
φ(0, y) +

1
24

φ(0, 3y) (3.6)

for all y ∈ E1. We will first consider for the case when the condition (3.1) holds.
Dividing both sides by 54, lead us to

‖f(3y)
27

− f(y)‖ ≤ 1
48

(
φ(0, y) +

φ(0, 3y)
27

)
(3.7)
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for all y ∈ E1. Making use of the triangle inequality, it follows that

‖f(3ny)
27n

− f(y)‖ = ‖
n−1∑

k=0

(
f(3k+1y)

27k+1
− f(3ky)

27k

)
‖

≤
n−1∑

k=0

1
27k

‖f(3k+1y)
27

− f(3ky)‖

≤ 1
48

n−1∑

k=0

1
27k

(
φ(0, 3ky) +

φ(0, 3k+1y)
27

)
(3.8)

for all y ∈ E1 and integer n ≥ 1. For any positive integer m, we divide (3.11) by
27m and replace y by 3my to obtain that

‖f(3n+my)
27n+m

− f(3my)
27m

‖ ≤ 1
48

n−1∑

k=0

1
27k+m

(
φ(0, 3k+my) +

φ(0, 3k+m+1y)
27

)
(3.9)

for all y ∈ E1. This shows that {f(3ny)/27n} is a Cauchy sequence in E1 because
the right hand side of (3.9) converges to zero by the assumption of φ when m →∞.
Since E2 is a Banach space, it follows that the sequence {f(3ny)/27n} converges.
We define C : E1 → E2 by

C(x) = lim
n→∞

f(3nx)
27n

for all x ∈ E1. Letting n →∞ in (3.11), we get the inequality (3.4).
To show that C satisfies the equation (1.2) for all x, y ∈ E1, we replace (x, y)

by (3nx, 3ny) in (3.3) and then divide by 27n as the following:

1
27n

‖f(3n(x + 3y))− 3f(3n(x + y)) + 3f(3n(x− y))− f(3n(x− 3y))− 48f(3ny)‖

≤ 1
27n

φ(3n‖x‖, 3n‖y‖).

Applying the condition (3.1), the right hand side of the above inequality becomes
0 as n approaches ∞. Now we can say that C is a cubic function.

Let C̃ : E1 → E2 be another cubic function satisfying (1.2) and (3.4). Hence
it follows from (3.4) that

‖C(y)− C̃(y)‖ = 27−n‖C(3ny)− C̃(3ny)‖
≤ 27−n(‖C(3ny)− f(3ny)‖+ ‖f(3ny)− C̃(3ny)‖)
≤ 1

24

∞∑

k=0

1
27n+k

(
φ(0, 3k+ny) +

φ(0, 3k+n+1y)
27

)
.

for all y ∈ E1. Taking the limit as n → ∞, it is immediate that C(x) = C̃(x) for
all x ∈ E1. This proves the uniqueness of C.
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Next, for the case when the condition (3.2) holds, we can state the proof in
the same pattern as we did in the first case. We start by replacing y by y/3 and
dividing both sides by 2 in (3.6) to have that

‖f(y)− 27f(
y

3
)‖ ≤ 1

48

(
27φ(0,

y

3
) + φ(0, y)

)
(3.10)

for all y ∈ E1. Applying the triangle inequality, we can extend (3.10) to

‖27nf(
y

3n
)‖ = ‖

n−1∑

k=0

(
27kf(

y

3k
)− 27k+1f(

y

3k+1
)
)
‖

≤
n−1∑

k=0

27k‖f(
y

3k
)− 27f(

y

3k+1
)‖

≤ 1
48

n−1∑

k=0

27k
(
27φ(0,

y

3k+1
) + φ(0,

y

3k
)
)

=
1
48

n∑

k=1

27k

(
φ(0,

y

3k
) +

1
27

φ(0,
y

3k−1
)
)

(3.11)

for all y ∈ E1 and a positive integer n.

The same idea was used to show that
{

27nf(
y

3n
)
}

is a Cauchy sequence. Thus
a mapping

C(x) = lim
n→∞

27nf(
x

3n
)

from E1 to E2 is well-defined. Moreover, C satisfies (1.2) and (3.4). The proof for
the uniqueness of C for this case proceeds similarly to that in the previous case,
thus will be omitted. 2

We also obtain the following corollaries concerning the stability of the equation
(1.2) in the sense of Hyers-Ulam stability.

Corollary 3.2. Suppose that a function f : E1 → E2 satisfies

‖f(x + 3y)− 3f(x + y) + 3f(x− y)− f(x− 3y)− 48f(y)‖ ≤ ε (3.12)

for all x, y ∈ E1. Then there exists a unique cubic function C : E1 → E2 which
satisfies the inequality

‖f(y)− C(y)‖ ≤ δ

26
(3.13)

for all y ∈ E1, where δ =
7ε

12
.
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Proof. According to Theorem3.1, if we select φ(x, y) = ε for all x, y ∈ E1, the
condition (3.1) is fulfilled. Consequently, there exists a unique cubic function
C : E1 → E2 such that

‖f(y)− C(y)‖ ≤ 1
48

∞∑

k=0

1
27k

(
ε +

ε

27

)

=
δ

26
(3.14)

for all y ∈ E1 as desired. 2

The following corollary is the Hyers-Ulam-Rassias stability of the equation (1.2)
which also is an immediate consequence of Theorem(3.1).

Corollary 3.3. Suppose that a function f : E1 → E2 satisfies

‖f(x+3y)−3f(x+y)+3f(x−y)−f(x−3y)−48f(y)‖ ≤ ε(‖x‖p +‖y‖p) (3.15)

for all x, y ∈ E1, when p 6= 3. Then there exists a unique cubic function C : E1 →
E2 which satisfies the inequalities

‖f(y)− C(y)‖ ≤ ε(27 + 3p)‖y‖p

48|27− 3p| (3.16)

for all y ∈ E1.

Proof. This time we choose φ(x, y) = ε(‖x‖p +‖y‖p). After checking for the value
of p to fulfill the 2 conditions in Theorem(3.1), we divide p 6= 3 into 2 intervals as
follow.
If 0 < p < 3, the condition (3.1) holds. Consequently, there exists a unique cubic
function C : E1 → E2 which satisfies the inequality

‖f(y)− C(y)‖ ≤ 1
48

∞∑

k=0

1
27k

(
ε‖3ky‖p +

ε‖3k+1y‖p

27

)

=
ε(27 + 3p)‖y‖p

48 · 27

∞∑

k=0

(
3p

27

)k

=
ε(27 + 3p)‖y‖p

48(27− 3p)
(3.17)

for all y ∈ E1.
If p > 3, the condition (3.2) holds Consequently, there exists a unique cubic
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function C : E1 → E2 which satisfies the inequality

‖f(y)− C(y)‖ ≤ 1
48

∞∑

k=1

27k

(
ε‖ y

3k
‖p +

ε‖ y
3k−1 ‖p

27

)

=
ε(27 + 3p)‖y‖p

48 · 27

∞∑

k=1

(
27
3p

)k

=
ε(27 + 3p)‖y‖p

48(3p − 27)
(3.18)

for all y ∈ E1. Both cases of consideration complete our proof. 2
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