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Abstract In this paper, we considered set-valued strong vector equilibrium problems and obtained

some existence results with and without compactness assumptions in Hausdorff topological vector spaces
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1. Introduction

Let X and Y be two topological vector spaces and K be a nonempty convex subset
of X. Let f : K × K → Y be a vector-valued mapping and C be a convex cone with
nonempty interior in Y. Then consider the problem of finding x0 ∈ K such that

f(x0, y) 6∈ −intC,∀y ∈ K,

is known as weak vector equilibrium problem. This problem is the most interesting and
intensively studied classes of problems which include many fundamental mathematical
problems, like vector optimization problems, vector variational inequality problems, Nash
equilibrium problems for vector-valued maps, fixed point problems, see for example, [1, 3–
7, 12, 13] and the references therein.

The concept of vector variational inequality (in short, VVI) was first introduced by
Giannessi [6] for finite dimensional Euclidean space, which is a generalization of a scalar
variational inequality to the vector case by virtue of multi-criteria consideration. Since,
then the VVI has been intensively studied in a general setting by many authors. Recently,
Chen and Hou [1] reviewed and summarized representative existence results of solutions
for vector variational inequalities, and pointed out that most of the results in this area
touched upon a weak version of VVI and its generalization. Fang and Huang [3] obtained
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some existence results of solutions for a class of strong vector variational inequalities and
partially answered the open problems proposed by Chen and Hou [1].

Recently, Kazmi and Khan [7] introduced a kind of equilibrium problems (EP) called
generalized system (GS), which extends the strong vector variational inequality (SVVI)
studied in Fang and Huang [3] in real Banach spaces, and obtained existence results of
generalized system with and without monotonicity assumptions. However, they dealt
with single-valued case of the bi-operator. Kum and Wong [8] considered a multi-valued
version of generalized system (GS), called the multi-valued generalized system (MGS) and
obtained existence results with and without monotonicity assumptions by using Brouwer
and Fan-Browder Fixed point theorems. Recently, Sitthithakerngkiet and Plubtieng [13]
established some existence results for the solutions of the generalized strong vector quasi-
equilibrium problems with and without monotonicity by using the generalization of Fan-
Browder fixed point theorem. Motivated and inspired by the work of Kum and Wong [8]
and Sitthithakerngkiet and Plubtieng [13]. In this paper, we first obtained the existence
results for set-valued strong vector equilibrium problem by making use of KKM-mapping
and Ky-Fan lemma in Hausdorff topological vector spaces, and then established existence
results for the same problem by making use of special property of self-segment dense set
characterized by Lemma 4.1. The results presented in this paper give a positive answer
to the open problem posed by Chen and Hou [1] in topological vector spaces.

We organize this work as follows:
In section 2, we introduced set-valued strong vector equilibrium problems, and listed

some definitions and results which are needed in the sequel. The existence results for
the set-valued strong vector equilibrium problems by using KKM-mapping and Ky-Fan
lemma in Hausdorff topological vector spaces have been established in section 3. In section
4, some existence results for the set-valued strong vector equilibrium problem by using
the concept of self-segment-dense set, a special type of dense set, have been discussed.

2. Preliminaries

Throughout this paper, unless otherwise specified, we assume that X and Y be the
Hausdorff topological vector spaces and K ⊂ X be a nonempty closed convex set.

Let C : K → 2Y be a set-valued mapping, where 2Y denotes the set of all nonempty
subsets of Y , and C be a pointed closed convex cone with apex at origin with intC 6= φ.
For a given set-valued map F : K ×K → 2Y with F (x, x) = {0} , for all x ∈ K. Then,
the set-valued strong vector equilibrium problems is to find x0 ∈ K such that

F (x0, y) 6⊆ −C \ {0} ,∀y ∈ K (2.1)

and

F (y, x0) ⊆ −C,∀y ∈ K. (2.2)

The main aim of this paper is to establish some existence results for set-valued strong
vector equilibrium problems (2.1).

Let us recall some definitions and lemmas which are needed in the main results of this
paper.

