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1. Introduction

There have been numerous attempts to generalize the Banach Contraction Principle
of 1922 by either considering a more generalized space or a more generalized (or different)
contractive condition or both (one may refer to [5, 7, 8, 10, 11, 14, 17, 19, 22, 26, 27, 30–32],
and the references therein).

The notion of b-metric spaces is also a consequence of an attempt to generalize the Ba-
nach Contraction Principle to a more generalized space. Many authors have contributed
to the fixed point theory in b-metric spaces (one may refer to [12, 13, 18, 23, 25] and the
references therein).

In 2017, the notion of extended b-metric, which is a generalization of a b-metric was
introduced by Kamran et al. [16]. In 2018, Alqahtani et al. [1] proved a common fixed
point result for a pair of mappings in an extended b-metric space. In this paper, we
obtain a common fixed point result for a triplet of mappings from which we derive the
main result of [1] as a corollary. An iteration scheme for the triplet of mappings is also
defined and its convergence is studied. Lastly, the rate of convergence of the new iteration
is compared to a known iteration scheme to show that the new iteration scheme converge
faster to the common fixed point.
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Copyright © 2022 by TJM. All rights reserved.
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2. Preliminaries

In this section, we reproduce and introduce some definitions which will be used in our
main results.

Definition 2.1. [6] Let X be a nonempty set and s ≥ 1 be a given real number. A
function d : X ×X −→ [0,∞) is called a b-metric if it satisfies the following properties.

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x); and
(3) d(x, z) ≤ s

{
d(x, y) + d(y, z)

}
, for all x, y, z ∈ X.

The pair (X, d) is called a b-metric space with coefficient s.

Definition 2.2. [20] Let (X, d) be a b-metric space and {xn} be a sequence in X. Then we
say {xn} converges to x if and only if limn→∞ d(xn, x) = 0, denoted by limn→∞ xn = x;
{xn} is said to be a Cauchy sequence if and only if limm,n→∞ d(xm, xn) = 0; and (X, d)
is said to be complete if and only if every Cauchy sequence is convergent.

Definition 2.3. [20] Let (X, d) be a b-metric space. A mapping T : X −→ X is said to
be continuous at a point x ∈ X if for every sequence {xn} converging to x, we have

lim
n→∞

Txn = Tx.

T is said to be continuous in X if it is continuous at all points of X.

A b-metric need not be continuous, one may refer to Example 2 in [25].
In 2017, Kamran et al. [16] introduced a generalized form of b-metric space and proved

some fixed point theorems.

Definition 2.4. [16] Let X be a nonempty set and µ : X ×X −→ [1,∞). An extended
b-metric is a function dµ : X ×X −→ [0,∞) such that for all x, y, z ∈ X

(dµ1) dµ(x, y) = 0 if and only if x = y,
(dµ2) dµ(x, y) = dµ(y, x),

(dµ3) dµ(x, y) ≤ µ(x, y)
(
dµ(x, z) + dµ(z, y)

)
.

The pair (X, dµ) is called an extended b-metric space.

Example 2.5. Let X = [−1, 1] and µ : X×X −→ [1,∞) be defined by µ(x, y) = 1+x2+y2

x2+y2 .

Define dµ : X ×X −→ [0,∞) as follows.

dµ(x, y) = 0 if and only if x = y,

dµ(x, 0) = dµ(0, x) =
1

x2
if x 6= 0,

dµ(x, y) =
1

x2y2
if 0 6= x 6= y 6= 0.

Then it can be easily checked that dµ defines an extended b-metric on X.

We note here that if µ(x, y) = s for some s ≥ 1, then we get the definition of a b-metric
space. The notion of convergence, completeness and continuity in b-metric spaces can as
well be extended to the extended b-metric space. Then regardless of the continuity of dµ,
a convergent sequence in a b-metric space have a unique limit. Then the result of [16]
may be restated as follows.
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Theorem 2.6. [16] Let (X, dµ) be an extended b-metric space and T : X −→ X be a
mapping such that for all x, y ∈ X

dµ(Tx, Ty) ≤ dµ(x, y) (2.1)

where 0 ≤ k < 1 is such that, for each x0 ∈ X, limm,n→∞(xm, xn) < 1
k and xn = Tnx0,

n = 1, 2, . . . . Then T has a unique fixed point w in X. Moreover, for each x ∈ X,
Tnx −→ w.

