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Abstract The aim of this paper is to propose some new tripled coincidence and tripled fixed point

theorems in the natural setting of metric spaces. First, we introduce the notion of multivalued almost

Fδ-contraction endowed with suitable examples. Second, we utilize the established results to derive

stability for the tripled coincidence point sets. Final section is devoted to the application part, where

we apply our results to establish the existence of solution of matrix equations and integral inclusions so

as to demonstrate the materiality and viability of our results, which is further garnished by a numerical

experiment.
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1. Introduction and Basic Facts

In 1969, Nadler[14] introduced the concept of multivalued mappings and proved fixed
point for such mappings in the framework of complete metric spaces. Inspired by the idea
given in [14], Fisher[9] proved different type of fixed point results for multivalued cases
with following notations:
Let (Y, σ) be a metric space (in short m.s.) and CB(Y ), the family of all non-empty
closed and bounded subsets of Y , Consider P,Q ∈ CB(Y ),

δ(P,Q) = sup{σ(a, b) : a ∈ P, b ∈ Q}
D(a,Q) = inf{σ(a, b) : b ∈ Q}.
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Berinde and Pacurar [5] defined Pompeiu-Housdorff distance H as follows:

H(P,Q) = max{sup
a∈Q

D(a, P ), sup
a∈P

D(a,Q)}. (1.1)

Recently in 2012, Wardowski [23] described a new contraction called F-contraction and
acquired a fixed point result as a generalization of Banach contraction principle for a
single valued mapping S : Y → Y as follows:

∀a, b ∈ Y,
(
σ(Sa, Sb) > 0 =⇒ τ + F(σ(Sa, Sb)) ≤ F(σ(a, b))

)
,

where τ > 0 and F : R+ → R is a mapping satisfying the following conditions:

(F1) F is strictly increasing, that is, for α, β ∈ R+ such that α < β implies F(α) <
F(β);

(F2) for each sequence {αn} of positive numbers lim
n→∞

αn = 0 if and only if lim
n→∞

F(αn) =

−∞;
(F3) there exists k ∈ (0, 1) such that lim

α→0+
αkF(α) = 0.

We denote by =, the set of all functions satisfying (F1), (F2), (F3). For more synthesis
on F-contraction, we refer the reader to [10, 11, 21, 22] and the references therein.

Influenced by this innovative Wardowski-technique, Acar[2] enunciated some novel re-
sults for multivalued mappings by using the concept of δ and D-distances.

Definition 1.1. [2] Let (Y, σ) be a m.s. and B(Y ) denote the family of all bounded subset
of Y , then the mapping S : Y → B(Y ) is called a multivalued almost Fδ-contraction if
F ∈ = and there exists τ > 0 and K ≥ 0 such that

τ + F(δ(Sa, Sb)) ≤ F(m(a, b) +KD(b, Sa)) for all a, b ∈ Y. (1.2)

With min{δ(Sa, Sb), σ(a, b)} > 0, where

m(a, b) = max{σ(a, b), D(a, Sa), D(b, Sb),
1

2
[D(a, Sb) +D(b, Sa)]}.

Theorem 1.2. [2] Let (Y, σ) be a complete m.s.,B(Y ) denote the family of all bounded
subset of Y and S : Y → B(Y ) be a multivalued almost Fδ-contraction. If F is continuous
and Sa is closed for all a ∈ Y , then S has a fixed point in Y .

Following Concept was introduced in [18], which is necessary for the succeeding anal-
ysis.

Definition 1.3. [18] Let Y be a non-empty set and F : Y N → Y be a given mapping
(N ≥ 2). An element (a1, a2, ..., aN ) ∈ Y N is said to be fixed point of N−order of the
mapping F if

a1 = F(a1, a2, ..., aN )

a2 = F(a2, a3, ..., aN , a1)

...

aN = F(aN , a1, ..., aN−1).

(1.3)

If N = 3,then we have:
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Definition 1.4. [18] Let Y be a non-empty set, an element (a, b, c) ∈ Y 3 is called a
tripled fixed point(in short TFP ) of F : Y 3 → Y if

F(a, b, c) = a, F(b, c, a) = b, F(c, a, b) = c.