Definition 2.1. Let Y be a topological vector space, then C ⊂ Y is said to be closed
convex pointed cone with apex at origin if and only if C is closed, and satisfying the
following conditions:
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(i) λC ⊂ C, ∀ λ > 0,
(ii) C + C=C,
(iii) C ∩ (−C) = {0} .
Note that a closed convex pointed cone induces a partial ordering on Y. We define the

following partial ordering and strict partial ordering relationships:

For x, y ∈ Y and for any two subsets A,B of Y.

x ≤C y ⇔ y − x ∈ C; x 6≤C y ⇔ y − x 6∈ C,

x ≤C\{0} y ⇔ y − x ∈ C \ {0} ; x 6≤C\{0} y ⇔ y − x 6∈ C \ {0} ,

A ≤C B ⇔ B −A ⊆ C; A 6≤C B ⇔ B −A 6⊆ C,

A ≤C\{0} B ⇔ B −A ⊆ C \ {0} ; A 6≤C\{0} B ⇔ B −A 6⊆ C \ {0} .
It is easy to show that C + C \ {0} = C \ {0} and intC + C = intC.

Definition 2.2. Let X and Y be two topological vector spaces, K be a nonempty convex
subset X and C be a pointed closed convex cone in Y with intC 6= φ. Then a mapping
F : K ×K → 2Y is said to be:

(i) C-strongly pseudomonotone, if it satisfies

F (x, y) 6⊆ −C \ {0} ⇒ F (y, x) ⊆ −C, ∀x, y ∈ K.

(ii) C-convex in the first argument, if it satisfies

F (tx+ (1− t)y, z) ⊆ tF (x, z) + (1− t)F (y, z)− C, ∀x, y, z ∈ K.

Definition 2.3. Let X and Y be two topological spaces and T : X → 2Y be a set-valued
map. Then a set-valued map T : X → 2Y is said to be upper semicontinuous on X, if for
each x ∈ X and each open set V in Y containing T (x), there exists an open neighborhood
U of x in X such that T (y) ⊆ V,∀y ∈ U, and a set-valued map T : X → 2Y is said
to be lower semicontinuous on X, if for each x ∈ X and each open set V in Y with
T (x) ∩ V 6= φ, there exists an open neighborhood U of x in X such that T (y) ∩ V 6= φ,
for each y ∈ U. T is said to be continuous, if it is both upper and lower semicontinuous.
It is also known that T is lower semicontinuous if and only if for each open set V in Y,
the set {x ∈ X : T (x) ⊂ V } is closed in X.

Definition 2.4. Let X,Y be the two topological spaces, and C ⊂ Y be a closed convex
cone with apex at origin, and D ⊂ X be a nonempty subset. Let T : D → 2Y be a
set-valued map. Then, T is said to be:

(i) C-lower semicontinuous at x0 ∈ D (in short, C-l.s.c), if for any open set V in Y
with T (x0) ∩ V 6= φ, there exists a neighborhood U of x0 in D such that

T (x) ∩ (V + C) 6= φ, for each x ∈ D ∩ U.

(ii) C-upper semicontinuous at x0 ∈ D (in short, C-u.s.c), if for any open set V in Y
with T (x0) ⊂ V, there exists a neighborhood U of x0 in D such that

T (x) ⊂ V + C, for each x ∈ D ∩ U.

Lemma 2.5. Let D,X, Y and C be as in the Definition 2.4 and T : D → 2Y be a C-lower
semicontinuous function. Then, the set A = {x ∈ D : T (x) ⊆ −C} is closed in D.
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Proof. Let us assume that intC 6= φ. Let x ∈ D and a net {xt} in A such that xt −→ x.
To complete the proof, we need to show that x ∈ A. If x 6∈ A, then by definition of A, we
have T (x) ⊂ Y \ −C. Hence, for y0 ∈ T (x) such that Y \ −C is an open neighborhood of
y0. Since T is C-lower semicontinuous and Y \ −C is an open neighborhood of y0, then
there exists a neighborhood U of x such that

T (x) ∩ (Y \ −C + C) 6= φ, ∀x ∈ U.

