Common Fixed Point Results for (α, β)-orbital-cyclic Admissible Triplet in Extended b-metric Spaces

Nehjamang Haokip ${ }^{1, *}$, Nilakshi Goswami ${ }^{1}$ and Binod Chandra Tripathy ${ }^{2}$
${ }^{1}$ Department of Mathematics, Gauhati University, Guwahati - 14, India
e-mail : mark02mm@yahoo.co.in (N. Haokip); nila_g2003@yahoo.co.in (N. Goswami)
${ }^{2}$ Department of Mathematics, Tripura University, Agartala - 22, India
e-mail : tripathybc@yahoo.com

Abstract

In this paper, we derive a common fixed point result for a class of contractive mappings which is a generalization of the contractive condition given in [1]. A convergence result for an iteration scheme is also obtained for such mappings. Suitable examples have been provided in support of the results obtained.

MSC: 47H10; 54E50
Keywords: extended b-metric space; (α, β)-orbital-cyclic admissible triplet; contractive mapping

Submission date: 30.04 .2019 / Acceptance date: 15.09.2020

1. Introduction

There have been numerous attempts to generalize the Banach Contraction Principle of 1922 by either considering a more generalized space or a more generalized (or different) contractive condition or both (one may refer to [5, 7, 8, 10, 11, 14, 17, 19, 22, 26, 27, 30-32], and the references therein).

The notion of b-metric spaces is also a consequence of an attempt to generalize the Banach Contraction Principle to a more generalized space. Many authors have contributed to the fixed point theory in b-metric spaces (one may refer to $[12,13,18,23,25]$ and the references therein).

In 2017, the notion of extended b-metric, which is a generalization of a b-metric was introduced by Kamran et al. [16]. In 2018, Alqahtani et al. [1] proved a common fixed point result for a pair of mappings in an extended b-metric space. In this paper, we obtain a common fixed point result for a triplet of mappings from which we derive the main result of [1] as a corollary. An iteration scheme for the triplet of mappings is also defined and its convergence is studied. Lastly, the rate of convergence of the new iteration is compared to a known iteration scheme to show that the new iteration scheme converge faster to the common fixed point.

[^0]
2. Preliminaries

In this section, we reproduce and introduce some definitions which will be used in our main results.

Definition 2.1. [6] Let X be a nonempty set and $s \geq 1$ be a given real number. A function $d: X \times X \longrightarrow[0, \infty)$ is called a b-metric if it satisfies the following properties.
(1) $d(x, y)=0$ if and only if $x=y$;
(2) $d(x, y)=d(y, x)$; and
(3) $d(x, z) \leq s\{d(x, y)+d(y, z)\}$, for all $x, y, z \in X$.

The pair (X, d) is called a b-metric space with coefficient s.
Definition 2.2. [20] Let (X, d) be a b-metric space and $\left\{x_{n}\right\}$ be a sequence in X. Then we say $\left\{x_{n}\right\}$ converges to x if and only if $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$, denoted by $\lim _{n \rightarrow \infty} x_{n}=x$; $\left\{x_{n}\right\}$ is said to be a Cauchy sequence if and only if $\lim _{m, n \rightarrow \infty} d\left(x_{m}, x_{n}\right)=0$; and (X, d) is said to be complete if and only if every Cauchy sequence is convergent.

Definition 2.3. [20] Let (X, d) be a b-metric space. A mapping $T: X \longrightarrow X$ is said to be continuous at a point $x \in X$ if for every sequence $\left\{x_{n}\right\}$ converging to x, we have

$$
\lim _{n \rightarrow \infty} T x_{n}=T x
$$

T is said to be continuous in X if it is continuous at all points of X.
A b-metric need not be continuous, one may refer to Example 2 in [25].
In 2017, Kamran et al. [16] introduced a generalized form of b-metric space and proved some fixed point theorems.

Definition 2.4. [16] Let X be a nonempty set and $\mu: X \times X \longrightarrow[1, \infty)$. An extended b-metric is a function $d_{\mu}: X \times X \longrightarrow[0, \infty)$ such that for all $x, y, z \in X$

$$
\begin{aligned}
& \left(d_{\mu} 1\right) d_{\mu}(x, y)=0 \text { if and only if } x=y \\
& \left(d_{\mu} 2\right) d_{\mu}(x, y)=d_{\mu}(y, x) \\
& \left(d_{\mu} 3\right) d_{\mu}(x, y) \leq \mu(x, y)\left(d_{\mu}(x, z)+d_{\mu}(z, y)\right)
\end{aligned}
$$

The pair $\left(X, d_{\mu}\right)$ is called an extended b-metric space.
Example 2.5. Let $X=[-1,1]$ and $\mu: X \times X \longrightarrow[1, \infty)$ be defined by $\mu(x, y)=\frac{1+x^{2}+y^{2}}{x^{2}+y^{2}}$. Define $d_{\mu}: X \times X \longrightarrow[0, \infty)$ as follows.

$$
\begin{aligned}
& d_{\mu}(x, y)=0 \quad \text { if and only if } x=y \\
& d_{\mu}(x, 0)=d_{\mu}(0, x)=\frac{1}{x^{2}} \quad \text { if } x \neq 0 \\
& d_{\mu}(x, y)=\frac{1}{x^{2} y^{2}} \quad \text { if } \quad 0 \neq x \neq y \neq 0
\end{aligned}
$$

Then it can be easily checked that d_{μ} defines an extended b-metric on X.
We note here that if $\mu(x, y)=s$ for some $s \geq 1$, then we get the definition of a b-metric space. The notion of convergence, completeness and continuity in b-metric spaces can as well be extended to the extended b-metric space. Then regardless of the continuity of d_{μ}, a convergent sequence in a b-metric space have a unique limit. Then the result of [16] may be restated as follows.

Theorem 2.6. [16] Let $\left(X, d_{\mu}\right)$ be an extended b-metric space and $T: X \longrightarrow X$ be a mapping such that for all $x, y \in X$

$$
\begin{equation*}
d_{\mu}(T x, T y) \leq d_{\mu}(x, y) \tag{2.1}
\end{equation*}
$$

where $0 \leq k<1$ is such that, for each $x_{0} \in X, \lim _{m, n \rightarrow \infty}\left(x_{m}, x_{n}\right)<\frac{1}{k}$ and $x_{n}=T^{n} x_{0}$, $n=1,2, \ldots$ Then T has a unique fixed point w in X. Moreover, for each $x \in X$, $T^{n} x \longrightarrow w$.

Following the definition of (α, β)-orbital-cyclic admissible pair given by Alqahtani et al. [1], we define the following.
Definition 2.7. Let f, S and T be self maps on a complete extended b-metric space $\left(X, d_{\mu}\right)$ with f injective and $\alpha, \beta: X \times X \longrightarrow[0, \infty)$ be two mappings such that for any $x \in X$

$$
\left.\begin{array}{rl}
\alpha(f x, f T x) & \geq 1 \tag{2.2}\\
\beta(f x, f S x) & \geq 1 \Longrightarrow \alpha(f T x, f S T x) \geq 1 \\
\Longrightarrow \alpha(f S x, f T S x) & \geq 1
\end{array}\right\}
$$

Then f, S and T are said to be (α, β)-orbital-cyclic admissible triplet.
The following notion of Banach operator pair will be used in this paper. It was first introduced by Subrahmanyam [28] and extended by Chen and Li [4] and, Öztürk and Başarir [21].