In the situation of ordered sets with mixed monotone property, Berinde et.al.[4] defined
differently the concept of TFP in a different way as below:

Definition 1.5. [4] Let Y be a non-empty set, an element (a, b, c) ∈ Y 3 is called a TFP
of F : Y 3 → Y if

F(a, b, c) = a, F(b, a, b) = b, F(c, b, a) = c.

For multivalued case the concept of TFP was introduced in [1] as:

Definition 1.6. [1] Let Y be a non-empty set and CL(Y ) denotes the family of all colsed
subsets of Y . Then, an element (a, b, c) ∈ Y 3 is called a TFP of F : Y 3 → CL(Y ) if

a ∈ F(a, b, c), b ∈ F(b, c, a), c ∈ F(c, a, b).

Stability of fixed point sets has always been a core area of interest for many researchers.
Some note worthy contribution can be seen in papers like [6], [7], [13]. In a paper [3]
authors established fixed point results for generalized almost contractions. Radenovic et.al
[17] propounded an alternative approach to fixed point results via simulation function.
On the other hand, following Lemma is due to [15].

Lemma 1.7. [15] Let (Y, σ) be metric space, P,Q ∈ CB(Y ) and r > 1. Then for each
p ∈ P , there exists q ∈ Q, such that σ(p, q) ≤ rH(P,Q).

Definition 1.8. [20] Let (Y, σ) be a m.s., {S : Y → CB(Y )} be a multivalued mapping
and h : Y → Y a single valued mapping. The pair of mappings (h, S) is said to be
compatible, if lim

n→∞
D(hyn+1, Shxn) = 0, whenever {xn} and {yn} are sequences in Y ,

such that lim
n→∞

hxn = yn = l, for some l in Y , where yn+1 ∈ Sxn for n = 1, 2, 3...

Using the concept of δ-distance and F-contraction, in this paper, we introduce some
newfangled tripled coincidence point and tripled fixed point results concerning almost
Fδ-contraction for multivalued mappings. Proved results are hosted by a series of good
examples, thereby giving better understanding of the proposed results. Moreover, stability
results for tripled coincidence point sets are also discussed followed by a suitable example.
Another purpose to set up the fixed point results is that our results are utilized to establish
the existence of solution of integral inclusions and matrix equations. At the end, for
application point of view, we also propose an open problem for future scope of the study.
In the rest of the paper C(Y ) denotes the family of non empty compact subsets of Y .

2. Tripled Fixed Point Results

We begin our work by introducing following definitions:

Definition 2.1. Consider (Y, σ) as a m.s. and S : Y × Y × Y → C(Y ) be a multivalued
mapping. Then S is called almost Fδ-contraction, if F ∈ = and there exists τ > 0 and
K ≥ 0, such that

τ + F(δ(S(a, b, c), S(p, q, r)) + δ(S(b, c, a), S(q, r, p)) + δ(S(c, a, b), S(r, p, q)))

≤ F(M(a, b, c, p, q, r) +KN(a, b, c, p, q, r)) for all a, b, c, p, q, r ∈ Y. (2.1)
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Where

M(a, b, c, p, q, r) = max{σ(a, p) + σ(b, q) + σ(c, r), D(a, S(a, b, c))

+D(b, S(b, c, a)) +D(c, S(c, a, b)), D(p, S(p, q, r))

+D(q, S(q, r, p)) +D(r, S(r, p, q))}
N(a, b, c, p, q, r) = D(p, S(a, b, c)) +D(q, S(b, c, a)) +D(r, S(c, a, b)).

Definition 2.2. Consider (Y, σ) as a m.s. and S : Y × Y × Y → C(Y ) be a multivalued
mapping. Then S is said to be almost Fδ-contraction with respect to a self mapping
h : Y → Y , if F ∈ = and there exists τ > 0 and K ≥ 0 such that

τ + F(δ(S(a, b, c), S(p, q, r)) + δ(S(b, c, a), S(q, r, p)) + δ(S(c, a, b), S(r, p, q)))

≤ F(M(a, b, c, p, q, r) +KN(a, b, c, p, q, r)) for all a, b, c, p, q, r ∈ Y. (2.2)

Where

M(a, b, c, p, q, r) = max{σ(ha, hp) + σ(hb, hq) + σ(hc, hr), D(ha, S(a, b, c))

+D(hb, S(b, c, a)) +D(hc, S(c, a, b)), D(hp, S(p, q, r))

+D(hq, S(q, r, p)) +D(hr, S(r, p, q))}
N(a, b, c, p, q, r) =D(hp, S(a, b, c)) +D(hq, S(b, c, a)) +D(hr, S(c, a, b)).

