Thai Journal of **Math**ematics Volume 20 Number 2 (2022) Pages 557–562

http://thaijmath.in.cmu.ac.th

A Class of Close-to-Convex Functions Satisfying a Differential Inequality

Pardeep Kaur^{1,*} and Sukhwinder Singh Billing²

¹ Department of Applied Sciences, Baba Banda Singh Bahadur Engineering College, Fatehgarh Sahib-140407, Punjab, India

e-mail: aradhitadhiman@gmail.com

² Department of Mathematics, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140407, Punjab, India e-mail: ssbilling@gmail.com

Abstract Let $\mathcal{H}^{\phi}_{\alpha}(\beta)$ denote the class of functions f, analytic in the open unit disk \mathbb{E} , which satisfy the condition

$$\Re\left[(1-\alpha)\frac{zf'(z)}{\phi(z)} + \alpha\left(2 + \frac{zf''(z)}{f'(z)} - \frac{z\phi'(z)}{\phi(z)}\right)\right] > \beta, \ z \in \mathbb{E},$$

where α , β are pre-assigned real numbers and ϕ is a starlike function in \mathbb{E} . In the present paper, we prove that members of the class $\mathcal{H}^{\phi}_{\alpha}(\beta)$ are close-to-convex and hence univalent for real numbers α , β , $\alpha \leq \beta < 1$ and for a starlike function ϕ .

MSC: 30C45

Keywords: analytic function; univalent function; close-to-convex function

Submission date: 07.05.2019 / Acceptance date: 18.01.2022

1. INTRODUCTION

Let \mathcal{A} be the class of functions f, analytic in the open unit disk $\mathbb{E} = \{z : |z| < 1\}$ and normalized by the conditions f(0) = f'(0) - 1 = 0. A function $f \in \mathcal{A}$ is said to be starlike if and only if

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > 0, \ z \in \mathbb{E}.$$

We denote the class of starlike functions by \mathcal{S}^* . Let \mathcal{K} denote the class of convex functions f with $f'(0) \neq 0$ so that

$$\Re\left(1+\frac{zf''(z)}{f'(z)}\right) > 0, \ z \in \mathbb{E}.$$

Published by The Mathematical Association of Thailand. Copyright \bigodot 2022 by TJM. All rights reserved.

^{*}Corresponding author.

A function $f \in \mathcal{A}$ is said to be close-to-convex for a starlike function ϕ if

$$\Re\left(\frac{zf'(z)}{\phi(z)}\right) > 0, \ z \in \mathbb{E}.$$

This is well known that a close-to-convex function is univalent. In 1934/35, Noshiro [4] and Warchawski [8], independently, proved that if an analytic function f satisfies $\Re(f'(z)) > 0$ for all z in \mathbb{E} , then f is univalent in \mathbb{E} .

For real numbers α , β and $f \in \mathcal{A}$, $\phi \in \mathcal{S}^*$, we define the differential operator $I(\alpha; f, \phi)$ as

$$I(\alpha; f, \phi) = (1 - \alpha)\frac{zf'(z)}{\phi(z)} + \alpha \left(2 + \frac{zf''(z)}{f'(z)} - \frac{z\phi'(z)}{\phi(z)}\right)$$

and a class $\mathcal{H}^{\phi}_{\alpha}(\beta)$ as under:

$$\mathcal{H}^{\phi}_{\alpha}(\beta) = \{ f \in \mathcal{A} : \Re(I(\alpha; f, \phi)) > \beta, \ z \in \mathbb{E} \}.$$

We denote $\mathcal{H}^{z}_{\alpha}(\beta)$ simply by $\mathcal{H}_{\alpha}(\beta)$. In fact, the class $\mathcal{H}_{\alpha}(0)$ was first studied, in 1975, by Al-Amiri and Reade [2]. They proved that for $\alpha \leq 0$, each function in $\mathcal{H}_{\alpha}(0)$ satisfies $\Re(f'(z)) > 0$ in \mathbb{E} and hence univalent in \mathbb{E} . They left the problem of univalence for $\alpha > 0$ (except for $\alpha = 1$, where f is convex, obviously) open. Ahuja and Silverman [1] observed that the convex function f(z) = z/(1-z) is not in $\mathcal{H}_{\alpha}(0)$ for any real $\alpha, \alpha \neq 1$. Further this problem was pursued by Singh et al. [7] and they proved that for $0 < \alpha < 1$, the class $\mathcal{H}_{\alpha}(\alpha)$ consists of close-to-convex and hence univalent functions. In 2007, Singh et al. [5] studied the class $\mathcal{H}_{\alpha}(\beta)$. They proved that if $f \in \mathcal{H}_{\alpha}(\beta)$, then $\Re(f'(z)) > 0$ in \mathbb{E} for all real numbers α, β satisfying $\alpha \leq \beta < 1$ and the result is best possible one in the sense that β cannot be replaced by a real number less than α . Their result contains the previous result of Singh et al. [7] and improves the result of Al-Amiri and Reade [2].