Definition 2.8. [21] Let f and T be self mappings on an extended b-metric space (X, d_{μ}). Then the pair (f, T) is said to be a Banach operator pair if for some $k \geq 0$,

$$
d_{\mu}(f T x, T x) \leq k d_{\mu}(T x, x) \quad \text { for all } x \in X
$$

We make a note here that if the pair (f, T) is a Banach operator pair, then f and T commutes on the set $F(T)$ of the fixed points of T (one may refer to Proposition 2.2 [4]).

We now state the following terminology for use in our main results.
Definition 2.9. Let T and f be self mappings on an extended b-metric space $\left(X, d_{\mu}\right)$. T is said to be Cauchy-commutative with respect to f, if for any sequence $\left\{x_{n}\right\}$ in X such that $\left\{f x_{n}\right\}$ is a Cauchy sequence, $f T x=T f x$ for each x in $\left\{x_{n}\right\}$.
Definition 2.10. A function $\phi:[0, \infty) \longrightarrow[0, \infty)$ is called a subadditive altering distance function if
(i) $\phi(x+y) \leq \phi(x)+\phi(y) \quad \forall x, y \in[0, \infty)$
(ii) ϕ is an altering distance function [9], (i.e., ϕ is continuous, strictly increasing and $\phi(t)=0$ if and only if $t=0$)
Example 2.11. [13] It can be easily seen that the functions $\phi_{1}(x)=k x$ for some $k \geq 1$, $\phi_{2}(x)=\sqrt[n]{x}, n \in \mathbb{N}, \phi_{3}(x)=\log (1+x), x \geq 0$ and $\phi_{4}(x)=\tan ^{-1} x$ are such subadditive altering distance functions.

3. Main Results

Assuming the continuity of d_{μ}, we first prove a generalization of the result obtained in [1]. The following lemma follows from the proof of Lemma 2 of [2] from the fact that ϕ is a subadditive altering distance function.

For a real number $\theta \geq 0$, let θ^{*} be the least integer $\geq \theta$.

Lemma 3.1. Let $\left(X, d_{\mu}\right)$ be an extended b-metric space. Suppose there exists $q \in[0,1)$ such that for an arbitrary $x_{0} \in X$, the sequence $\left\{x_{n}\right\}$ satisfies

$$
\lim _{n, m \rightarrow \infty} \mu\left(x_{n}, x_{m}\right)^{*}<\frac{1}{q} \quad \text { and } \quad \phi\left(d_{\mu}\left(x_{n+1}, x_{n}\right)\right) \leq q \phi\left(d_{\mu}\left(x_{n}, x_{n-1}\right)\right)
$$

for all positive integer n, then $\left\{x_{n}\right\}$ is a Cauchy sequence in X.
Remark 3.2. If ϕ is the identity mapping on $[0, \infty)$, then as seen in Lemma 2.1 of [1], the condition $\lim _{n, m \rightarrow \infty} \mu\left(x_{n}, x_{m}\right)^{*}<\frac{1}{q}$ in Lemma 3.1 (and consequently in the proof of the following theorems) may be replaced by $\lim _{n, m \rightarrow \infty} \mu\left(x_{n}, x_{m}\right)<\frac{1}{q}$.
Theorem 3.3. Let $\left(X, d_{\mu}\right)$ be a complete extended b-metric space and $f, S, T: X \longrightarrow X$ be (α, β)-orbital-cyclic admissible triplet on X. Let (f, S) and (f, T) be Banach operator pairs such that for all $x, y \in X$

$$
\begin{align*}
\alpha(f x, f T x) \beta(f y, f S y) \phi\left(d_{\mu}(f T x, f S y)\right) \leq & k_{1} \phi\left(d_{\mu}(f x, f y)\right)+k_{2} \phi\left(d_{\mu}(f x, f T x)\right) \\
& +k_{3} \phi\left(d_{\mu}(f y, f S y)\right) \tag{3.1}
\end{align*}
$$

for some $k_{1}, k_{3} \geq 0, k_{2}>0$ and $k_{1}+k_{2}+k_{3}<1$. Suppose that there exists $x_{0} \in X$ such that $\alpha\left(f x_{0}, f T x_{0}\right) \geq 1$. Let for each $x_{0} \in X, \lim _{n, m \rightarrow \infty} \mu\left(f x_{n}, f x_{m}\right)^{*}<\frac{1-k_{3}}{k_{1}+k_{2}}$, where $x_{2 n-1}=T x_{2 n-2}$ and $x_{2 n}=S x_{2 n-1}$ for all positive integers n.
(a) f, S and T have a unique common fixed point, if S and T are continuous and Cauchy commutative with respect to f, and $\alpha(f z, f z) \geq 1$ for $z \in C F(S, T)$, where $\operatorname{CF}(S, T)$ denotes the set of common fixed points of S and T.
(b) f, S and T have a unique common fixed point if f is continuous and $\left\{x_{n}\right\} \subseteq X$ is a sequence such that $\lim _{n \rightarrow \infty} x_{n}=z$, then $\alpha(f z, f T z) \geq 1$ and $\beta(f z, f S z) \geq 1$.
Proof. By the given condition, there exists x_{0} in X with $\alpha\left(f x_{0}, f T x_{0}\right) \geq 1$. Taking $x_{1}=T x_{0}, x_{2}=S x_{1}$, and inductively we construct a sequence $\left\{x_{n}\right\}$, where

$$
\begin{equation*}
x_{2 n-1}=T x_{2 n-2} \quad \text { and } \quad x_{2 n}=S x_{2 n-1}, \quad n=1,2,3, \ldots \tag{3.2}
\end{equation*}
$$

Since f, S and T are (α, β)-orbital-cyclic admissible triplet, we get (as in [1]),

$$
\begin{equation*}
\alpha\left(f x_{2 n}, f x_{2 n+1}\right) \geq 1 \quad \text { and } \quad \beta\left(f x_{2 n+1}, f x_{2 n+2}\right) \geq 1 \quad n=0,1,2, \ldots \tag{3.3}
\end{equation*}
$$

We assume, without loss of generality, that $x_{n} \neq x_{n+1}$ for all non-negative integers n. Because, if $x_{n_{0}}=x_{n_{0}+1}$ for some non-negative integer n_{0}, then by our choice of the sequence $\left\{x_{n}\right\}$, we can show that $w=x_{n_{0}}$ is a common fixed point of f, S and T and the proof is complete.