Definition 2.3. Let Y be a nonempty set, h : Y → Y a single valued mapping and
S : Y ×Y ×Y → C(Y ) be a multivalued mapping. An element (a, b, c) ∈ Y ×Y ×Y is called
a tripled coincidence point (in short TCP ) of h and S if ha ∈ S(a, b, c), hb ∈ S(b, c, a)
and hc ∈ S(c, a, b).The set of all coincidence points of h and S is denoted by C(h, S).

Note that Definition 2.2 and Definition 2.3 coincide with Definition 2.1 and Definition
1.6 respectively if h taken to be an identity mapping.

Theorem 2.4. Let (Y, σ) be a complete m.s., h : Y → Y a single valued mapping and
S : Y ×Y ×Y → C(Y ) be a multivalued almost Fδ-contraction with respect to h. Suppose
that

(i) S(Y × Y × Y ) ⊆ h(Y )
(ii) h is continuous

(iii) The pair of mappings (h, S) is compatible.

Then, C(h, S) is non-empty.

Proof. Let (x0, y0, z0) ∈ Y ×Y ×Y , then there exists x1 ∈ S(x0, y0, z0), y1 ∈ S(y0, z0, x0),
z1 ∈ S(z0, x0, y0).
Since S(Y ×Y ×Y ) ⊆ h(Y ), there exists x2, y2, z2 such that hx2 = x1, hy2 = y1, hz2 = z1.
Again for (x2, y2, z2) ∈ Y × Y × Y there exists x3 ∈ S(x2, y2, z2), y3 ∈ S(y2, z2, x2), z3 ∈
S(z2, x2, y2) and also x4, y4, z4 ∈ Y such that hx4 = x3, hy4 = y3, hz4 = z3. Continuing
this process, we get sequences

x2n−1 = hx2n, y2n−1 = hy2n, z2n−1 = hz2n

also

x2n−1 = hx2n ∈ S(x2n−2, y2n−2, z2n−2),

y2n−1 = hy2n ∈ S(y2n−2, z2n−2, x2n−2),

z2n−1 = hz2n ∈ S(z2n−2, x2n−2, y2n−2).



Applications of Multivalued Fδ-Contraction with Stability Results 531

Consider

τ + F(σ(hx2, hx4) + σ(hy2, hy4) + σ(hz2, hz4)

≤ τ + F(δ(S(x0, y0, z0), S(x2, y2, z2)) + δ(S(y0, z0, x0), S(y2, z2, x2))

+ δ(S(z0, x0, y0), S(z2, x2, y2))). (2.3)

By applying (2.2), we get

τ + F(σ(hx2, hx4) + σ(hy2, hy4) + σ(hz2, hz4))

≤ F(max{σ(hx0, hx2) + σ(hy0, hy2) + σ(hz0, hz2),

D(hx0, S(x0, y0, z0)) +D(hy0, S(y0, z0, x0)) +D(hz0, S(z0, x0, y0)),

D(hx2, S(x2, y2, z2)) +D(hy2, S(y2, z2, x2)) +D(hz2, S(z2, x2, y2))}
+K{D(hx2, S(x0, y0, z0)) +D(hy2, S(y0, z0, x0)) +D(hz2, S(z0, x0, y0))})
≤ F(max{σ(hx0, hx2) + σ(hy0, hy2) + σ(hz0, hz2),

σ(hx0, hx2) + σ(hy0, hy2) + σ(hz0, hz2),

σ(hx2, hx4) + σ(hy2, hy4) + σ(hz2, hz4)}
+K{σ(hx2, hx2) + σ(hy2, hy2) + σ(hz2, hz2)}
≤ F(max{σ(hx0, hx2) + σ(hy0, hy2) + σ(hz0, hz2),