⇒ T (x) ∩ (Y \ −C) 6= φ,∀x ∈ U. (2.3)

Since xt −→ x, there exists t0 such that xt ∈ U ∩D,∀t ≥ t0. Thus from (2.3), we have
T (xt) ∩ (Y \ −C) 6= φ, that is, xt 6∈ A, a contradiction.

Definition 2.6. ( Knaster-Kuratowski-Mazurkiewicz) Let D be a nonempty convex sub-
set of a vector space X. A set-valued mapping F : D → 2X is called KKM-mapping, if
for each finite subset {x1, x2....xn} ⊂ D, we have

co {x1, x2 · · ·xn} ⊆
n⋃

i=1

F (xi),

where co(E) is a convex hull of a set D.

Lemma 2.7. [2] (Fan-Lemma ) Let X be a Hausdorff topological vector space, and let D
be a non empty convex subset of X. Let F : D → 2X be a KKM -mapping. If each F (x)

is closed and at least one F (x) is compact, then
⋂
x∈D

F (x) 6= φ.

Self-segment Dense Set

Let X be a Hausdorff topological vector space. We will use following notations for the
open, respectively closed, line segments in X with the endpoints x and y:

(x, y) = {z ∈ X : z = x+ t(y − x), t ∈ (0, 1)},

[0, 1] = {z ∈ X : z = x+ t(y − x), t ∈ [0, 1]}.
In [11], Definition 3.4, Luc has introduced the notion of so-called segment dense set. Let
V ⊆ X be a convex set. One says that the set U ⊆ V is segment dense in V, if for each
x ∈ V there can be found y ∈ U such that x is a cluster point of the set [x, y] ∩ U.

Laszlo and Viorel [10] presented a denseness notion which is slightly different from the
concept of the Luc [11] presented above.

Consider the sets U ⊆ V ⊆ X and assume that V is convex. We say that U is
self-segment dense in V, if U is dense in V and

∀x, y ∈ U, the set [x, y] ∩ U is dense in [x, y].

Example 2.8. (see [10]) Let V be the two dimensional Euclidean space R2 and define U
to be the set

U := {(p, q) ∈ R2 : p ∈ Q, q ∈ Q}.
Then, it is clear that U is dense in R2. On the other hand U is not segment dense set in
R2, since for x = (0,

√
2) ∈ R2 and for every y = (p, q) ∈ U, one has [x, y] ∩ U = {y}. It

can be easily observed that U is self-segment dense set in R2, since for every x, y ∈ U, x =
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(p, q), y = (r, s), we have [x, y]∩U = {(p+ t(r− p), q+ t(s− q)) : t ∈ [0, 1]∩Q}, which is
obviously dense in [x,y].

Example 2.9. Consider R2 with usual topology and define V and U as follows:

V =
{

(x, y) ∈ R2 : x2 + y2 ≤ 1
}

and U =
{

(p, q) ∈ Q×Q : p2 + q2 ≤ 1
}
.

Then U is dense in V. Also, U is not segment dense in V. For x = (0, 1√
5
) ∈ V and for

any y = (p, q) ∈ U , we have [x, y] ∩ U = {y} . Further, U is self-segment dense set in V.
For any x = (p, q), y = (r, s) ∈ U, the set [x, y] ∩ U is dense in [x, y].

Example 2.10. Consider R2 with usual topology and define V and U as follows:

V = [0, 1]× [0, 1] \ [(1, 0), (1, 1)] and U = (0, 1)× (0, 1).

Then, U ⊂ V but U is not dense in V.
Clearly, U is segment dense in V. For any x = (a1, b1) ∈ V, there exists y = (a2, b2) ∈ U

such that x is a cluster point of [x, y]∩U. Also U is not self-segment dense set as U is not
dense in V.

3. Existence Results for Strong Vector Equilibrium Problems

In this section, we established the existence results for set-valued strong vector equi-
librium problems with and without compactness assumptions by making use of KKM-
mapping and Fan-Lemma 2.7.

Lemma 3.1. Let X and Y be two Hausdorff topological vector spaces and K ⊂ X be
nonempty convex set. Let F : K × K → 2Y be a set-valued mapping satisfying the
following conditions:

(i) for all x ∈ K,F (x, x) = {0} ,
(ii) F is C-strongly pseudomonotone mapping,
(iii) for any fixed x, y ∈ K, the mapping g(t) := F (ty + (1 − t)x, y), t ∈ [0, 1], is

(−C)-l.s.c at t = 0+,
(iv) for all x ∈ K, the mapping F (x, .) : K → 2Y is C-convex.