For this, we consider the following two cases for n_{0}.
If n_{0} is even, say, $n_{0}=2 p$, then $x_{2 p}=x_{2 p+1}=T x_{2 p}$ and $x_{2 p}$ is a fixed point of T. Since (f, T) is a Banach operator pair, we have for some $k \geq 0$,

$$
d_{\mu}\left(f x_{2 p}, x_{2 p}\right)=d_{\mu}\left(f T x_{2 p}, T x_{2 p}\right) \leq k d_{\mu}\left(T x_{2 p}, x_{2 p}\right)=0
$$

showing that $x_{2 p}$ is also a fixed point of f.
We also claim that $x_{2 p}=x_{2 p+1}=T x_{2 p}=S x_{2 p+1}$. Suppose the contrary that $T x_{2 p} \neq$ $S x_{2 p+1}$. Then taking $x=x_{2 p}$ and $y=x_{2 p+1}$ in (3.1), and using (3.2) and (3.3) we have,

$$
\phi\left(d_{\mu}\left(f T x_{2 p}, f S x_{2 p+1}\right)\right) \leq k_{3} \phi\left(d_{\mu}\left(f T x_{2 p}, f S x_{2 p+1}\right)\right) .
$$

Since ϕ is subadditive altering distance function and $k_{3}<1$, this implies

$$
d_{\mu}\left(f T x_{2 p}, f S x_{2 p+1}\right)<d_{\mu}\left(f T x_{2 p}, f S x_{2 p+1}\right),
$$

a contradiction.
Hence $d_{\mu}\left(T x_{2 p}, S x_{2 p+1}\right)=0$ and $x_{2 p}=x_{2 p+1}=T x_{2 p}=S x_{2 p+1}$ so that $x_{2 p}=x_{2 p+1}=$ w is a common fixed point of f, S and T.

Similarly, we get an analogous result for the case when n_{0} is odd, that is, $n_{0}=2 p+1$.
Thus we assume that $x_{n} \neq x_{n+1}$ for all non-negative integers n.
We now show that $\left\{f x_{n}\right\}$ is a Cauchy sequence. For doing the same, it is sufficient to consider the cases when $x=x_{2 n}, y=x_{2 n+1}$ and $x=x_{2 n}, y=x_{2 n-1}$.
Case (i) Let $x=x_{2 n}$ and $y=x_{2 n+1}$. By (3.1) and (3.3), we have,

$$
\phi\left(d_{\mu}\left(f x_{2 n+1}, f x_{2 n+2}\right)\right)=\phi\left(d_{\mu}\left(f T x_{2 n}, f S x_{2 n+1}\right)\right) \leq q \phi\left(d_{\mu}\left(f x_{2 n}, f x_{2 n+1}\right)\right)
$$

where $q=\frac{k_{1}+k_{2}}{1-k_{3}}<1$ and $n=0,1,2, \ldots$.
Case (ii) Let $x=x_{2 n}$ and $y=x_{2 n-1}$. Similarly, as in the above case, we get,

$$
\phi\left(d_{\mu}\left(f x_{2 n}, f x_{2 n+1}\right)\right) \leq q \phi\left(d_{\mu}\left(f x_{2 n-1}, f x_{2 n}\right)\right)
$$

Therefore, from the above two cases we have, for all $n \in \mathbb{N}$,

$$
\phi\left(d_{\mu}\left(f x_{n}, f x_{n+1}\right)\right) \leq q \phi\left(d_{\mu}\left(f x_{n-1}, f x_{n}\right)\right)
$$

Hence by Lemma 3.1, $\left\{f x_{n}\right\}$ is a Cauchy sequence in X and there exists $w \in X$ such that $\lim _{n \rightarrow \infty} f x_{n}=w$, and consequently

$$
\lim _{n \rightarrow \infty} f x_{2 n}=w \quad \text { and } \quad \lim _{n \rightarrow \infty} f x_{2 n+1}=w
$$

(a) Now, since S and T are continuous and Cauchy commutative with respect to f, we have,

$$
\begin{aligned}
& S w=S\left(\lim _{n \rightarrow \infty} f x_{2 n-1}\right)=\lim _{n \rightarrow \infty} S f x_{2 n-1}=\lim _{n \rightarrow \infty} f S x_{2 n-1}=\lim _{n \rightarrow \infty} f x_{2 n}=w, \\
& T w=T\left(\lim _{n \rightarrow \infty} f x_{2 n}\right)=\lim _{n \rightarrow \infty} T f x_{2 n}=\lim _{n \rightarrow \infty} f T x_{2 n}=\lim _{n \rightarrow \infty} f x_{2 n-1}=w,
\end{aligned}
$$

showing that w is a common fixed point of S and T.
If w^{\prime} is another common fixed point of S and T, then $w, w^{\prime} \in C F(S, T)$. So, $\alpha(f w, f w) \geq$ 1 and $\alpha\left(f w^{\prime}, f w^{\prime}\right) \geq 1$. Then $\alpha(f w, f T w)=\alpha(f w, f w) \geq 1$ and $\beta\left(f w^{\prime}, f S w^{\prime}\right)=$ $\beta\left(f w^{\prime}, f w^{\prime}\right) \geq 1$ (since $\alpha(f x, f T x) \geq 1$ implies $\beta(f T x, f S T x) \geq 1$). And, using (3.1),

$$
\phi\left(d_{\mu}\left(f w, f w^{\prime}\right)\right)=\phi\left(d_{\mu}\left(f w, f w^{\prime}\right)\right) \leq k_{1} \phi\left(d_{\mu}\left(f w, f w^{\prime}\right)\right),
$$

which is possible only if $f w=f w^{\prime}$. Since f is injective, we have $w=w^{\prime}$. Thus the common fixed point of S and T is unique.

Since (f, S) and (f, T) are Banach operator pairs, f commute with S and T at the fixed points of S and T, respectively. This implies $f S w=S f w$ for $w \in F(S)$, that is, $f w=S f w$, showing that $f w$ is another fixed point of S. Similarly, $f w$ is also another fixed point of T, and hence a common fixed point of S and T.

Since the common fixed point of S and T is unique, we have $f w=w$, showing that w is a fixed point of f. Thus f, S and T have a common fixed point w, which is unique.
(b) Now considering the alternate hypothesis that $\left\{x_{n}\right\} \subseteq X$ be a sequence with $\lim _{n \rightarrow \infty} x_{n}=z$ implies $\alpha(f z, f T z) \geq 1$ and $\beta(f z, f S z) \geq 1$, we shall show that z is a unique common fixed point of f, S and T.

Taking $x=z$ and $y=x_{2 n+1}$ in (3.1) and using (3.3), we get,

$$
\begin{aligned}
\phi\left(d_{\mu}\left(f T z, f x_{2 n+2}\right)\right) \leq k_{1} \phi & \left(d_{\mu}\left(f z, f x_{2 n+1}\right)\right)+k_{2} \phi\left(d_{\mu}(f z, f T z)\right) \\
& +k_{3} \phi\left(d_{\mu}\left(f x_{2 n+1}, f x_{2 n+2}\right)\right) .
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$, we get $\phi\left(d_{\mu}(f T z, f z)\right) \leq k_{2} \phi\left(d_{\mu}(f z, f T z)\right)$ and since $k_{2}<1$, this implies $f z=f T z$ or $z=T z$.