Following the definition of (α, β)-orbital-cyclic admissible pair given by Alqahtani et
al. [1], we define the following.

Definition 2.7. Letf , S and T be self maps on a complete extended b-metric space
(X, dµ) with f injective and α, β : X ×X −→ [0,∞) be two mappings such that for any
x ∈ X

α(fx, fTx) ≥ 1 =⇒ β(fTx, fSTx) ≥ 1

β(fx, fSx) ≥ 1 =⇒ α(fSx, fTSx) ≥ 1

}
(2.2)

Then f , S and T are said to be (α, β)-orbital-cyclic admissible triplet.

The following notion of Banach operator pair will be used in this paper. It was first
introduced by Subrahmanyam [28] and extended by Chen and Li [4] and, Öztürk and
Başarir [21].

Definition 2.8. [21] Let f and T be self mappings on an extended b-metric space (X, dµ).
Then the pair (f, T ) is said to be a Banach operator pair if for some k ≥ 0,

dµ(fTx, Tx) ≤ kdµ(Tx, x) for all x ∈ X.

We make a note here that if the pair (f, T ) is a Banach operator pair, then f and T
commutes on the set F (T ) of the fixed points of T (one may refer to Proposition 2.2 [4]).

We now state the following terminology for use in our main results.

Definition 2.9. Let T and f be self mappings on an extended b-metric space (X, dµ). T
is said to be Cauchy-commutative with respect to f , if for any sequence {xn} in X such
that {fxn} is a Cauchy sequence, fTx = Tfx for each x in {xn}.

Definition 2.10. A function φ : [0,∞) −→ [0,∞) is called a subadditive altering distance
function if

(i) φ(x+ y) ≤ φ(x) + φ(y) ∀x, y ∈ [0,∞)
(ii) φ is an altering distance function [9], (i.e., φ is continuous, strictly increasing and

φ(t) = 0 if and only if t = 0)

Example 2.11. [13] It can be easily seen that the functions φ1(x) = kx for some k ≥ 1,
φ2(x) = n

√
x, n ∈ N, φ3(x) = log(1 +x), x ≥ 0 and φ4(x) = tan−1 x are such subadditive

altering distance functions.

3. Main Results

Assuming the continuity of dµ, we first prove a generalization of the result obtained in
[1]. The following lemma follows from the proof of Lemma 2 of [2] from the fact that φ is
a subadditive altering distance function.

For a real number θ ≥ 0, let θ∗ be the least integer ≥ θ.
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Lemma 3.1. Let (X, dµ) be an extended b-metric space. Suppose there exists q ∈ [0, 1)
such that for an arbitrary x0 ∈ X, the sequence {xn} satisfies

lim
n,m→∞

µ(xn, xm)∗ <
1

q
and φ

(
dµ(xn+1, xn)

)
≤ qφ

(
dµ(xn, xn−1)

)
for all positive integer n, then {xn} is a Cauchy sequence in X.

Remark 3.2. If φ is the identity mapping on [0,∞), then as seen in Lemma 2.1 of [1],
the condition limn,m→∞ µ(xn, xm)∗ < 1

q in Lemma 3.1 (and consequently in the proof of

the following theorems) may be replaced by limn,m→∞ µ(xn, xm) < 1
q .

Theorem 3.3. Let (X, dµ) be a complete extended b-metric space and f, S, T : X −→ X
be (α, β)-orbital-cyclic admissible triplet on X. Let (f, S) and (f, T ) be Banach operator
pairs such that for all x, y ∈ X

α(fx, fTx)β(fy, fSy)φ
(
dµ(fTx, fSy)

)
≤ k1φ

(
dµ(fx, fy)

)
+ k2φ

(
dµ(fx, fTx)

)
+ k3φ

(
dµ(fy, fSy)

)
(3.1)

for some k1, k3 ≥ 0, k2 > 0 and k1 + k2 + k3 < 1. Suppose that there exists x0 ∈ X such
that α(fx0, fTx0) ≥ 1. Let for each x0 ∈ X, limn,m→∞ µ(fxn, fxm)∗ < 1−k3

k1+k2
, where

x2n−1 = Tx2n−2 and x2n = Sx2n−1 for all positive integers n.

(a) f , S and T have a unique common fixed point, if S and T are continuous and
Cauchy commutative with respect to f , and α(fz, fz) ≥ 1 for z ∈ CF (S, T ),
where CF (S, T ) denotes the set of common fixed points of S and T .