Then, the following conditions are equivalent:

(I) Find x0 ∈ K such that F (x0, y) 6⊆ −C \ {0} ,∀y ∈ K.
(II) Find x0 ∈ K such that F (y, x0) ⊆ −C,∀y ∈ K.

Proof. (I)⇒ (II). It follows from the C-strongly pseudomonotonicity of F.
(II)⇒ (I). Suppose that (II) holds, then there exists x0 ∈ K such that

F (y, x0) ⊆ −C, ∀y ∈ K.

To complete the proof, we need to show that there exists x0 ∈ K such that

F (x0, y) 6⊆ −C \ {0} ,∀y ∈ K.

If possible, let us suppose that there exists y0 ∈ K such that

F (x0, y0) ⊆ −C \ {0} . (3.1)

Let xt = tx0 + (1− t)y0, where t ∈ (0, 1], then xt ∈ K and hence

F (xt, x0) ⊆ −C. (3.2)
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Since F is C-convex in the second argument, we have

{0} = F (xt, xt) ⊆ tF (xt, x0) + (1− t)F (xt, y0)− C
⊆ −C + (1− t)F (xt, y0)− C
⊆ (1− t)F (xt, y0)− C

⇒ F (xt, y0) ⊆ C. (3.3)

Since F is (−C)-lower semicontinuous at t = 0+ in the first argument and xt → x0, we
have F (x0, y0) ⊆ C. If not, then F (x0, y0) ⊆ Y \C and Y \C is an open neighborhood of
F (x0, y0), so there is a δ ∈ (0, 1] such that

F (xt, y0) ∩ (Y \ C − C) 6= φ,∀t ∈ (0, δ].

⇒ F (xt, y0) ∩ (Y \ C) 6= φ, ∀t ∈ (0, δ],

which is a contradiction to (3.3). Hence, F (x0, y0) 6⊆ −C \ {0} .
Thus, there exists x0 ∈ K such that

F (x0, y) 6⊆ −C \ {0} ,∀y ∈ K.

Theorem 3.2. Let X,Y be two Hausdorff topological vector spaces and K ⊂ X be a
nonempty convex compact set. Let F : K ×K → 2Y be a set-valued map satisfying the
following conditions:

(i) for all x ∈ K,F (x, x) = {0} ,
(ii) for any fixed x, y ∈ K, the mapping g(t) := F (ty + (1− t)x, y), t ∈ [0, 1], is (−C)

-l.s.c at t = 0+,
(iii) F is C− strongly pseudomonotone,
(iv) for all x ∈ K,F (x, .) is C-convex and C-lower semicontinuous.

Then, there exists x0 ∈ K such that

F (x0, y) 6⊆ −C \ {0} ,∀y ∈ K.

Proof. Define set-valued maps A,B : K → 2K by

A(y) := {x ∈ K : F (x, y) 6⊆ −C \ {0}} ,∀y ∈ K

and

B(y) := {x ∈ K : F (y, x) ⊆ −C} ,∀y ∈ K.

Clearly, for all y ∈ K both A(y) and B(y) are nonempty.
Claim: A is a KKM-mapping.
If possible, let us suppose that there exist {y1, y2, .., yn} ⊂ K and ti ≥ 0, 1 ≤ i ≤ n, with∑n

i=1 ti = 1 such that

y =

n∑
i=1

tiyi 6∈
n⋃

i=1

A(yi).

⇒ y 6∈ A(yi),∀i = 1, 2, .., n.

⇒ F (y, yi) ⊆ −C \ {0} , i = 1, 2, .., n. (3.4)
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Since F is C-convex in the second argument, we have

{0} = F (y, y) ⊆
n∑

i=1

tiF (y, yi)− C

⊆ −C \ {0} − C
⊆ −C \ {0} ,

a contradiction. Hence A is a KKM-mapping.
Also, F is C-strongly pseudomonotone mapping, so A(y) ⊂ B(y). Hence B is a KKM-

mapping. By Lemma 3.1, we have
⋂
y∈K

A(y) =
⋂
y∈K

B(y).