In a similar manner, taking $x=x_{2 n}$ and $y=z$ in (3.1) and using (3.3), we get $z=S z$, showing that z is a common fixed point of S and T. The rest is analogous to the above proof of (a).

Taking $k_{1}=0, k_{2}=k_{3}=k$, and ϕ and f as the identity mapping in Theorem 3.3, we get a similar result given in Theorem 2.1 of [1] as a corollary.
Corollary 3.4. [1] Let S, T be two self-mappings on a complete extended b-metric space (X, d_{μ}) such that the pair S, T forms an (α, β)-orbital-cyclic admissible pair satisfying

$$
\alpha(x, T x) \beta(y, S y) d_{\mu}(T x, S y) \leq k\left\{d_{\mu}(x, T x)+d_{\mu}(y, S y)\right\}
$$

for some $0<k<\frac{1}{2}$. Suppose that there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq 1$. Let for each $x_{0} \in X, \lim _{n, m \rightarrow \infty} \mu\left(x_{n}, x_{m}\right)^{*}<\frac{1-k}{k}$, where $x_{2 n-1}=T x_{2 n-2}$ and $x_{2 n}=S x_{2 n-1}$ for all positive integers n.
(a) S and T have a unique common fixed point, if S and T are continuous and for $z \in C F(S, T), \alpha(z, z) \geq 1$, where $C F(S, T)$ denotes the set of common fixed points of S and T.
(b) S and T have a unique common fixed point, if $\left\{x_{n}\right\} \subseteq X$ is a sequence with $\lim _{n \rightarrow \infty} x_{n}=w$ implies $\alpha(w, T w) \geq 1$ and $\beta(w, S w) \geq 1$.
Example 3.5. Let $X=[0,1]$ and $\mu: X \times X \longrightarrow[1, \infty)$ and $d_{\mu}: X \times X \longrightarrow[0, \infty)$ be defined by

$$
\mu(x, y)=\left\{\begin{array}{ll}
\frac{1+x+y}{x+y}, & x+y \neq 0 \\
1, & x+y=0
\end{array} \text { and } d_{\mu}(x, y)= \begin{cases}0, & x=y \\
d_{\mu}(x, 0)=\frac{1}{x}, & x \neq 0 \\
\frac{1}{x y}, & x y \neq 0\end{cases}\right.
$$

respectively. Then $\left(X, d_{\mu}\right)$ is an extended b-metric space [1].
Consider the mappings $f, S, T: X \longrightarrow X$ defined by $f x=x$,

$$
S x=\left\{\begin{array}{ll}
1, & \text { if } x=\frac{1}{4}, \frac{3}{4} \\
\frac{x+1}{2}, & \text { otherwise }
\end{array} \quad \text { and } \quad T x= \begin{cases}1, & \text { if } x=\frac{1}{2}, \frac{3}{4} \\
\frac{2 x+1}{3}, & \text { otherwise }\end{cases}\right.
$$

respectively. Also, let $\alpha, \beta: X \times X \longrightarrow[0, \infty)$ be defined by

$$
\alpha(x, y)= \begin{cases}1, & \text { if }(x, y) \in\left\{(1,1),\left(\frac{3}{4}, 1\right),\left(\frac{1}{2}, 1\right),\left(\frac{1}{4}, \frac{1}{2}\right)\right\} \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
\beta(x, y)= \begin{cases}1, & \text { if }(x, y) \in\left\{(1,1),\left(\frac{3}{4}, 1\right),\left(\frac{1}{4}, 1\right),\left(\frac{1}{2}, \frac{3}{4}\right)\right\} \\ 0, & \text { otherwise }\end{cases}
$$

respectively.

Then it can be easily checked that f, S and T form an (α, β)-orbital-cyclic admissible triplet. We also note that $x=1$ is the only common fixed point of S and T, with $\alpha(f 1, f T 1) \geq 1$ and $\beta(f 1, f S 1) \geq 1$.

Let ϕ be the identity mapping. If $x_{0}=1, \frac{1}{2}$ or $\frac{3}{4}$, then $x_{n}=1$ for all n, and so,

$$
\lim _{n, m \rightarrow \infty} \mu\left(f x_{n}, f x_{m}\right)=\frac{3}{2}<\frac{8}{5}=\frac{1-k_{3}}{k_{1}+k_{2}}
$$

where $k_{1}=\frac{1}{16}, k_{2}=\frac{1}{4}$ and $k_{3}=\frac{1}{2}$.
On the other hand, if $x_{0} \neq 1, \frac{1}{2}$ or $\frac{3}{4}$, then for all $n=1,2,3, \ldots$

$$
x_{2 n-1}=\frac{1}{3^{n}}\left(2 x_{0}+1\right)+2 \sum_{k=1}^{n-1}\left(\frac{1}{3}\right)^{k} \text { and } x_{2 n}=\frac{1}{3^{n}}\left(x_{0}+\frac{1}{2}\right)+\frac{1}{2}+\sum_{k=1}^{n-1}\left(\frac{1}{3}\right)^{k}
$$

Since $\lim _{n \rightarrow \infty} x_{2 n-1}=1$ and $\lim _{n \rightarrow \infty} x_{2 n}=1$, that is, $\lim _{n \rightarrow \infty} x_{n}=1$ for all $n=$ $1,2,3, \ldots$, we get in this case too,

$$
\lim _{n, m \rightarrow \infty} \mu\left(f x_{n}, f x_{m}\right)=\frac{3}{2}<\frac{1-k_{3}}{k_{1}+k_{2}} .
$$

We also note that for any x_{0} in X, the sequence $\left\{x_{n}\right\}$ as defined above is such that $\lim _{n \rightarrow \infty} x_{n}=1$ with $\alpha(f 1, f T 1) \geq 1$ and $\beta(f 1, f S 1) \geq 1$.

Since $\alpha(x, y)=0$ except at the points $(1,1),\left(\frac{3}{4}, 1\right),\left(\frac{1}{2}, 1\right)$ and $\left(\frac{1}{4}, \frac{1}{2}\right) ;$ and $\beta(x, y)=0$ except at the points $(1,1),\left(\frac{3}{4}, 1\right),\left(\frac{1}{4}, 1\right)$ and $\left(\frac{1}{2}, \frac{3}{4}\right)$, one can easily check that f, S and T satisfy (3.1) and thus by Theorem 3.3, f, S and T have a unique common fixed point, $x=1$.

When $S=T$ in Definition 2.7, T is then said to be (α, β)-orbital-cyclic admissible mapping with respect to f.