(b) f , S and T have a unique common fixed point if f is continuous and {xn} ⊆ X is
a sequence such that limn→∞ xn = z, then α(fz, fTz) ≥ 1 and β(fz, fSz) ≥ 1.

Proof. By the given condition, there exists x0 in X with α(fx0, fTx0) ≥ 1. Taking
x1 = Tx0, x2 = Sx1, and inductively we construct a sequence {xn}, where

x2n−1 = Tx2n−2 and x2n = Sx2n−1, n = 1, 2, 3, . . . (3.2)

Since f , S and T are (α, β)-orbital-cyclic admissible triplet, we get (as in [1]),

α(fx2n, fx2n+1) ≥ 1 and β(fx2n+1, fx2n+2) ≥ 1 n = 0, 1, 2, . . . (3.3)

We assume, without loss of generality, that xn 6= xn+1 for all non-negative integers
n. Because, if xn0

= xn0+1 for some non-negative integer n0, then by our choice of the
sequence {xn}, we can show that w = xn0 is a common fixed point of f , S and T and the
proof is complete.

For this, we consider the following two cases for n0.
If n0 is even, say, n0 = 2p, then x2p = x2p+1 = Tx2p and x2p is a fixed point of T .

Since (f, T ) is a Banach operator pair, we have for some k ≥ 0,

dµ
(
fx2p, x2p

)
= dµ

(
fTx2p, Tx2p

)
≤ kdµ

(
Tx2p, x2p

)
= 0,

showing that x2p is also a fixed point of f .

We also claim that x2p = x2p+1 = Tx2p = Sx2p+1. Suppose the contrary that Tx2p 6=
Sx2p+1. Then taking x = x2p and y = x2p+1 in (3.1), and using (3.2) and (3.3) we have,

φ
(
dµ(fTx2p, fSx2p+1)

)
≤ k3φ

(
dµ(fTx2p, fSx2p+1)

)
.

Since φ is subadditive altering distance function and k3 < 1, this implies

dµ(fTx2p, fSx2p+1) < dµ(fTx2p, fSx2p+1),
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a contradiction.
Hence dµ(Tx2p, Sx2p+1) = 0 and x2p = x2p+1 = Tx2p = Sx2p+1 so that x2p = x2p+1 =

w is a common fixed point of f , S and T .
Similarly, we get an analogous result for the case when n0 is odd, that is, n0 = 2p+ 1.
Thus we assume that xn 6= xn+1 for all non-negative integers n.

We now show that {fxn} is a Cauchy sequence. For doing the same, it is sufficient to
consider the cases when x = x2n, y = x2n+1 and x = x2n, y = x2n−1.

Case (i) Let x = x2n and y = x2n+1. By (3.1) and (3.3), we have,

φ
(
dµ(fx2n+1, fx2n+2)

)
= φ

(
dµ(fTx2n, fSx2n+1)

)
≤ qφ

(
dµ(fx2n, fx2n+1)

)
where q = k1+k2

1−k3 < 1 and n = 0, 1, 2, . . . .

Case (ii) Let x = x2n and y = x2n−1. Similarly, as in the above case, we get,

φ
(
dµ(fx2n, fx2n+1)

)
≤ qφ

(
dµ(fx2n−1, fx2n)

)
.

Therefore, from the above two cases we have, for all n ∈ N,

φ
(
dµ(fxn, fxn+1)

)
≤ qφ

(
dµ(fxn−1, fxn)

)
.

Hence by Lemma 3.1, {fxn} is a Cauchy sequence in X and there exists w ∈ X such
that limn→∞ fxn = w, and consequently

lim
n→∞

fx2n = w and lim
n→∞

fx2n+1 = w.

