A Class of Close-to-Convex Functions Satisfying a Differential Inequality

Pardeep Kaur ${ }^{1, *}$ and Sukhwinder Singh Billing ${ }^{2}$
${ }^{1}$ Department of Applied Sciences,Baba Banda Singh Bahadur Engineering College, Fatehgarh Sahib140407, Punjab, India e-mail: aradhitadhiman@gmail.com
${ }^{2}$ Department of Mathematics, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140407, Punjab, India e-mail: ssbilling@gmail.com

Abstract Let $\mathcal{H}_{\alpha}^{\phi}(\beta)$ denote the class of functions f, analytic in the open unit disk \mathbb{E}, which satisfy the condition

$$
\Re\left[(1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha\left(2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z \phi^{\prime}(z)}{\phi(z)}\right)\right]>\beta, z \in \mathbb{E}
$$

where α, β are pre-assigned real numbers and ϕ is a starlike function in \mathbb{E}. In the present paper, we prove that members of the class $\mathcal{H}_{\alpha}^{\phi}(\beta)$ are close-to-convex and hence univalent for real numbers $\alpha, \beta, \alpha \leq \beta<1$ and for a starlike function ϕ.

MSC: 30C45
Keywords: analytic function; univalent function; close-to-convex function
Submission date: 07.05 .2019 / Acceptance date: 18.01.2022

1. Introduction

Let \mathcal{A} be the class of functions f, analytic in the open unit disk $\mathbb{E}=\{z:|z|<1\}$ and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$. A function $f \in \mathcal{A}$ is said to be starlike if and only if

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, z \in \mathbb{E}
$$

We denote the class of starlike functions by \mathcal{S}^{*}.
Let \mathcal{K} denote the class of convex functions f with $f^{\prime}(0) \neq 0$ so that

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, z \in \mathbb{E}
$$

A function $f \in \mathcal{A}$ is said to be close-to-convex for a starlike function ϕ if

$$
\Re\left(\frac{z f^{\prime}(z)}{\phi(z)}\right)>0, z \in \mathbb{E} .
$$

This is well known that a close-to-convex function is univalent. In 1934/35, Noshiro [4] and Warchawski [8], independently, proved that if an analytic function f satisfies $\Re\left(f^{\prime}(z)\right)>0$ for all z in \mathbb{E}, then f is univalent in \mathbb{E}.

For real numbers α, β and $f \in \mathcal{A}, \phi \in \mathcal{S}^{*}$, we define the differential operator $I(\alpha ; f, \phi)$ as

$$
I(\alpha ; f, \phi)=(1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha\left(2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z \phi^{\prime}(z)}{\phi(z)}\right)
$$

and a class $\mathcal{H}_{\alpha}^{\phi}(\beta)$ as under:

$$
\mathcal{H}_{\alpha}^{\phi}(\beta)=\{f \in \mathcal{A}: \Re(I(\alpha ; f, \phi))>\beta, z \in \mathbb{E}\}
$$

We denote $\mathcal{H}_{\alpha}^{z}(\beta)$ simply by $\mathcal{H}_{\alpha}(\beta)$. In fact, the class $\mathcal{H}_{\alpha}(0)$ was first studied, in 1975, by Al-Amiri and Reade [2]. They proved that for $\alpha \leq 0$, each function in $\mathcal{H}_{\alpha}(0)$ satisfies $\Re\left(f^{\prime}(z)\right)>0$ in \mathbb{E} and hence univalent in \mathbb{E}. They left the problem of univalence for $\alpha>0$ (except for $\alpha=1$, where f is convex, obviously) open. Ahuja and Silverman [1] observed that the convex function $f(z)=z /(1-z)$ is not in $\mathcal{H}_{\alpha}(0)$ for any real $\alpha, \alpha \neq 1$. Further this problem was pursued by Singh et al. [7] and they proved that for $0<\alpha<1$, the class $\mathcal{H}_{\alpha}(\alpha)$ consists of close-to-convex and hence univalent functions. In 2007, Singh et al. [5] studied the class $\mathcal{H}_{\alpha}(\beta)$. They proved that if $f \in \mathcal{H}_{\alpha}(\beta)$, then $\Re\left(f^{\prime}(z)\right)>0$ in \mathbb{E} for all real numbers α, β satisfying $\alpha \leq \beta<1$ and the result is best possible one in the sense that β cannot be replaced by a real number less than α. Their result contains the previous result of Singh et al. [7] and improves the result of Al-Amiri and Reade [2].

In the present paper, we study a more general class $\mathcal{H}_{\alpha}^{\phi}(\beta)$ and establish that the functions in $\mathcal{H}_{\alpha}^{\phi}(\beta)$ are close-to-convex and consequently univalent subject to the condition $\alpha \leq \beta<1$, where α, β are real numbers and ϕ is a starlike function.