σ(hx2, hx4) + σ(hy2, hy4) + σ(hz2, hz4)}).
(2.4)

Let δ2n−2 = σ(hx2n−2, hx2n) + σ(hy2n−2, hy2n) + σ(hz2n−2, hz2n),

then τ + F(δ2) ≤ F(max{δ0, δ2}). Set M = max{δ0, δ2}.
If M = δ2, then τ + F(δ2) ≤ F(δ2), which is a contradiction.
Thus M = δ0, so

τ + F(δ2) ≤ F(δ0)

F(δ2) ≤ F(δ0)− τ.

Maintaining the above procedure, we get

F(δ2n) ≤ F(δ2n−2)− τ ≤ F(δ2n−4)− 2τ... ≤ F(δ0)− nτ. (2.5)

From (2.5), we get limn→∞ F(δ2n) = −∞, and from (F2) we get limn→∞ δ2n = 0, from
(F3), there exists k ∈ (0, 1) such that limn→∞ δk2nF (δ2n) = 0.
By (2.5), the following holds for all n ∈ N

δk2nF(δ2n)− δk2nF(δ0) ≤ −nτδk2n ≤ 0. (2.6)

Letting n→∞ in (2.6), we obtain

lim
n→∞

δk2n = 0. (2.7)

From (2.7), there exists n1 ∈ N such that nδk2n ≤ 1 for all n ≥ n1. So we have

δ2n ≤
1

n
1
k

for all n ≥ n1. (2.8)
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Take m,n ∈ N such that m > n ≥ n1.
Using triangle inequality for the metric and from (2.8), we have

σ(hx2n, hx2m) + σ(hy2n, hy2m) + σ(hz2n, hz2m)

≤ σ(hx2n, hx2n+2) + ...+ σ(hx2m−2, hx2m)

+ σ(hy2n, hy2n+2) + ...+ σ(hy2m−2, hy2m)

+ σ(hz2n, hz2n+2) + ...+ σ(hz2m−2, hz2m)

≤ σ(hx2n, hx2n+2) + σ(hy2n, hy2n+2) + σ(hz2n, hz2n+2)

+ ...+ σ(hx2m−2, hx2m) + σ(hy2m−2, hy2m) + σ(hz2m−2, hz2m)

≤ δ2n + δ2n+2 + ...+ δ2m−2

=

m−1∑
i=n

δ2i

≤
∞∑
i=n

δ2i

≤
∞∑
i=n

1

i
1
k

.

With the convergence of
∑∞
i=n

1

i
1
k

, we get

σ(hx2n, hx2m) + σ(hy2n, hy2m) + σ(hz2n, hz2m)→ 0 as n→∞,

it gives

σ(hx2n, hx2m)→ 0, σ(hy2n, hy2m)→ 0, σ(hz2n, hz2m)→ 0.

Hence {hx2n},{hy2n} and {hz2n} are Cauchy sequences.
Completeness of X implies there exists (x, y, z) ∈ Y × Y × Y such that
x2n−1 = hx2n → x,y2n−1 = hy2n → y and z2n−1 = hz2n → z as n→∞.
By the compatibility of pair (h, S), we have

lim
n→∞

D(hx2n−1, S(hx2n, hy2n, hz2n)) = 0

lim
n→∞

D(hy2n−1, S(hy2n, hz2n, hx2n)) = 0

lim
n→∞

D(hz2n−1, S(hz2n, hx2n, hy2n)) = 0.

Since D and h are continuous, we have

D(hx, S(x, y, z)) = 0

D(hy, S(y, z, x)) = 0

D(hz, S(z, x, y)) = 0.

Since S(x, y, z), S(y, z, x), S(z, x, y) are Compact and hence closed.
i.e.

S̄(x, y, z) = S(x, y, z), S̄(y, z, x) = S(y, z, x), S̄(z, x, y) = S(z, x, y),

implies

hx ∈ S(x, y, z), hy ∈ S(y, z, x), hz ∈ S(z, x, y)
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i.e. (x, y, z) ∈ C(h, S). Hence (x, y, z) is TCP of h and S.
This completes the proof.