In the present paper, we study a more general class $\mathcal{H}^{\phi}_{\alpha}(\beta)$ and establish that the functions in $\mathcal{H}^{\phi}_{\alpha}(\beta)$ are close-to-convex and consequently univalent subject to the condition $\alpha \leq \beta < 1$, where α, β are real numbers and ϕ is a starlike function.

2. Preliminary

To prove our result, we shall need the following lemma by Miller [3].

Lemma 2.1. Let \mathbb{D} be a subset of $\mathbb{C} \times \mathbb{C}$ and let $\Phi : \mathbb{D} \to \mathbb{C}$ be a complex function. For $u = u_1 + iu_2, v = v_1 + iv_2$ $(u_1, u_2, v_1, v_2 \text{ are reals})$, let Φ satisfy the following conditions:

- (i) $\Phi(u, v)$ is continuous in \mathbb{D} ,
- (ii) $(1,0) \in \mathbb{D}$ and $\Re{\Phi(1,0)} > 0;$
- (iii) $\Re\{(iu_2, v_1)\} \leq 0$ for all $((iu_2, v_1) \in \mathbb{D}$ such that $v_1 \leq -(1 + u_2^2)/2$.

Let $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$ be regular in the open unit disk \mathbb{E} , such that $(p(z), zp'(z)) \in \mathbb{D}$ for all $z \in \mathbb{E}$. If

$$\Re[\Phi(p(z), zp'(z))] > 0, \ z \in \mathbb{E}$$

then $\Re(p(z)) > 0$ in \mathbb{E} .

3. Univalence of Functions in $\mathcal{H}^{\phi}_{\alpha}(\beta)$

Theorem 3.1. Let ϕ be a starlike function and α , β be real numbers such that $\alpha \leq \beta < 1$. If $f \in \mathcal{A}$ satisfies

$$\Re\left[(1-\alpha)\frac{zf'(z)}{\phi(z)} + \alpha\left(2 + \frac{zf''(z)}{f'(z)} - \frac{z\phi'(z)}{\phi(z)}\right)\right] > \beta, \ z \in \mathbb{E},$$
(3.1)

then $\Re\left(\frac{zf'(z)}{\phi(z)}\right) > 0$ in \mathbb{E} . So f is close-to-convex and hence univalent in \mathbb{E} . The result is sharp in the sense that the constant β on the right hand side of (3.1) cannot be replaced by a constant smaller than α .

Proof. Let
$$p(z) = \frac{zf'(z)}{\phi(z)}$$
 where $p(0) = 1$, is analytic in \mathbb{E} . Then,
 $(1-\alpha)\frac{zf'(z)}{\phi(z)} + \alpha \left(2 + \frac{zf''(z)}{f'(z)} - \frac{z\phi'(z)}{\phi(z)}\right) = (1-\alpha)p(z) + \alpha \left(1 + \frac{zp'(z)}{p(z)}\right)$

Thus, condition (3.1) is equivalent to

$$\Re\left(\frac{1-\alpha}{1-\beta}p(z) + \frac{\alpha}{1-\beta}\frac{zp'(z)}{p(z)} + \frac{\alpha-\beta}{1-\beta}\right) > 0, \ z \in \mathbb{E}.$$
(3.2)

If $\mathbb{D} = \mathbb{C} \setminus \{0\} \times \mathbb{C}$, define $\Phi(u, v) : \mathbb{D} \to \mathbb{C}$ as under:

$$\Phi(u,v) = \frac{1-\alpha}{1-\beta}u + \frac{\alpha}{1-\beta}\frac{v}{u} + \frac{\alpha-\beta}{1-\beta}.$$

Then $\Phi(u, v)$ is continuous in \mathbb{D} , $(1,0) \in \mathbb{D}$ and $\Re(\Phi(1,0)) = 1 > 0$. Further, in view of (3.2), $\Re(\Phi(p(z), zp'(z)) > 0, z \in \mathbb{E}$. Let $u = u_1 + iu_2, v = v_1 + iv_2$ where u_1, u_2, v_1 and v_2 are all reals. Then, for $(iu_2, v_1) \in \mathbb{D}$, with $v_1 \leq -\frac{1+u_2^2}{2}$, we have

$$\Re[\Phi(iu_2, v_1)] = \Re\left[\frac{1-\alpha}{1-\beta}u_2i + \frac{\alpha}{1-\beta}\frac{v_1}{u_2i} + \frac{\alpha-\beta}{1-\beta}\right]$$
$$= \frac{\alpha-\beta}{1-\beta} \le 0.$$

In view of Lemma 2.1, proof now follows.