(a) Now, since S and T are continuous and Cauchy commutative with respect to f , we
have,

Sw = S
(

lim
n→∞

fx2n−1

)
= lim
n→∞

Sfx2n−1 = lim
n→∞

fSx2n−1 = lim
n→∞

fx2n = w,

Tw = T
(

lim
n→∞

fx2n

)
= lim
n→∞

Tfx2n = lim
n→∞

fTx2n = lim
n→∞

fx2n−1 = w,

showing that w is a common fixed point of S and T .
If w′ is another common fixed point of S and T , then w,w′ ∈ CF (S, T ). So, α(fw, fw) ≥

1 and α(fw′, fw′) ≥ 1. Then α(fw, fTw) = α(fw, fw) ≥ 1 and β(fw′, fSw′) =
β(fw′, fw′) ≥ 1 (since α(fx, fTx) ≥ 1 implies β(fTx, fSTx) ≥ 1). And, using (3.1),

φ
(
dµ(fw, fw′)

)
= φ

(
dµ(fw, fw′)

)
≤ k1φ

(
dµ(fw, fw′)

)
,

which is possible only if fw = fw′. Since f is injective, we have w = w′. Thus the
common fixed point of S and T is unique.

Since (f, S) and (f, T ) are Banach operator pairs, f commute with S and T at the
fixed points of S and T , respectively. This implies fSw = Sfw for w ∈ F (S), that is,
fw = Sfw, showing that fw is another fixed point of S. Similarly, fw is also another
fixed point of T , and hence a common fixed point of S and T .

Since the common fixed point of S and T is unique, we have fw = w, showing that w
is a fixed point of f . Thus f , S and T have a common fixed point w, which is unique.

(b) Now considering the alternate hypothesis that {xn} ⊆ X be a sequence with
limn→∞ xn = z implies α(fz, fTz) ≥ 1 and β(fz, fSz) ≥ 1, we shall show that z is a
unique common fixed point of f , S and T .
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Taking x = z and y = x2n+1 in (3.1) and using (3.3), we get,

φ
(
dµ(fTz, fx2n+2)

)
≤ k1φ

(
dµ(fz, fx2n+1)

)
+ k2φ

(
dµ(fz, fTz)

)
+ k3φ

(
dµ(fx2n+1, fx2n+2)

)
.

Taking the limit as n → ∞, we get φ
(
dµ(fTz, fz)

)
≤ k2φ

(
dµ(fz, fTz)

)
and since

k2 < 1, this implies fz = fTz or z = Tz.
In a similar manner, taking x = x2n and y = z in (3.1) and using (3.3), we get z = Sz,

showing that z is a common fixed point of S and T . The rest is analogous to the above
proof of (a).

Taking k1 = 0, k2 = k3 = k, and φ and f as the identity mapping in Theorem 3.3, we
get a similar result given in Theorem 2.1 of [1] as a corollary.

Corollary 3.4. [1] Let S, T be two self-mappings on a complete extended b-metric space
(X, dµ) such that the pair S, T forms an (α, β)-orbital-cyclic admissible pair satisfying

α(x, Tx)β(y, Sy)dµ(Tx, Sy) ≤ k
{
dµ(x, Tx) + dµ(y, Sy)

}
for some 0 < k < 1

2 . Suppose that there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Let for

each x0 ∈ X, limn,m→∞ µ(xn, xm)∗ < 1−k
k , where x2n−1 = Tx2n−2 and x2n = Sx2n−1

for all positive integers n.

(a) S and T have a unique common fixed point, if S and T are continuous and for
z ∈ CF (S, T ), α(z, z) ≥ 1, where CF (S, T ) denotes the set of common fixed
points of S and T .

(b) S and T have a unique common fixed point, if {xn} ⊆ X is a sequence with
limn→∞ xn = w implies α(w, Tw) ≥ 1 and β(w, Sw) ≥ 1.

Example 3.5. Let X = [0, 1] and µ : X ×X −→ [1,∞) and dµ : X ×X −→ [0,∞) be
defined by

µ(x, y) =

{
1+x+y
x+y , x+ y 6= 0

1, x+ y = 0
and dµ(x, y) =


0, x = y

dµ(x, 0) = 1
x , x 6= 0

1
xy , xy 6= 0

respectively. Then (X, dµ) is an extended b-metric space [1].
Consider the mappings f, S, T : X −→ X defined by fx = x,

Sx =

{
1, if x = 1

4 ,
3
4

x+1
2 , otherwise

and Tx =

{
1, if x = 1

2 ,
3
4 ,

2x+1
3 , otherwise

respectively. Also, let α, β : X ×X −→ [0,∞) be defined by

α(x, y) =

{
1, if (x, y) ∈

{
(1, 1),

(
3
4 , 1
)
,
(
1
2 , 1
)
,
(
1
4 ,

1
2

)}
0, otherwise,

and

β(x, y) =

{
1, if (x, y) ∈

{
(1, 1),

(
3
4 , 1
)
,
(
1
4 , 1
)
,
(
1
2 ,

3
4

)}
0, otherwise

respectively.
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Then it can be easily checked that f , S and T form an (α, β)-orbital-cyclic admissible
triplet. We also note that x = 1 is the only common fixed point of S and T , with
α(f1, fT1) ≥ 1 and β(f1, fS1) ≥ 1.