Corollary 3.6. Let $\left(X, d_{\mu}\right)$ be a complete extended b-metric space and $T: X \longrightarrow X$ be (α, β)-orbital-cyclic admissible mapping with respect to f, and (f, T) be a Banach operator pair such that for all $x, y \in X$

$$
\begin{align*}
\alpha(f x, f T x) \beta(f y, f T y) & \phi\left(d_{\mu}(f T x, f T y)\right) \leq k_{1} \phi\left(d_{\mu}(f x, f y)\right) \\
& +k_{2} \phi\left(d_{\mu}(f x, f T x)\right)+k_{3} \phi\left(d_{\mu}(f y, f T y)\right) \tag{3.4}
\end{align*}
$$

for some $k_{1}, k_{3} \geq 0, k_{2}>0$ and $k_{1}+k_{2}+k_{3}<1$. Suppose that there exists $x_{0} \in X$ such that $\alpha\left(f x_{0}, f T x_{0}\right) \geq 1$. Let for each $x_{0} \in X, \lim _{n, m \rightarrow \infty} d_{\mu}\left(f x_{n}, f x_{m}\right)^{*}<\frac{1-k_{3}}{k_{1}+k_{2}}$, where $x_{2 n-1}=T x_{2 n-2}$ and $x_{2 n}=S x_{2 n-1}$ for positive integers n.
(a) f and T have a unique common fixed point, if T is continuous and Cauchy commutative with respect to f, and for $z \in F(T), \alpha(f z, f z) \geq 1$, where $F(T)$ denotes the set of fixed points of T.
(b) f and T have a unique common fixed point if f is continuous and $\left\{x_{n}\right\}$ is a sequence in X with $\lim _{n \rightarrow \infty} x_{n}=z$ implies $\alpha(f z, f T z) \geq 1$.

Proof. The proof follows from Theorem 3.3 by taking $S=T$.
Example 3.7. Let $X=[0,1]$ and define $d_{\mu}: X \times X \longrightarrow[0, \infty)$ and $\mu: X \times X \longrightarrow[1, \infty)$ by $d_{\mu}(x, y)=|x-y|$ and $\mu(x, y)=1+x+y$, respectively for all $x, y \in X$. Consider the mappings $f, T: X \longrightarrow X$ defined respectively by

$$
f x=x \quad \text { and } \quad T x=\frac{x}{4}, \quad \text { for all } \quad x \in X
$$

Consider the mappings $\alpha, \beta: X \times X \longrightarrow[0, \infty)$ defined by

$$
\alpha(x, y)=\beta(x, y)= \begin{cases}1, & x, y \in\left[0, \frac{1}{2}\right] \\ 0, & \text { otherwise }\end{cases}
$$

Then T is an (α, β)-orbital-cyclic admissible pair with respect to f. To see this, let $x \in X$ be such that $\alpha(f x, f T x) \geq 1$ and $\beta(f x, f T x) \geq 1$. Then $f x, f T x \in\left[0, \frac{1}{2}\right]$, i.e., x must be in $\left[0, \frac{1}{2}\right]$. Now, if $x \in\left[0, \frac{1}{2}\right]$, then $f T x=\frac{x}{4} \leq \frac{1}{2}$ and $f T^{2} x=\frac{x}{16} \leq \frac{1}{2}$, which implies $\alpha\left(f T x, f T^{2} x\right)=1$ and $\beta\left(f T x, f T^{2} x\right)=1$.

Clearly, for $x_{0}=\frac{1}{3}$, say, $\alpha\left(f x_{0}, f T x_{0}\right)=\alpha\left(\frac{1}{3}, \frac{1}{12}\right)=1$.
Again, for each $x_{0} \in X, x_{n}=T^{n} x_{0}=\frac{x_{0}}{4^{n}}$ for all positive integers n. So, we have,

$$
\lim _{n, m \rightarrow \infty} \mu\left(x_{n}, x_{m}\right)^{*}=1<\frac{1-k_{3}}{k_{1}+k_{2}},
$$

where $k_{1}=\frac{1}{4}, k_{2}=\frac{1}{3}$ and $k_{3}=\frac{1}{3}$.
Now, for $x, y \in\left[0, \frac{1}{2}\right]$, with $\phi(x)=x$ we have,

$$
\begin{aligned}
& \alpha(f x, f T x) \beta(f y, f T y) \phi\left(d_{\mu}(f T x, f T y)\right)=\frac{1}{4}|x-y| \leq \frac{1}{4}|x-y|+\frac{|x|}{4}+\frac{|y|}{4} \\
& \quad=k_{1} \phi\left(d_{\mu}(f x, f y)\right)+k_{2} \phi\left(d_{\mu}(f x, f T x)\right)+k_{3} \phi\left(d_{\mu}(f y, f T y)\right) .
\end{aligned}
$$

For $x, y \in\left(\frac{1}{2}, 1\right], \alpha(f x, f T x)=\alpha\left(x, \frac{x}{4}\right)=0$ and the inequality (3.4) follows trivially.
Again, for $x \in\left[0, \frac{1}{2}\right]$ and $y \in\left(\frac{1}{2}, 1\right], \beta(f y, f T y)=\beta\left(y, \frac{y}{4}\right)=0$ and the inequality (3.4) follows trivially.

Hence by Corollary 3.6, T has a unique fixed point $x=0$.
Corollary 3.8. Let $\left(X, d_{\mu}\right)$ be a complete extended b-metric space and $T: X \longrightarrow X$ be a mapping satisfying

$$
\begin{equation*}
\phi\left(d_{\mu}(T x, T y)\right) \leq k_{1} \phi\left(d_{\mu}(x, y)\right)+k_{2} \phi\left(d_{\mu}(x, T x)\right)+k_{3} \phi\left(d_{\mu}(y, T y)\right) \tag{3.5}
\end{equation*}
$$

for some $k_{1}, k_{3} \geq 0, k_{2}>0$ and $k_{1}+k_{2}+k_{3}<1$.
Let for each $\bar{x}_{0} \in X, \lim _{n, m \rightarrow \infty} d_{\mu}\left(x_{n}, x_{m}\right)^{*}<\frac{1-k_{3}}{k_{1}+k_{2}}$, where $x_{n}=T x_{n-1}$ for $n \in \mathbb{N}$. Then T have a unique fixed point.
Proof. The proof follows from Corollary 3.6 (b) by taking $\alpha(x, y)=\beta(x, y)=1$ and $f x=x$ for all $x \in X$.

In [21], Öztürk and Başarir defined a self map T on a cone metric space X to have the property P if $F(T)=F\left(T^{n}\right)$ for all $n \in \mathbb{N}$. The same notion can as well be defined for an extended b-metric space.
Theorem 3.9. Let $\left(X, d_{\mu}\right)$ be a complete extended b-metric space and $T: X \longrightarrow X$ be (α, β)-orbital-cyclic admissible map with respect to f satisfying (3.4) for some $k_{1}, k_{3} \geq 0$, $k_{2}>0$ and $k_{1}+k_{2}+k_{3}<1$. If $\alpha(f x, f T x) \geq 1$ and $\beta(f x, f T x) \geq 1$ for all $x \in F(T)$, then T has property P.