To show that the constant β on the right hand side of (3.1) cannot be replaced by a real number smaller than α , we select the function $f(z) = ze^z$ which is a member of class \mathcal{A} , and a starlike function $\phi(z) = \frac{z}{(1-z)^2}$. On taking $\alpha = -1$, we have plotted the image of unit disk \mathbb{E} under the operator $(1-\alpha)\frac{zf'(z)}{\phi(z)} + \alpha\left(2 + \frac{zf''(z)}{f'(z)} - \frac{z\phi'(z)}{\phi(z)}\right) = 2(1+z)(1-z)^2e^z + \frac{4z^2+z^3-1}{1-z^2}$ in Figure 1. We have noticed that $\Re\left((1-\alpha)\frac{zf'(z)}{\phi(z)} + \alpha\left(2 + \frac{zf''(z)}{f'(z)} - \frac{z\phi'(z)}{\phi(z)}\right)\right)$ is smaller than -1 (chosen value of α). In Figure 2, we have plotted image of unit disk \mathbb{E}

is smaller than -1 (chosen value of α). In Figure 2, we have plotted image of unit disc \mathbb{E} under $\frac{zf'(z)}{\phi(z)} = (1+z)(1-z)^2 e^z$ and observed that $\Re\left(\frac{zf'(z)}{\phi(z)}\right) \neq 0$ for all $z \in \mathbb{E}$.

Figure 1

Figure 2

We illustrate the above result with the help of following example:

Example 3.2. On selecting $\phi(z) = \frac{z}{(1-z)^2}$ and $f(z) = \frac{z}{(1-z)^2}$ in Theorem 3.1, we can easily check that for $\alpha = -1 = \beta$,

$$\Re\left(\frac{1+2z+3z^2}{1-z^2}\right) > -1$$

implies that $\Re\left(\frac{zf'(z)}{\phi(z)}\right) = \Re\left(\frac{1+z}{1-z}\right) > 0$, thus f is close-to-convex and hence univalent in \mathbb{E} .

Theorem 3.3. Let ϕ be a starlike function and α , β be real numbers such that $\alpha \geq \beta > 1$. If $f \in \mathcal{A}$ satisfies

$$\Re\left[(1-\alpha)\frac{zf'(z)}{\phi(z)} + \alpha\left(2 + \frac{zf''(z)}{f'(z)} - \frac{z\phi'(z)}{\phi(z)}\right)\right] < \beta, \ z \in \mathbb{E},$$
(3.3)

then $\Re\left(\frac{zf'(z)}{\phi(z)}\right) > 0$ in \mathbb{E} . So f is close-to-convex and hence univalent in \mathbb{E} .

Proof. Write $\frac{zf'(z)}{\phi(z)} = p(z)$ and note that $1 - \beta < 0$, condition (3.3) reduces to

$$\Re\left[\frac{1-\alpha}{1-\beta}p(z) + \frac{\alpha}{1-\beta}\frac{zp'(z)}{p(z)} + \frac{\alpha-\beta}{1-\beta}\right] > 0, \ z \in \mathbb{E}.$$

The proof can now be completed on the same lines as in Theorem 3.1.

In a special case, when $\phi(z) = z$ in Theorem 3.1, we obtain the following result of Singh et al. [5].

Theorem 3.4. Let α and β be real numbers such that $\alpha \leq \beta < 1$. Assume that an analytic function $f \in A$ satisfies

$$\Re\left[(1-\alpha)f'(z) + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right] > \beta, \ z \in \mathbb{E}.$$
(3.4)

Then \Re f'(z) > 0 in \mathbb{E} . So, f is close-to-convex and hence univalent in \mathbb{E} . The result is sharp in the sense that the constant β on the right hand side of (3.4) cannot be replaced by a constant smaller than α .

Taking, $\phi(z) = z$ in Theorem 3.3, we obtain the following result of Singh et al. [6].

Theorem 3.5. Let α and β be real numbers such that $\alpha \geq \beta > 1$. Assume that an analytic function $f \in A$ satisfies

$$\Re\left[(1-\alpha)f'(z) + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right] < \beta, \ z \in \mathbb{E}.$$

Then $\Re f'(z) > 0$ in \mathbb{E} . So, f is close-to-convex and hence univalent in \mathbb{E} .

Acknowledgements

The authors would like to thank the referee(s) for valuable comments and suggestions for the further improvement of this manuscript.

References

- O.P. Ahuja and H. Silverman, Classes of functions whose derivatives have positive real part, Journal of Mathematical Analysis and Applications 138 (2) (1989) 385–392.
- [2] H.S. Al-Amiri and M. O. Reade, On a linear combination of some expressions in the theory of univalent functions, Monatshefte f
 ür Mathematik 80 (1975) 257–264.
- [3] S.S. Miller, Differential Inequalities and Carathéodory functions, Bulletin of the American Mathematical Society 81 (1) (1975) 79–81.

- [4] K. Noshiro, On the theory of schlicht functions, Journal of the Faculty of Science Hokkaido Imperial University. Ser. 1 Mathematics 2 (3) (1934-35) 129–155.
- [5] S. Singh, S. Gupta and S. Singh, On a problem of univalence of functions satisfying a differential inequality, Mathematical Inequalities and Applications 10 (1) (2007) 95–98.
- [6] S. Singh, S. Gupta and S. Singh, On a problem in the theory of univalent functions, General Mathematics 17 (3) (2009) 135–139.
- [7] V. Singh, S. Singh and S. Gupta, A problem in the theory of univalent functions, Integral Transforms and Special Functions 16 (2) (2005) 179–186.
- [8] S.E. Warchawski, On the higher derivatives at the boundary in conformal mappings, Transactions of the American Mathematical Society 38 (2) (1935) 310–340.