2. Preliminary

To prove our result, we shall need the following lemma by Miller [3].
Lemma 2.1. Let \mathbb{D} be a subset of $\mathbb{C} \times \mathbb{C}$ and let $\Phi: \mathbb{D} \rightarrow \mathbb{C}$ be a complex function. For $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}\left(u_{1}, u_{2}, v_{1}, v_{2}\right.$ are reals $)$, let Φ satisfy the following conditions:
(i) $\Phi(u, v)$ is continuous in \mathbb{D},
(ii) $(1,0) \in \mathbb{D}$ and $\Re\{\Phi(1,0)\}>0$;
(iii) $\Re\left\{\left(i u_{2}, v_{1}\right)\right\} \leq 0$ for all $\left(\left(i u_{2}, v_{1}\right) \in \mathbb{D}\right.$ such that $v_{1} \leq-\left(1+u_{2}^{2}\right) / 2$.

Let $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ be regular in the open unit disk \mathbb{E}, such that $\left(p(z), z p^{\prime}(z)\right) \in \mathbb{D}$ for all $z \in \mathbb{E}$. If

$$
\Re\left[\Phi\left(p(z), z p^{\prime}(z)\right)\right]>0, z \in \mathbb{E}
$$

then $\Re(p(z))>0$ in \mathbb{E}.

3. Univalence of Functions in $\mathcal{H}_{\alpha}^{\phi}(\beta)$

Theorem 3.1. Let ϕ be a starlike function and α, β be real numbers such that $\alpha \leq \beta<1$. If $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\Re\left[(1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha\left(2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z \phi^{\prime}(z)}{\phi(z)}\right)\right]>\beta, z \in \mathbb{E}, \tag{3.1}
\end{equation*}
$$

then $\Re\left(\frac{z f^{\prime}(z)}{\phi(z)}\right)>0$ in \mathbb{E}. So f is close-to-convex and hence univalent in \mathbb{E}. The result is sharp in the sense that the constant β on the right hand side of (3.1) cannot be replaced by a constant smaller than α.
Proof. Let $p(z)=\frac{z f^{\prime}(z)}{\phi(z)}$ where $p(0)=1$, is analytic in \mathbb{E}. Then,

$$
(1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha\left(2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z \phi^{\prime}(z)}{\phi(z)}\right)=(1-\alpha) p(z)+\alpha\left(1+\frac{z p^{\prime}(z)}{p(z)}\right)
$$

Thus, condition (3.1) is equivalent to

$$
\begin{equation*}
\Re\left(\frac{1-\alpha}{1-\beta} p(z)+\frac{\alpha}{1-\beta} \frac{z p^{\prime}(z)}{p(z)}+\frac{\alpha-\beta}{1-\beta}\right)>0, z \in \mathbb{E} . \tag{3.2}
\end{equation*}
$$

If $\mathbb{D}=\mathbb{C} \backslash\{0\} \times \mathbb{C}$, define $\Phi(u, v): \mathbb{D} \rightarrow \mathbb{C}$ as under:

$$
\Phi(u, v)=\frac{1-\alpha}{1-\beta} u+\frac{\alpha}{1-\beta} \frac{v}{u}+\frac{\alpha-\beta}{1-\beta} .
$$

Then $\Phi(u, v)$ is continuous in $\mathbb{D},(1,0) \in \mathbb{D}$ and $\Re(\Phi(1,0))=1>0$. Further, in view of (3.2), $\Re\left(\Phi\left(p(z), z p^{\prime}(z)\right)>0, z \in \mathbb{E}\right.$. Let $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$ where u_{1}, u_{2}, v_{1} and v_{2} are all reals. Then, for $\left(i u_{2}, v_{1}\right) \in \mathbb{D}$, with $v_{1} \leq-\frac{1+u_{2}^{2}}{2}$, we have

$$
\begin{aligned}
& \Re\left[\Phi\left(i u_{2}, v_{1}\right)\right]=\Re\left[\frac{1-\alpha}{1-\beta} u_{2} i+\frac{\alpha}{1-\beta} \frac{v_{1}}{u_{2} i}+\frac{\alpha-\beta}{1-\beta}\right] \\
& =\frac{\alpha-\beta}{1-\beta} \leq 0 .
\end{aligned}
$$

In view of Lemma 2.1, proof now follows.
To show that the constant β on the right hand side of (3.1) cannot be replaced by a real number smaller than α, we select the function $f(z)=z e^{z}$ which is a member of class \mathcal{A}, and a starlike function $\phi(z)=\frac{z}{(1-z)^{2}}$. On taking $\alpha=-1$, we have plotted the image of unit disk \mathbb{E} under the operator $(1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha\left(2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z \phi^{\prime}(z)}{\phi(z)}\right)=$ $2(1+z)(1-z)^{2} e^{z}+\frac{4 z^{2}+z^{3}-1}{1-z^{2}}$ in Figure 1. We have noticed that

$$
\Re\left((1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha\left(2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z \phi^{\prime}(z)}{\phi(z)}\right)\right)
$$

is smaller than -1 (chosen value of α). In Figure 2, we have plotted image of unit disc \mathbb{E} under $\frac{z f^{\prime}(z)}{\phi(z)}=(1+z)(1-z)^{2} e^{z}$ and observed that $\Re\left(\frac{z f^{\prime}(z)}{\phi(z)}\right) \ngtr 0$ for all $z \in \mathbb{E}$.