Proof. Since $T u=u$ implies $T^{n} u=u$ for all $n \in \mathbb{N}$, it is sufficient to show that $F\left(T^{n}\right) \subseteq$ $F(T)$. Let $w \in F\left(T^{n}\right)$, then it is clear that $T w \in F\left(T^{n}\right)$.

Let if possible, $T w \neq w$. Then using (3.4),

$$
\phi\left(d_{\mu}\left(f T^{n+1} w, f T^{n+2} w\right)\right) \leq k^{\prime} \phi\left(d_{\mu}\left(f T^{n} w, f T^{n+1} w\right)\right)
$$

where $k^{\prime}=\frac{k_{1}+k_{2}}{1-k_{3}}<1$.
Since ϕ is subadditive altering distance function, for some $k<1$ we get,

$$
d_{\mu}\left(f T^{n+1} w, f T^{n+2} w\right) \leq k d_{\mu}\left(f T^{n} w, f T^{n+1} w\right)
$$

But then,

$$
\begin{aligned}
d_{\mu}\left(f T w, f T^{2} w\right) & =d_{\mu}\left(f T^{n+1} w, f T^{n+2} w\right) \leq \cdots \leq k^{n+1} d_{\mu}\left(f T w, f T^{2} w\right) \\
& <d_{\mu}\left(f T w, f T^{2} w\right)
\end{aligned}
$$

a contradiction.

3.1. Convergence of Iteration

In 1970, Takahashi [29] introduced the following concept of convex structure in a metric space.
Definition 3.10. [29] Let (X, d) be a metric space. A mapping $\mathcal{W}: X^{2} \times[0,1] \longrightarrow X$ satisfying

$$
d(z, \mathcal{W}(x, y, \alpha)) \leq \alpha d(z, x)+(1-\alpha) d(z, y)
$$

for all $x, y, z \in X$ and $\alpha \in[0,1]$ is called a convex structure on X.
The above notion of convex structure can as well be adopted naturally in extended b-metric space $\left(X, d_{\mu}\right)$ with the condition

$$
\begin{equation*}
\mu(x, y) d_{\mu}(z, \mathcal{W}(x, y, \alpha)) \leq \alpha d_{\mu}(z, x)+(1-\alpha) d_{\mu}(z, y) \tag{3.6}
\end{equation*}
$$

We now define an iteration process in a convex extended b-metric space and derive a strong convergence result for it.

Let $\left(X, d_{\mu}\right)$ be a convex extended b-metric space and f, S and T be self mappings on X. For $x_{0} \in X$, we define

$$
\left\{\begin{array}{l}
f x_{n+1}=\mathcal{W}\left(f z_{n}, f T y_{n}, \alpha_{n}\right) \tag{3.7}\\
f y_{n}=\mathcal{W}\left(f T z_{n}, f S z_{n}, \beta_{n}\right) \\
f z_{n}=f S x_{n}
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are real sequences in $(0,1)$.
Theorem 3.11. Let $\left(X, d_{\mu}\right)$ be a complete convex extended b-metric space and f, S, T : $X \longrightarrow X$ be self mappings on X satisfying the conditions of Theorem 3.3 for some $k_{1} \geq 0, k_{2}, k_{3}>0$ with $k_{1}+k_{2}+k_{3}<1$, so that f, S and T have a unique common fixed point. Let for all $x \in X, \mu(f x, f T x)^{*}<\frac{1-k_{1}}{2 k_{2}}$ and $\mu(f x, f S x)^{*}<\frac{1-k_{1}}{2 k_{3}}$. If in addition, $\alpha(f x, f T x) \geq 1$ and $\beta(f x, f S x) \geq 1$ for all $x \in X$, then the sequence $\left\{f x_{n}\right\}$ generated by (3.7) converges strongly to the common fixed point of f, S and T.

Proof. Using (3.1), we get,

$$
\phi\left(d_{\mu}(f T x, w)\right) \leq k \phi\left(d_{\mu}(f x, w)\right)
$$

where $k=\frac{k_{1}+k_{2} \mu(f x, f T x)^{*}}{1-k_{2} \mu(f x, f T x)^{*}}<1$.
This implies $d_{\mu}(f T x, w) \leq k^{\prime} d_{\mu}(f x, w)$, for some $k^{\prime}<1$ (since ϕ is subadditive altering distance function).

Similarly, $\phi\left(d_{\mu}(f S x, w)\right) \leq l \phi\left(d_{\mu}(f x, w)\right)$, where $l=\frac{k_{1}+k_{3} \mu(f x, f S x)^{*}}{1-k_{3} \mu(f x, f S x)^{*}}<1$ and as above, for some $l^{\prime}<1, d_{\mu}(f S x, w) \leq l^{\prime} d_{\mu}(f x, w)$.

Now, using (3.7) we get,

$$
d_{\mu}\left(f x_{n+1}, w\right)=d_{\mu}\left(\mathcal{W}\left(f z_{n}, f T y_{n}, \alpha_{n}\right), w\right) \leq l^{\prime} d_{\mu}\left(f x_{n}, w\right)
$$

Inductively, for any positive integer n, we get, $d_{\mu}\left(f x_{n}, w\right) \leq l^{\prime n} d_{\mu}\left(f x_{0}, w\right)$ and hence, in the limit as $n \rightarrow \infty, \lim _{n \rightarrow \infty} d_{\mu}\left(f x_{n}, w\right)=0$, as required.
Example 3.12. Consider the mappings f, S and T as given in Example 3.5 with $k_{1}=\frac{1}{4}$, $k_{2}=\frac{1}{3}, k_{3}=\frac{1}{3}$ and the extended b-metric space $\left(X, d_{\mu}\right)$ where $X=[0,1]$ and $d_{\mu}(x, y)=$ $|x-y|$, the usual metric with $\mu(x, y)=1$.

We note that $\left(X, d_{\mu}\right)$ is a convex extended b-metric space satisfying the conditions of Theorem 3.3. So, by Theorem 3.3, we get $x=1$ as the unique common fixed point of f, S and T.