Example 2.5. Let Y = [0, 1] with usual metric σ, be a complete m.s., define a mul-
tivalued mapping S : Y × Y × Y → C(Y ), by S(x, y, z) = {x3} with the self mapping

h : Y → Y by hx = x2and consider F(α) = logα with K = 0 and 0 < τ < log3. We claim
that S is almost Fδ-contraction with respect to h and also satisfy all other conditions of
Theorem 2.4. Hence (0, 0, 0) is the TCP , of the pair (h, S), which is unique.

Example 2.6. If we consider S(x, y, z) = {x+y+z3 }, with the self mapping h and other
parameters incuding metric space as in above example. We claim that S is almost Fδ-
contraction with respect to h and also satisfy all other conditions of Theorem 2.4. Hence
(0, 0, 0) and (1, 1, 1) are TCP of the pair (h, S). Thus our theorem gives the guarantee
for TCP but not for uniqueness.

Theorem 2.7. Let (Y, σ) be a complete m.s. and S : Y ×Y ×Y → C(Y ) be a multivalued
almost Fδ-contraction, then S has a TFP .

Proof. Let (x0, y0, z0) ∈ Y ×Y ×Y , then there exists x1 ∈ S(x0, y0, z0),y1 ∈ S(y0, z0, x0),
z1 ∈ S(z0, x0, y0) and for x1, y1, z1 ∈ Y , there exists x2, y2, z2 ∈ Y such that x2 ∈
S(x1, y1, z1), y2 ∈ S(y1, z1, x1), z2 ∈ S(z1, x1, y1). Continuing this process, we get se-
quences

xn+1 ∈ S(xn, yn, zn), yn+1 ∈ S(yn, zn, xn), zn+1 ∈ S(zn, xn, yn).

Maintaining the same process as in Theorem 2.4, we have {xn},{yn}and {zn} are Cauchy
sequences.
Completeness of Y implies that, there exists (x, y, z) ∈ Y × Y × Y , such that
xn → x, yn → y and zn → z as n→∞.
Since, we have

D(xn+1, S(xn, yn, zn)) = 0,

D(yn+1, S(yn, zn, xn)) = 0,

D(zn+1, S(zn, xn, yn)) = 0.

Letting n→∞ , we have

D(x, S(x, y, z)) = 0,

D(y, S(y, z, x)) = 0,

D(z, S(z, x, x)) = 0.

Since S(x, y, z), S(y, z, x), S(z, x, y) are compact and hence closed.
i.e.

S̄(x, y, z) = S(x, y, z), S̄(y, z, x) = S(y, z, x), S̄(z, x, y) = S(z, x, y)

implies

x ∈ S(x, y, z), y ∈ S(y, z, x), z ∈ S(z, x, y)

Hence (x, y, z) is TFP of S. This completes the proof.

Remark 2.8. It is worth noting that as a consequence of Theorem 2.7 if we take S :
Y × Y × Y → Y as a single valued mapping and if S satisfies the same inequality as in
Theorem 2.7 with σ (metric) in palce of δ and D distances, then S has TFP .
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3. Stability Results for Tripled Coincidence Point Sets

Lemma 3.1. Let (Y, σ) be a m.s., h : Y → Y a single valued mapping and {Sn :
Y × Y × Y → C(Y )} be a sequence of multivalued almost Fδ-contractions with respect to
h, which is uniformly convergent to S : Y × Y × Y → C(Y ), then S is also a multivalued
almost Fδ-contraction with respect to h.