Let φ be the identity mapping. If x0 = 1, 12 or 3
4 , then xn = 1 for all n, and so,

lim
n,m→∞

µ(fxn, fxm) =
3

2
<

8

5
=

1− k3
k1 + k2

where k1 = 1
16 , k2 = 1

4 and k3 = 1
2 .

On the other hand, if x0 6= 1, 12 or 3
4 , then for all n = 1, 2, 3, . . .

x2n−1 =
1

3n
(2x0 + 1) + 2

n−1∑
k=1

(
1

3

)k
and x2n =

1

3n

(
x0 +

1

2

)
+

1

2
+

n−1∑
k=1

(
1

3

)k
Since limn→∞ x2n−1 = 1 and limn→∞ x2n = 1, that is, limn→∞ xn = 1 for all n =

1, 2, 3, . . . , we get in this case too,

lim
n,m→∞

µ(fxn, fxm) =
3

2
<

1− k3
k1 + k2

.

We also note that for any x0 in X, the sequence {xn} as defined above is such that
limn→∞ xn = 1 with α(f1, fT1) ≥ 1 and β(f1, fS1) ≥ 1.

Since α(x, y) = 0 except at the points (1, 1),
(
3
4 , 1
)
,
(
1
2 , 1
)

and
(
1
4 ,

1
2

)
; and β(x, y) = 0

except at the points (1, 1),
(
3
4 , 1
)
,
(
1
4 , 1
)

and
(
1
2 ,

3
4

)
, one can easily check that f , S and

T satisfy (3.1) and thus by Theorem 3.3, f , S and T have a unique common fixed point,
x = 1.

When S = T in Definition 2.7, T is then said to be (α, β)-orbital-cyclic admissible
mapping with respect to f .

Corollary 3.6. Let (X, dµ) be a complete extended b-metric space and T : X −→ X be
(α, β)-orbital-cyclic admissible mapping with respect to f , and (f, T ) be a Banach operator
pair such that for all x, y ∈ X

α(fx, fTx)β(fy, fTy)φ
(
dµ(fTx, fTy)

)
≤ k1φ

(
dµ(fx, fy)

)
+ k2φ

(
dµ(fx, fTx)

)
+ k3φ

(
dµ(fy, fTy)

)
(3.4)

for some k1, k3 ≥ 0, k2 > 0 and k1 + k2 + k3 < 1. Suppose that there exists x0 ∈ X such
that α(fx0, fTx0) ≥ 1. Let for each x0 ∈ X, limn,m→∞ dµ(fxn, fxm)∗ < 1−k3

k1+k2
, where

x2n−1 = Tx2n−2 and x2n = Sx2n−1 for positive integers n.

(a) f and T have a unique common fixed point, if T is continuous and Cauchy com-
mutative with respect to f , and for z ∈ F (T ), α(fz, fz) ≥ 1, where F (T ) denotes
the set of fixed points of T .

(b) f and T have a unique common fixed point if f is continuous and {xn} is a
sequence in X with limn→∞ xn = z implies α(fz, fTz) ≥ 1.

Proof. The proof follows from Theorem 3.3 by taking S = T .

Example 3.7. Let X = [0, 1] and define dµ : X×X −→ [0,∞) and µ : X×X −→ [1,∞)
by dµ(x, y) = |x− y| and µ(x, y) = 1 + x+ y, respectively for all x, y ∈ X. Consider the
mappings f, T : X −→ X defined respectively by

fx = x and Tx =
x

4
, for all x ∈ X.
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Consider the mappings α, β : X ×X −→ [0,∞) defined by

α(x, y) = β(x, y) =

{
1, x, y ∈

[
0, 12
]

0, otherwise

Then T is an (α, β)-orbital-cyclic admissible pair with respect to f . To see this, let
x ∈ X be such that α(fx, fTx) ≥ 1 and β(fx, fTx) ≥ 1. Then fx, fTx ∈

[
0, 12
]
, i.e.,

x must be in
[
0, 12
]
. Now, if x ∈

[
0, 12
]
, then fTx = x

4 ≤
1
2 and fT 2x = x

16 ≤
1
2 , which

implies α(fTx, fT 2x) = 1 and β(fTx, fT 2x) = 1.