Next, we claim that B(y) is compact, for all y ∈ K. Since F is C-lower semicontinuous
in the second argument. Hence B(y) is closed by Lemma 2.5 , for all y ∈ K. Since B(y)
is closed and B(y) ⊂ K, it follows that B(y) is compact for all y ∈ K. Hence, by Ky-Fan
Lemma 2.7, we have⋂

y∈K

B(y) 6= φ

and so, ⋂
y∈K

A(y) 6= φ.

Hence, there exists x0 ∈ K such that

F (x0, y) 6⊆ −C \ {0} ,∀y ∈ K.

Theorem 3.3. Let X,Y be two Hausdorff topological vector spaces and K ⊂ X be a
nonempty closed convex set. Let F : K × K → 2Y be a set-valued map satisfying the
following conditions:

(i) for all x ∈ K,F (x, x) = {0} ,
(ii) for any fixed x, y ∈ K, the mapping g(t) := F (ty + (1 − t)x, y), t ∈ [0, 1], is

(−C)-l.s.c at t = 0+,
(iii) F is C-strongly pseudomonotone, ı
(iv) for all x ∈ K,F (x, .) is C-convex and C-lower semicontinuous,
(v) there exists a nonempty compact convex subset K0 ⊂ X such that, for each x1 ∈

K \K0, there exists some y1 ∈ K0 such that F (y1, x1) ⊆ C \ {0} .
Then, there exists x0 ∈ K0 such that

F (x0, y) 6⊆ −C \ {0} ,∀y ∈ K.

Proof. Define set-valued maps A,B : K → 2K by

A(y) := {x ∈ K : F (x, y) 6⊆ −C \ {0}} ,∀y ∈ K

and

B(y) := {x ∈ K : F (y, x) ⊆ −C} ,∀y ∈ K.

Clearly, for all y ∈ K both A(y) and B(y) are nonempty.
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Hence, by the proof of Theorem 3.2, both A and B are KKM-mappings. Also by
Lemma 3.1, we have,⋂

y∈K

A(y) =
⋂
y∈K

B(y). (3.5)

First, we show that B(y) is closed, for all y ∈ K. For this, since F is C-lower semicon-
tinuous in the second argument and so by Lemma 2.5, B(y) is closed, ∀y ∈ K.
Claim: B(y1) ⊂ K0, where y1 ∈ K0, as in assumption (v). If possible, let us suppose
that B(y1) 6⊂ K0. Then, there exists x1 ∈ B(y1) such that x1 6∈ K0. Now x1 ∈ B(y1)
implies that F (y1, x1) ⊆ −C, and x1 6∈ K0, a contradiction to assumption (v). Hence
B(y1) ⊂ K0 and K0 is compact implies that B(y1) is compact. Since B(y) is closed for
all y ∈ K and compact for some y0 ∈ K.

Hence, by Fan-Lemma 2.7, we have
⋂
y∈K

B(y) 6= φ.

Thus, from (3.5), we have⋂
y∈K

A(y) 6= φ.

Hence, there exists x0 ∈ K0 such that

F (x0, y) 6⊆ −C \ {0} ,∀y ∈ K.

4. Self-segment-dense Set and Strong Vector Equilibrium Prob-
lems

In this section, we obtained the existence results for set-valued strong vector equilib-
rium problem with and without compactness assumptions, by making use of self-segment-
dense set.

Lemma 4.1. [9, Lemma 3.1]Let X be a Hausdorff locally convex convex topological vector
space, let V ⊆ X be a convex set and let U ⊆ V a self-segment-dense in V . Then, for all
finite subset {u1, u2 · · ·un} ⊆ U one has

cl(co{u1, u2 · · ·un} ∩D) = co{u1, u2 · · ·un}.