Now, $\mathcal{W}: X^{3} \longrightarrow X$ given by

$$
\mathcal{W}(x, y, t)=t x+(1-t) y
$$

for all x, y and t in X defines a convex structure on X.
Table 1. Sequences generated by (3.8) with $x_{0}=0.65,0.45$ and 0.05

$\boldsymbol{x}_{\mathbf{0}}$	$x_{1}=0.90277$	$x_{2}=0.96836$	$x_{3}=0.98870$	$x_{4}=0.99571$	$x_{5}=0.9983$
$=\mathbf{0 . 6 5}$	$x_{6}=0.99930$	$x_{7}=0.99970$	$x_{8}=0.99987$	$x_{9}=0.99994$	$x_{10}=0.99997$
$\boldsymbol{x}_{\mathbf{0}}$	$x_{1}=0.84722$	$x_{2}=0.95028$	$x_{3}=0.98224$	$x_{4}=0.99326$	$x_{5}=0.99732$
$=\mathbf{0 . 4 5}$	$x_{6}=0.99890$	$x_{7}=0.99954$	$x_{8}=0.99980$	$x_{9}=0.99991$	$x_{10}=0.99996$

$\boldsymbol{x}_{\mathbf{0}}$	$x_{1}=0.73611$	$x_{2}=0.91413$	$x_{3}=0.96933$	$x_{4}=0.98835$	$x_{5}=0.99538$
$=\mathbf{0 . 0 5}$	$x_{6}=0.99811$	$x_{7}=0.99920$	$x_{8}=0.99966$	$x_{9}=0.99985$	$x_{10}=0.99993$

Figure 1. Sequences generated by (3.8) with $x_{0}=0.65,0.45$ and 0.05
The iteration scheme (3.7) then reduce to

$$
\begin{equation*}
x_{n+1}=\alpha_{n} S x_{n}+\left(1-\alpha_{n}\right) T\left(\beta_{n} T S x_{n}+\left(1-\beta_{n}\right) S^{2} x_{n}\right) \tag{3.8}
\end{equation*}
$$

Here, $\mu(x, y)=1<\frac{1-k_{1}}{2 k_{2}}=\frac{1-k_{1}}{2 k_{3}}=\frac{9}{8}$. Taking $\alpha_{n}=\frac{n+1}{n+5}$ and $\beta_{n}=\frac{n+2}{n+6}$, the sequences of iterates generated by the iteration scheme (3.8) are given in Table 1.

From the given tabulation and figure, it is clear that the sequence $\left\{x_{n}\right\}$ generated by (3.8) converges to 1.

Similarly, taking the points $x_{0}=0.45,0.05$ and generating the sequence defined by (3.8), we can see a convergence to the common fixed point 1.

3.2. Rate of Convergence

In 2002, following the works of Rhoades [24], Berinde [3] compared the rate of convergence between two iteration schemes as given below.

Let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be sequences of positive real numbers converging to α and β, respectively. Suppose that

$$
\lim _{n \rightarrow \infty} \frac{d\left(\alpha_{n}, \alpha\right)}{d\left(\beta_{n}, \beta\right)}=l
$$

(i) If $l=0$, then the sequence $\left\{\alpha_{n}\right\}$ is said to converge to α faster than that of the sequence $\left\{\beta_{n}\right\}$ to $\{\beta\}$.
(ii) If $0<l<\infty$, then the sequences $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are said to have the same rate of convergence.
For a nonempty convex subset K of a complete extended b-metric space X, if $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ are two iterations both of which converge to a p of X, then $\left\{x_{n}\right\}$ converges faster than $\left\{u_{n}\right\}$ to p if

$$
\lim _{n \rightarrow \infty} \frac{d\left(x_{n}, p\right)}{d\left(u_{n}, p\right)}=0
$$

We compare the rate of convergence of the iteration scheme (3.7) against that of the iteration scheme (3.2) following a similar method employed by Kadioglu and Yildirim [15]. The mapping $\mathcal{W}: X^{2} \times[0,1] \longrightarrow X$ given by

$$
\mathcal{W}(x, y, t)=t x+(1-t) y
$$

defines a convex structure on X.
Theorem 3.13. Let $\left(X, d_{\mu}\right)$ be a complete extended b-metric space and f, S and T be self mappings on X satisfying the conditions of Theorem 3.11 with ϕ and f as the identity mapping. Then the iteration scheme given by (3.7) with $0<\alpha \leq \alpha_{n}, \beta_{n}<$ $\beta \leq \frac{1}{2}$ converges faster than that of the iteration given by (3.2) if $m \leq \frac{1}{\sqrt{3}}$, where $m=$ $\max \{k(x), l(x): x \in X\}, k(x)=\frac{k_{1}+k_{2} \mu(f x, f T x)}{1-k_{2} \mu(f x, f T x)}$ and $l(x)=\frac{k_{1}+k_{3} \mu(f x, f S x)}{1-k_{3} \mu(f x, f S x)}$.

Proof. Since ϕ is the identity mapping, from Theorem 3.11, if w is a common fixed point of f, S and T, we have,

$$
d_{\mu}(f T x, w) \leq k(x) d_{\mu}(f x, w) \quad \text { and } \quad d_{\mu}(f S x, w) \leq l(x) d_{\mu}(f x, w)
$$

where $k(x)=\frac{k_{1}+k_{2} \mu(f x, f T x)}{1-k_{2} \mu(f x, f T x)}<1$ and $l(x)=\frac{k_{1}+k_{3} \mu(f x, f S x)}{1-k_{3} \mu(f x, f S x)}<1$.
Let $m=\max \{k(x), l(x): x \in X\}$. Now if $\left\{x_{n}\right\}$ (that is, $\left\{f x_{n}\right\}$) is a sequence generated by (3.7), then

$$
\begin{aligned}
d_{\mu}\left(f x_{n+1}, w\right) & \leq \alpha_{n} d_{\mu}\left(f z_{n} . w\right)+\left(1-\alpha_{n}\right) d_{\mu}\left(f T y_{n}, w\right) \\
& \leq m^{n}\left\{\beta+m^{2}(1-\alpha) \beta+m^{2}(1-\alpha)^{2}\right\}^{n} d_{\mu}\left(f x_{0} . w\right)
\end{aligned}
$$

Also, if $\left\{u_{n}\right\}$ (that is, $\left\{f u_{n}\right\}$) is a sequence generated by (3.2), then for $n=2 k+1$, using (3.1) we get,

$$
d_{\mu}\left(f u_{2 k+1}, w\right) \leq k^{\prime}\left(u_{2 k}\right) d_{\mu}\left(f u_{2 k}, w\right)
$$

where $k^{\prime}\left(u_{2 k}\right)=\frac{k_{1}+k_{2} \mu\left(f u_{2 k}, f u_{2 k+1}\right)}{1-k_{2} \mu\left(f u_{2 k}, f u_{2 k+1}\right)}<1$.
Similarly, if $n=2 k$, using (3.1) we get,

$$
d_{\mu}\left(f u_{2 k+1}, w\right) \leq l^{\prime}\left(u_{2 k}\right) d_{\mu}\left(f u_{2 k}, w\right)
$$

where $l^{\prime}\left(u_{2 k}\right)=\frac{k_{1}+k_{3} \mu\left(f u_{2 k}, f u_{2 k+1}\right)}{1-k_{3} \mu\left(f u_{2 k}, f u_{2 k+1}\right)}<1$.
Therefore, for all non-negative integers n,

$$
\begin{aligned}
d_{\mu}\left(f u_{n+1}, w\right) & \leq \max \left\{k^{\prime}\left(u_{2 k}\right), l^{\prime}\left(u_{2 k}\right)\right\} d_{\mu}\left(f u_{n}, w\right) \leq m d_{\mu}\left(f u_{n}, w\right) \\
& \leq \cdots \leq m^{n} d_{\mu}\left(f u_{0}, w\right)
\end{aligned}
$$

Hence in the limit as $n \rightarrow \infty$, the ratio $\frac{d\left(f x_{n}, w\right)}{d\left(f u_{n}, w\right)} \longrightarrow 0$ if

$$
m\left\{\beta+m^{2}(1-\alpha) \beta+m^{2}(1-\alpha)^{2}\right\}<m
$$

But since $m \leq \frac{1}{\sqrt{3}}$ and $0<\alpha, \beta \leq \frac{1}{2}$, we have,

$$
\beta+m^{2}(1-\alpha)\{\beta+(1-\alpha)\}<\frac{1}{2}+\frac{1}{3}\left(\frac{1}{2}+1\right)=1
$$

and the proof is complete.