Clearly, for x0 = 1
3 , say, α (fx0, fTx0) = α

(
1
3 ,

1
12

)
= 1.

Again, for each x0 ∈ X, xn = Tnx0 = x0

4n for all positive integers n. So, we have,

lim
n,m→∞

µ(xn, xm)∗ = 1 <
1− k3
k1 + k2

,

where k1 = 1
4 , k2 = 1

3 and k3 = 1
3 .

Now, for x, y ∈
[
0, 12
]
, with φ(x) = x we have,

α(fx, fTx)β(fy, fTy)φ
(
dµ(fTx, fTy)

)
=

1

4
|x− y| ≤ 1

4
|x− y|+ |x|

4
+
|y|
4

= k1φ
(
dµ(fx, fy)

)
+ k2φ

(
dµ(fx, fTx)

)
+ k3φ

(
dµ(fy, fTy)

)
.

For x, y ∈
(

1
2 , 1
]
, α(fx, fTx) = α

(
x, x4

)
= 0 and the inequality (3.4) follows trivially.

Again, for x ∈
[
0, 12
]

and y ∈
(

1
2 , 1
]
, β(fy, fTy) = β

(
y, y4

)
= 0 and the inequality

(3.4) follows trivially.

Hence by Corollary 3.6, T has a unique fixed point x = 0.

Corollary 3.8. Let (X, dµ) be a complete extended b-metric space and T : X −→ X be
a mapping satisfying

φ
(
dµ(Tx, Ty)

)
≤ k1φ

(
dµ(x, y)

)
+ k2φ

(
dµ(x, Tx)

)
+ k3φ

(
dµ(y, Ty)

)
(3.5)

for some k1, k3 ≥ 0, k2 > 0 and k1 + k2 + k3 < 1.
Let for each x0 ∈ X, limn,m→∞ dµ(xn, xm)∗ < 1−k3

k1+k2
, where xn = Txn−1 for n ∈ N.

Then T have a unique fixed point.

Proof. The proof follows from Corollary 3.6 (b) by taking α(x, y) = β(x, y) = 1 and
fx = x for all x ∈ X.

In [21], Öztürk and Başarir defined a self map T on a cone metric space X to have the
property P if F (T ) = F

(
Tn
)

for all n ∈ N. The same notion can as well be defined for an
extended b-metric space.

Theorem 3.9. Let (X, dµ) be a complete extended b-metric space and T : X −→ X be
(α, β)-orbital-cyclic admissible map with respect to f satisfying (3.4) for some k1, k3 ≥ 0,
k2 > 0 and k1 + k2 + k3 < 1. If α(fx, fTx) ≥ 1 and β(fx, fTx) ≥ 1 for all x ∈ F (T ),
then T has property P .

Proof. Since Tu = u implies Tnu = u for all n ∈ N, it is sufficient to show that F (Tn) ⊆
F (T ). Let w ∈ F (Tn), then it is clear that Tw ∈ F (Tn).

Let if possible, Tw 6= w. Then using (3.4),

φ
(
dµ(fTn+1w, fTn+2w)

)
≤ k′φ

(
dµ(fTnw, fTn+1w)

)
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where k′ = k1+k2
1−k3 < 1.

Since φ is subadditive altering distance function, for some k < 1 we get,

dµ(fTn+1w, fTn+2w) ≤ kdµ(fTnw, fTn+1w).

But then,

dµ(fTw, fT 2w) = dµ(fTn+1w, fTn+2w) ≤ · · · ≤ kn+1dµ
(
fTw, fT 2w

)
< dµ(fTw, fT 2w),

a contradiction.

3.1. Convergence of Iteration

In 1970, Takahashi [29] introduced the following concept of convex structure in a metric
space.

Definition 3.10. [29] Let (X, d) be a metric space. A mapping W : X2 × [0, 1] −→ X
satisfying

d (z,W(x, y, α)) ≤ αd(z, x) + (1− α)d(z, y)

for all x, y, z ∈ X and α ∈ [0, 1] is called a convex structure on X.