Figure 1

Figure 2

We illustrate the above result with the help of following example:
Example 3.2. On selecting $\phi(z)=\frac{z}{(1-z)^{2}}$ and $f(z)=\frac{z}{(1-z)^{2}}$ in Theorem 3.1, we can easily check that for $\alpha=-1=\beta$,

$$
\Re\left(\frac{1+2 z+3 z^{2}}{1-z^{2}}\right)>-1
$$

implies that $\Re\left(\frac{z f^{\prime}(z)}{\phi(z)}\right)=\Re\left(\frac{1+z}{1-z}\right)>0$, thus f is close-to-convex and hence univalent in \mathbb{E}.

Theorem 3.3. Let ϕ be a starlike function and α, β be real numbers such that $\alpha \geq \beta>1$. If $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\Re\left[(1-\alpha) \frac{z f^{\prime}(z)}{\phi(z)}+\alpha\left(2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z \phi^{\prime}(z)}{\phi(z)}\right)\right]<\beta, z \in \mathbb{E} \tag{3.3}
\end{equation*}
$$

then $\Re\left(\frac{z f^{\prime}(z)}{\phi(z)}\right)>0$ in \mathbb{E}. So f is close-to-convex and hence univalent in \mathbb{E}.
Proof. Write $\frac{z f^{\prime}(z)}{\phi(z)}=p(z)$ and note that $1-\beta<0$, condition (3.3) reduces to

$$
\Re\left[\frac{1-\alpha}{1-\beta} p(z)+\frac{\alpha}{1-\beta} \frac{z p^{\prime}(z)}{p(z)}+\frac{\alpha-\beta}{1-\beta}\right]>0, z \in \mathbb{E} .
$$

The proof can now be completed on the same lines as in Theorem 3.1.
In a special case, when $\phi(z)=z$ in Theorem 3.1, we obtain the following result of Singh et al. [5].
Theorem 3.4. Let α and β be real numbers such that $\alpha \leq \beta<1$. Assume that an analytic function $f \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\Re\left[(1-\alpha) f^{\prime}(z)+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]>\beta, z \in \mathbb{E} \tag{3.4}
\end{equation*}
$$

Then $\Re f^{\prime}(z)>0$ in \mathbb{E}. So, f is close-to-convex and hence univalent in \mathbb{E}. The result is sharp in the sense that the constant β on the right hand side of (3.4) cannot be replaced by a constant smaller than α.

Taking, $\phi(z)=z$ in Theorem 3.3, we obtain the following result of Singh et al. [6].
Theorem 3.5. Let α and β be real numbers such that $\alpha \geq \beta>1$. Assume that an analytic function $f \in \mathcal{A}$ satisfies

$$
\Re\left[(1-\alpha) f^{\prime}(z)+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]<\beta, z \in \mathbb{E}
$$

Then $\Re f^{\prime}(z)>0$ in \mathbb{E}. So, f is close-to-convex and hence univalent in \mathbb{E}.

Acknowledgements

The authors would like to thank the referee(s) for valuable comments and suggestions for the further improvement of this manuscript.

References

[1] O.P. Ahuja and H. Silverman, Classes of functions whose derivatives have positive real part, Journal of Mathematical Analysis and Applications 138 (2) (1989) 385-392.
[2] H.S. Al-Amiri and M. O. Reade, On a linear combination of some expressions in the theory of univalent functions, Monatshefte für Mathematik 80 (1975) 257-264.
[3] S.S. Miller, Differential Inequalities and Carathéodory functions, Bulletin of the American Mathematical Society 81 (1) (1975) 79-81.
[4] K. Noshiro, On the theory of schlicht functions, Journal of the Faculty of Science Hokkaido Imperial University. Ser. 1 Mathematics 2 (3) (1934-35) 129-155.
[5] S. Singh, S. Gupta and S. Singh, On a problem of univalence of functions satisfying a differential inequality, Mathematical Inequalities and Applications 10 (1) (2007) 95-98.
[6] S. Singh, S. Gupta and S. Singh, On a problem in the theory of univalent functions, General Mathematics 17 (3) (2009) 135-139.
[7] V. Singh, S. Singh and S. Gupta, A problem in the theory of univalent functions, Integral Transforms and Special Functions 16 (2) (2005) 179-186.
[8] S.E. Warchawski, On the higher derivatives at the boundary in conformal mappings, Transactions of the American Mathematical Society 38 (2) (1935) 310-340.