Acknowledgement

We would like to thank the referee(s) for his/her comments and suggestions on the manuscript.

References

[1] B. Alqahtani, A. Fulga and E. Karapınar, Common fixed point results on an extended b-metric space, J. Inequal. Appl. Article number: 158 (2018) 15 pages.
[2] B. Alqahtani, A. Fulga and E. Karapınar, Non-unique fixed point results in extended b-metric space, Mathematics 6 (2018) 11 pages.
[3] V. Berinde, Iterative Approximation of Fixed Points, Springer, Berlin, 2007.
[4] J. Chen and Z. Li, Common fixed-points for Banach operator pairs in best approximation, J. Math. Anal. Appl. 336 (2) (2007) 1466-1475.
[5] P. Chuadchawna, A. Farajzadeh and A. Kaewcharoen, Fixed-point approximations of generalized nonexpansive mappings via generalized M-iteration process in hyperbolic spaces, Int. J. Math. Math. Sci. Article ID 6435043 (2020) 8 pages.
[6] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993) 5-11.
[7] D. Das and N. Goswami, Some fixed point theorems on the sum and product of operators in tensor product spaces, Int. J. Pure Appl. Math. 109 (3) (2016) 651-663.
[8] D. Das, N. Goswami and V.N. Mishra, Some results on the projective cone normed tensor product spaces over Banach algebras, Bol. Soc. Parana. Mat. 38 (1) (2020) 197-221.
[9] H. Faraji and K. Nourouzi, A generalization of Kannan and Chatterjea fixed point theorems on complete b-metric spaces, Sahand Commun. Math. Anal. 6 (1) (2017) 77-86.
[10] A. Farajzadeh, P. Chuadchawna and A. Kaewcharoen, Fixed point theorems for $(\alpha, \eta, \psi, \zeta)$-contractive multi-valued mappings on $\alpha-\eta$-complete partial metric spaces, J. Nonlinear Sci. Appl. 9 (2016) 1977-1990.
[11] A. Farajzadeh, C. Noytaptim and A. Kaewcharoen, Some fixed point theorems for generalized $\alpha-\eta-\psi$-Geraghty contractive type mappings in partial b-metric spaces, J. Inf. Math. Sci. 10 (3) (2018) 455-578.
[12] N. Goswami, N. Haokip and V.N. Mishra, F-contractive type mappings in b-metric spaces and some related fixed point results, Fixed Point Theory Appl. Article number: 13 (2019) 17 pages.
[13] N. Haokip and N. Goswami, Some fixed point theorems for generalized Kannan type mappings in b-metric spaces, Proyecciones (Antofagasta) 38 (4) (2019) 763-82.
[14] G. Heidary Joonaghany, A. Farajzadeh, M. Azhini and F. Khojasteh, A new common fixed point theorem for Suzuki type contractions via generalized Ψ-simulation functions, Sahand Commun. Math. Anal. 16 (1) (2019) 129-148.
[15] N. Kadioglu and I. Yildirim, Approximating fixed points of nonexpansive mappings by a faster iteration process, arXiv e-prints (2014), arXiv:1402.6530.
[16] T. Kamran,M. Samreen and O.U. Ain, A generalization of b-metric space and some fixed point theorems, Mathematics 5 (2017) 7 pages.
[17] P. Kumam, M. Kumar and S. Araci, Fixed point theorems for soft weakly compatible mappings in soft G-metric spaces, Adv. Appl. Math. Sci. 15 (7) (2016) 215-228.
[18] A. Lukács and S. Kajántó, Fixed point theorems for various types of F-contractions in complete b-metric spaces, Fixed Point Theory 19 (1) (2018) 321-334.
[19] V.N. Mishra, B.R. Wadkar, R. Bhardwaj, I.A. Khan and B. Singh, Common fixed point theorems in metric space by altering distance function, Adv. Pure Math. 7 (2017) 335-344.
[20] S.K. Mohanta, Coincidence points and common fixed points for expansive type mappings in b-metric spaces, Iran. J. Math. Sci. Inform. 11 (1) (2016) 101-113.
[21] M. Öztürk and M. Başarir, On some common theorems for f-contraction mappings in cone metric spaces, Int. J. Math. Anal. 5 (3) (2011) 119-127.
[22] B. Patir, N. Goswami and V.N. Mishra, Some results on fixed point theory for a class of generalized nonexpansive mappings, Fixed Point Theory Appl. Article number: 19 (2018) 18 pages.
[23] H. Piri and P. Kumam, Fixed point theorems for generalized F-Suzuki-contraction mappings in complete b-metric spaces, Fixed Point Theory Appl. Article number: 90 (2016) 13 pages.
[24] B.E. Rhoades, Comments on two fixed point iteration methods, J. Math. Anal. Appl. 56 (3) (1976) 741-750.
[25] J.R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi, Common fixed points of almost generalized $(\psi, \phi)_{s}$-contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl. Article number: 159 (2013) 23 pages.
[26] H.M. Srivastava, S.V. Bedre, S.M. Khairnar and B.S. Desale, Corrigendum to: "Krasnosel'skii type hybrid fixed point theorems and their applications to fractional integral equations", Abstr. Appl. Anal. Article ID 467569 (2015) 3 pages.
[27] S. Suantai, N. Petrot and W. Saksirikun, Fuzzy fixed point theorems on the complete fuzzy spaces under supremum metric, Fixed Point Theory Appl. Article number: 167 (2015) 13 pages.
[28] P.V. Subrahmanyam, Remarks on some fixed point theorems related to Banach's contraction principle, J. Math. Phys. Sci. 8 (1974) 445-457.
[29] W. Takahashi, A convexity in metric space and nonexpansive mappings. I, Kōdai Math. Semin. Rep. 22 (1970) 142-149.
[30] B.C. Tripathy, P. Sudipta and R.D. Nanda, Banach's and Kannan's fixed point results in fuzzy 2-metric spaces, Proyecciones 32 (4) (2013) 359-375.
[31] B.C. Tripathy, P. Sudipta and R.D. Nanda, A fixed point theorem in a generalized fuzzy metric space, Bol. Soc. Paran. Mat. 32 (2) (2014) 221-227.
[32] P. Zangenehmehr, A.P. Farajzadeh and S.M. Vaezpour, On fixed point theorems for monotone increasing vector valued mappings via scalarizing, Positivity 19 (2015) 333-340.

[^0]: *Corresponding author.