The above notion of convex structure can as well be adopted naturally in extended
b-metric space (X, dµ) with the condition

µ(x, y)dµ (z,W(x, y, α)) ≤ αdµ(z, x) + (1− α)dµ(z, y). (3.6)

We now define an iteration process in a convex extended b-metric space and derive a
strong convergence result for it.

Let (X, dµ) be a convex extended b-metric space and f , S and T be self mappings on
X. For x0 ∈ X, we define

fxn+1 =W (fzn, fTyn, αn) ,

fyn =W (fTzn, fSzn, βn) ,

fzn = fSxn

(3.7)

where {αn} and {βn} are real sequences in (0, 1).

Theorem 3.11. Let (X, dµ) be a complete convex extended b-metric space and f, S, T :
X −→ X be self mappings on X satisfying the conditions of Theorem 3.3 for some
k1 ≥ 0, k2, k3 > 0 with k1 + k2 + k3 < 1, so that f , S and T have a unique common fixed
point. Let for all x ∈ X, µ(fx, fTx)∗ < 1−k1

2k2
and µ(fx, fSx)∗ < 1−k1

2k3
. If in addition,

α(fx, fTx) ≥ 1 and β(fx, fSx) ≥ 1 for all x ∈ X, then the sequence {fxn} generated by
(3.7) converges strongly to the common fixed point of f , S and T .

Proof. Using (3.1), we get,

φ
(
dµ(fTx,w)

)
≤ kφ

(
dµ(fx,w)

)
,

where k = k1+k2µ(fx,fTx)
∗

1−k2µ(fx,fTx)∗ < 1.

This implies dµ(fTx,w) ≤ k′dµ(fx,w), for some k′ < 1 (since φ is subadditive altering
distance function).

Similarly, φ
(
dµ(fSx,w)

)
≤ lφ

(
dµ(fx,w)

)
, where l = k1+k3µ(fx,fSx)

∗

1−k3µ(fx,fSx)∗ < 1 and as above,

for some l′ < 1, dµ(fSx,w) ≤ l′dµ(fx,w).
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Now, using (3.7) we get,

dµ(fxn+1, w) = dµ
(
W(fzn, fTyn, αn), w

)
≤ l′dµ(fxn, w).

Inductively, for any positive integer n, we get, dµ(fxn, w) ≤ l′ndµ(fx0, w) and hence,
in the limit as n→∞, limn→∞ dµ(fxn, w) = 0, as required.

Example 3.12. Consider the mappings f , S and T as given in Example 3.5 with k1 = 1
4 ,

k2 = 1
3 , k3 = 1

3 and the extended b-metric space (X, dµ) where X = [0, 1] and dµ(x, y) =
|x− y|, the usual metric with µ(x, y) = 1.

We note that (X, dµ) is a convex extended b-metric space satisfying the conditions of
Theorem 3.3. So, by Theorem 3.3, we get x = 1 as the unique common fixed point of f ,
S and T .

Now, W : X3 −→ X given by

W(x, y, t) = tx+ (1− t)y
for all x, y and t in X defines a convex structure on X.

Table 1. Sequences generated by (3.8) with x0 = 0.65, 0.45 and 0.05

x0 x1 = 0.90277 x2 = 0.96836 x3 = 0.98870 x4 = 0.99571 x5 = 0.9983
= 0.65 x6 = 0.99930 x7 = 0.99970 x8 = 0.99987 x9 = 0.99994 x10 = 0.99997

x0 x1 = 0.84722 x2 = 0.95028 x3 = 0.98224 x4 = 0.99326 x5 = 0.99732
= 0.45 x6 = 0.99890 x7 = 0.99954 x8 = 0.99980 x9 = 0.99991 x10 = 0.99996

x0 x1 = 0.73611 x2 = 0.91413 x3 = 0.96933 x4 = 0.98835 x5 = 0.99538
= 0.05 x6 = 0.99811 x7 = 0.99920 x8 = 0.99966 x9 = 0.99985 x10 = 0.99993
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æ æ æ æ æ æ æ æ

æ

æ

æ
æ æ æ æ æ æ æ æ

æ

æ

æ

æ
æ æ æ æ æ æ æ

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

Figure 1. Sequences generated by (3.8) with x0 = 0.65, 0.45 and 0.05

The iteration scheme (3.7) then reduce to

xn+1 = αnSxn + (1− αn)T
(
βnTSxn + (1− βn)S2xn

)
(3.8)
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Here, µ(x, y) = 1 < 1−k1
2k2

= 1−k1
2k3

= 9
8 . Taking αn = n+1

n+5 and βn = n+2
n+6 , the sequences

of iterates generated by the iteration scheme (3.8) are given in Table 1.
From the given tabulation and figure, it is clear that the sequence {xn} generated by

(3.8) converges to 1.
Similarly, taking the points x0 = 0.45, 0.05 and generating the sequence defined by

(3.8), we can see a convergence to the common fixed point 1.