Proof. Since Sn for all n ≥ 1, is multivalued almost Fδ-contraction with respect to h, thus
τ + F(δ(Sn(x, y, z), Sn(u, v, w)) + δ(Sn(y, z, x), Sn(v, w, u)) + δ(Sn(z, x, y), Sn(w, u, v)))

≤ F(max{σ(hx, hu) + σ(hy, hv) + σ(hz, hw), D(hx, Sn(x, y, z))

+D(hy, Sn(y, z, x)) +D(hz, Sn(z, x, y)), D(hu, Sn(u, v, w))

+D(hv, Sn(v, w, u)) +D(hw, Sn(w, u, v))}+KD(hu, Sn(x, y, z))

+D(hv, Sn(y, z, x)) +D(hw, Sn(z, x, y))),

(3.1)

for all x, y, z, u, v, w ∈ Y.
Letting n→∞ and {Sn} converges uniformly to S, then
τ + F(δ(S(x, y, z), S(u, v, w)) + δ(S(y, z, x), S(v, w, u)) + δ(S(z, x, y), S(w, u, v)))

≤ F(max{σ(hx, hu) + σ(hy, hv) + σ(hz, hw), D(hx, S(x, y, z))

+D(hy, S(y, z, x)) +D(hz, S(z, x, y)), D(hu, S(u, v, w))

+D(hv, S(v, w, u)) +D(hw, S(w, u, v))}+KD(hu, S(x, y, z))

+D(hv, S(y, z, x)) +D(hw, S(z, x, y))).

(3.2)

Hence S is almost Fδ-contraction with respect to h.

Theorem 3.2. Let (Y, σ) be a m.s., h : Y → Y a single valued mapping and S1, S2 :
Y × Y × Y → C(Y ) be two multivalued mappings such that the pairs (S1, h) and (S2, h)
satisfy all the conditions of Theorem 2.4 and let Mi = sup{σ(x, hx)+σ(y, hy)+σ(z, hz) :
(x, y, z) ∈ C(h, Si)}, where i=1,2, exists. Then H(C(h, S1), C(h, S2)) ≤ qk + R, where

q > 1, R = max
{
Mi : i = 1, 2},

k = sup{H(S1(x, y, z), S2(x, y, z)) +H(S1(y, z, x), S2(y, z, x)) +H(S1(z, x, y),

S2(z, x, y)) : (x, y, z) ∈ Y × Y × Y
}
.

Proof. By applying Theorem 2.4, we have C(S1, h) and C(S2, h) are non-empty.
Let (x0, y0, z0) ∈ C(S1, h), that is hx0 ∈ S1(x0, y0, z0), hy0 ∈ S1(y0, z0, x0), hz0 ∈ S1(z0, x0, y0).
Applying the Lemma1.7, for every hx0 ∈ S1(x0, y0, z0) there exists x1 = hx2 ∈ S2(x0, y0, z0),
for every hy0 ∈ S1(y0, z0, x0) there exists y1 = hy2 ∈ S2(y0, z0, x0) and for every hz0 ∈
S1(z0, x0, y0) there exists z1 = hz2 ∈ S2(z0, x0, y0), such that

σ(hx0, hx2) ≤ qH(S1(x0, y0, z0), S2(x0, y0, z0))

σ(hy0, hy2) ≤ qH(S1(y0, z0, x0), S2(y0, z0, x0))

σ(hz0, hz2) ≤ qH(S1(z0, x0, y0), S2(z0, x0, y0))

σ(hx0, hx2) + σ(hy0, hy2) + σ(hz0, hz2) ≤ q{H(S1(x0, y0, z0), S2(x0, y0, z0))

+H(S1(y0, z0, x0), S2(y0, z0, x0))

+H(S1(z0, x0, y0), S2(z0, x0, y0))}. (3.3)
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Again, for every hx2 ∈ S2(x0, y0, z0), there exists x3 = hx4 ∈ S2(x2, y2, z2), for ev-
ery hy2 ∈ S2(x0, y0, z0), there exists y3 = hy4 ∈ S2(y2, z2, x2), and for every hz2 ∈
S2(x0, y0, z0), there exists z3 = hz4 ∈ S2(z2, x2, y2), such that

σ(hx2, hx4) ≤ qH(S2(x0, y0, z0), S2(x2, y2, z2))

σ(hy2, hy4) ≤ qH(S2(y0, z0, x0), S2(y2, z2, x2))

σ(hz2, hz4) ≤ qH(S2(z0, x0, y0), S2(z2, x2, y2)).