Theorem 4.2. Let X,Y be two Hausdorff locally convex topological vector spaces and K
be a nonempty convex compact subset of X. Let D ⊂ K be a self segment dense set. Let
F : K ×K → 2Y be set-valued map satisfying the following conditions:

(i) for all x ∈ D, F (x, x) = {0} ,
(ii) F is C-strongly pseudomonotone,
(iii) for any fixed x, y ∈ K, the mapping g(t) := F (ty + (1 − t)x, y), t ∈ [0, 1], is

(−C)-l.s.c at t = 0+,
(iv) for all x ∈ D, F (x, .) is C-convex on K,
(v) for all y ∈ D,F (., y) C-lower semicontinuous on K,

(vi) for all y ∈ K,F (., y) C-lower semicontinuous on K \D.
Then, there exists x0 ∈ K such that

F (x0, y) 6⊆ −C \ {0} ,∀y ∈ K.
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Proof. Define set-valued maps A,B : D → 2K by

A(y) := {x ∈ D : F (x, y) 6⊆ −C \ {0}} ,∀y ∈ D
and

B(y) := {x ∈ D : F (y, x) ⊆ −C} ,∀y ∈ D.
Clearly, for all y ∈ D both A(y) and B(y) are nonempty.
Claim: A is a KKM-mapping.
That is, for any {y1, y2, ..yn} ⊂ D, we have

co {y1, y2, ..yn} ∩D ⊆
n⋃

i=1

A(yi).

If possible, let us suppose that there exist {y1, y2, .., yn} ⊂ D and ti ≥ 0, 1 ≤ i ≤ n, with
n∑

i=1

ti = 1 such that

y =

n∑
i=1

tiyi 6∈
n⋃

i=1

A(yi).

⇒ y 6∈ A(yi),∀i = 1, 2, .., n.

⇒ F (y, yi) ⊆ −C \ {0} , i = 1, 2, .., n. (4.1)

Since F is C-convex in the second argument, it follows that

{0} = F (y, y) ⊆
n∑

i=1

tiF (y, yi)− C

⊆ −C \ {0} − C
⊆ −C \ {0} ,

a contradiction. Thus, for any {y1, y2, ..yn} ⊂ D, we have

co {y1, y2, ..yn} ∩D ⊆
n⋃

i=1

A(yi).

⇒ cl (co {y1, y2, ..yn} ∩D) ⊆ cl(
n⋃

i=1

A(yi)).

By Lemma 3.1, cl(co {y1, y2, ..yn} ∩ D) = co {y1, y2, ..yn} and cl(

n⋃
i=1

A(yi)) =

n⋃
i=1

A(yi),

we have

co {y1, y2, ..yn} ⊆
n⋃

i=1

A(yi).

Hence, A is a KKM-mapping.
Also, F is C-strongly pseudomonotone mapping, so A(y) ⊂ B(y) and hence B is a

KKM-mapping. By Lemma 3.1, we have⋂
y∈D

A(y) =
⋂
y∈D

B(y).
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Next, we claim that B(y) is compact for all y ∈ D. Since F is lower semicontinuous in the
first argument and hence by Lemma 2.5, B(y) is closed for all y ∈ D. Since B(y) is closed
and B(y) ⊂ K, it follows that B(y) is compact for all y ∈ D. Hence, by Fan-Lemma 2.7,
we have ⋂

y∈D

B(y) 6= φ.

So, ⋂
y∈D

A(y) 6= φ.

Hence, there exists x0 ∈ K such that

F (x0, y) 6⊆ −C \ {0} ,∀y ∈ D.

By Lemma 3.1, there exists x0 ∈ K such that

F (y, x0) ⊆ −C,∀y ∈ D. (4.2)

To complete the proof, we need to show that there exists x0 ∈ K such that

F (y, x0) ⊆ −C,∀y ∈ K.

If possible, let us suppose that there exists y0 ∈ K \D such that

F (y0, x0) 6⊆ −C

⇒ F (y0, x0) ⊆ Y \ −C.
Since F is lower semicontinuous in the first argument and Y \−C is open with F (y0, x0) ⊆
Y \ −C, so there exists an open neighborhood U of y0 in K such that

F (y, x0) ∩ (Y \ −C) 6= φ, ∀y ∈ U.