3.2. Rate of Convergence

In 2002, following the works of Rhoades [24], Berinde [3] compared the rate of conver-
gence between two iteration schemes as given below.

Let {αn} and {βn} be sequences of positive real numbers converging to α and β,
respectively. Suppose that

lim
n→∞

d(αn, α)

d(βn, β)
= l.

(i) If l = 0, then the sequence {αn} is said to converge to α faster than that of the
sequence {βn} to {β}.

(ii) If 0 < l < ∞, then the sequences {αn} and {βn} are said to have the same rate
of convergence.

For a nonempty convex subset K of a complete extended b-metric space X, if {xn} and
{un} are two iterations both of which converge to a p of X, then {xn} converges faster
than {un} to p if

lim
n→∞

d(xn, p)

d(un, p)
= 0.

We compare the rate of convergence of the iteration scheme (3.7) against that of the
iteration scheme (3.2) following a similar method employed by Kadioglu and Yildirim
[15]. The mapping W : X2 × [0, 1] −→ X given by

W(x, y, t) = tx+ (1− t)y
defines a convex structure on X.

Theorem 3.13. Let (X, dµ) be a complete extended b-metric space and f , S and T
be self mappings on X satisfying the conditions of Theorem 3.11 with φ and f as the
identity mapping. Then the iteration scheme given by (3.7) with 0 < α ≤ αn, βn <
β ≤ 1

2 converges faster than that of the iteration given by (3.2) if m ≤ 1√
3

, where m =

max
{
k(x), l(x) : x ∈ X

}
, k(x) = k1+k2µ(fx,fTx)

1−k2µ(fx,fTx) and l(x) = k1+k3µ(fx,fSx)
1−k3µ(fx,fSx) ·

Proof. Since φ is the identity mapping, from Theorem 3.11, if w is a common fixed point
of f , S and T , we have,

dµ(fTx,w) ≤ k(x)dµ(fx,w) and dµ(fSx,w) ≤ l(x)dµ(fx,w)

where k(x) = k1+k2µ(fx,fTx)
1−k2µ(fx,fTx) < 1 and l(x) = k1+k3µ(fx,fSx)

1−k3µ(fx,fSx) < 1.

Let m = max
{
k(x), l(x) : x ∈ X

}
. Now if {xn} (that is, {fxn}) is a sequence

generated by (3.7), then

dµ(fxn+1, w) ≤ αndµ
(
fzn.w

)
+ (1− αn)dµ

(
fTyn, w

)
≤ mn

{
β +m2(1− α)β +m2(1− α)2

}n
dµ
(
fx0.w

)
.
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Also, if {un} (that is, {fun}) is a sequence generated by (3.2), then for n = 2k + 1,
using (3.1) we get,

dµ(fu2k+1, w) ≤ k′(u2k)dµ(fu2k, w),

where k′(u2k) = k1+k2µ(fu2k,fu2k+1)
1−k2µ(fu2k,fu2k+1)

< 1.

Similarly, if n = 2k, using (3.1) we get,

dµ(fu2k+1, w) ≤ l′(u2k)dµ(fu2k, w),

where l′(u2k) = k1+k3µ(fu2k,fu2k+1)
1−k3µ(fu2k,fu2k+1)

< 1.

Therefore, for all non-negative integers n,

dµ(fun+1, w) ≤ max
{
k′(u2k), l′(u2k)

}
dµ(fun, w) ≤ mdµ(fun, w)

≤ · · · ≤ mndµ(fu0, w).

Hence in the limit as n→∞, the ratio d(fxn,w)
d(fun,w) −→ 0 if

m
{
β +m2(1− α)β +m2(1− α)2

}
< m.

But since m ≤ 1√
3

and 0 < α, β ≤ 1
2 , we have,

β +m2(1− α)
{
β + (1− α)

}
<

1

2
+

1

3

(
1

2
+ 1

)
= 1,

and the proof is complete.
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