As D is dense in K, there exists y1 ∈ D ∩ U such that F (y1, x0) ∩ (Y \ −C) 6= φ, a
contradiction to (4.2). Hence, there exists x0 ∈ K such that

F (x0, y) ⊆ −C, ∀y ∈ K.

By Lemma 3.1, there exists x0 ∈ K such that

F (x0, y) 6⊆ −C \ {0} ,∀y ∈ K.

Theorem 4.3. Let X,Y be two Hausdorff locally convex topological vector spaces and K
be a nonempty closed convex subset of X. Let D ⊂ K be a self segment dense set. Let
F : K ×K → 2Y be set-valued map satisfying the following conditions:

(i) for all x ∈ D, F (x, x) = {0} ,
(ii) F is C-strongly pseudomonotone,
(iii) for any fixed x, y ∈ K, the mapping g(t) := F (ty + (1 − t)x, y), t ∈ [0, 1], is

(−C)-l.s.c at t = 0+,
(iv) for all x ∈ D, F (x, .) is C-convex on K,
(v) for all y ∈ D,F (., y) C-lower semicontinuous on K,

(vi) for all x ∈ K,F (x, .) C-lower semicontinuous on K \D,
(vii) there exists a nonempty compact convex subset K0 ⊂ X such that, for each x0 ∈

K \K0, there exists some y0 ∈ D ∩K0 such that F (y0, x0) ⊆ C \ {0} .
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Then, there exists x0 ∈ K such that

F (x0, y) 6⊆ −C \ {0} ,∀y ∈ K.

Proof. Define set-valued maps A,B : D → 2K by

A(y) := {x ∈ K : F (x, y) 6⊆ −C \ {0}} ,∀y ∈ D.
and

B(y) := {x ∈ K : F (y, x) ⊆ −C} ,∀y ∈ D.
Clearly, for all y ∈ D both A(y) and B(y) are nonempty.
Thus, by Theorem 4.2, both A and B are KKM-mapping. Also by Lemma 3.1, we have⋂

y∈D

A(y) =
⋂
y∈D

B(y). (4.3)

Since F is C-lower semicontinuous in the first argument and hence by Lemma 2.5, we
conclude that B(y) is closed, ∀y ∈ D.
Claim: B(y0) ⊂ K0, where y0 ∈ K0, as in assumption (vii). If possible, let us suppose
that B(y0) 6⊂ K0. Then, there exists x0 ∈ B(y0) such that x0 6∈ K0. It means that
F (y0, x0) ⊆ −C, x0 6∈ K0, a contradiction to assumption (vii). Hence B(y0) ⊂ K0 and
so B(y0) is compact. Since B(y) is closed for all y ∈ K and compact for some y0 ∈ K.
Hence by Fan Lemma 2.7, we have⋂

y∈D

B(y) 6= φ.

From (4.3), we have⋂
y∈D

A(y) 6= φ.

Hence, there exists x0 ∈ K0 such that

F (x0, y) 6⊆ −C \ {0} ,∀y ∈ D.
By Lemma 3.1, there exists x0 ∈ K0 such that

F (y, x0) ⊆ −C, ∀y ∈ D. (4.4)

To complete the proof, we need to show that there exists x0 ∈ K0 such that

F (y, x0) ⊆ −C, ∀y ∈ K.
If possible, let us assume that there exists y0 ∈ K \D such that

F (y0, x0) 6⊆ −C.

⇒ F (y0, x0) ⊆ Y \ −C.
Since F is C-lower semicontinuous in the first argument and Y \−C is open in Y. Therefore,
there exists a neighborhood U of y0 such that

F (y, x0) ∩ (Y \ −C + C) 6= φ, ∀y ∈ U.

⇒ F (y, x0) ∩ (Y \ −C) 6= φ, ∀y ∈ U.
Since D is dense in K, so there exists y1 ∈ U ∩D such that F (y1, x0) ∩ (Y \ −C) 6= φ, a
contradiction to (4.4). Thus, there exists x0 ∈ K0 such that

F (y, x0) ⊆ −C, ∀y ∈ K.
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Hence, by Lemma 3.1, there exists x0 ∈ K0 such that

F (x0, y) 6⊆ −C \ {0} ,∀y ∈ K.
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