In this way we can construct the sequences

x2n−1 = hx2n ∈ S2(x2n−2, y2n−2, z2n−2)

y2n−1 = hy2n ∈ S2(y2n−2, z2n−2, x2n−2)

z2n−1 = hz2n ∈ S2(z2n−2, x2n−2, y2n−2).

By processing on the same line to Theorem 2.4 we can establish that {hx2n}, {hy2n} and
{hz2n} are Cauchy sequences.
Completeness of Y ensures that there exists (x, y, z) ∈ Y × Y × Y ,
such that x2n−1 = hx2n → x,y2n−1 = hy2n → y, z2n−1 = hz2n → z as n→∞.
Using compatibility of the pair (S2, h)

lim
n→∞

D(hx2n−1, S2(hx2n, hy2n, hz2n)) = 0

lim
n→∞

D(hy2n−1, S2(hy2n, hz2n, hx2n)) = 0

lim
n→∞

D(hz2n−1, S2(hz2n, hx2n, hy2n)) = 0.

Since h is Continuous, we have

D(hx, S2(x, y, z)) = 0

D(hy, S2(y, z, x)) = 0

D(hz, S2(z, x, y)) = 0.

Since S2(x, y, z), S2(y, z, x), S2(z, x, y) are Compact and hence closed.
i.e.

S̄2(x, y, z) = S2(x, y, z), S̄2(y, z, x) = S2(y, z, x), S̄2(z, x, y) = S2(z, x, y)

implies

hx ∈ S2(x, y, z), hy ∈ S2(y, z, x), hz ∈ S2(z, x, y)

i.e. (x, y, z) ∈ C(S2, h).
Consider

σ(hx0, x) + σ(hy0, y) + σ(hz0, z) ≤
n∑
i=0

σ(hx2i, hx2i+2) + σ(hy2i, hy2i+2)

+ σ(hz2i, hz2i+2) + σ(hx2n+2, x)

+ σ(hy2n+2, y) + σ(hz2n+2, z).
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Letting n→∞, we acquire

σ(hx0, x) + σ(hy0, y) + σ(hz0, z) ≤ σ(hx0, hx2) + σ(hy0, hy2) + σ(hz0, hz2)

+

∞∑
i=1

σ(hx2i, hx2i+2) + σ(hy2i, hy2i+2)

+ σ(hz2i, hz2i+2)

≤ qk +

∞∑
i=1

δ2i

≤ qk +

∞∑
i=1

1

i
1
k

≤ qk, as i →∞.

Again,

σ(x0, x) + σ(y0, y) + σ(z0, z) ≤σ(x0, hx0) + σ(y0, hy0) + σ(z0, hz0)

+ σ(hx0, x) + σ(hy0, y) + σ(hz0, z)

σ(x0, x) + σ(y0, y) + σ(z0, z) ≤qk +R.

(3.4)

Thus, for each (x0, y0, z0) ∈ C(h, S1), there exists (x, y, z) ∈ C(h, S2),
such that σ(x0, x) + σ(y0, y) + σ(z0, z) ≤ qk +R
Similarly for any arbitrary (u0, v0, w0) ∈ C(h, S2), there exists (u, v, w) ∈ C(h, S1)
such that σ(u0, u) + σ(v0, v) + σ(w0, w) ≤ qk +R.
Hence conclude that H(C(h, S1), C(h, S2)) ≤ qk +R.

Theorem 3.3. Let (Y, σ) be a m.s., h : Y → Y a single valued mapping and
{Sn : Y × Y × Y → C(Y )} be a sequence of multivalued almost Fδ-contractions with
respect to h, which is uniformly convergent to S : Y × Y × Y → C(Y ), such that the
pairs (Sn, h) satisfy all the conditions of theorem 2.4, and also (i) S(Y × Y × Y ) ⊆ h(Y )
(ii)The pair of mappings (h, S) is compatible.
Let Mn = sup{σ(x, hx) + σ(y, hy) + σ(z, hz) : (x, y, z) ∈ C(h, Sn) ∪ C(h, S)} and Mn →
0, n→∞. Then lim

n→∞
H(C(h, Sn), C(h, S)) = 0.

Hence the coincidence point sets of the sequence {(h, Sn)} of pair of mappings are stable.

Proof. Since {Sn : Y × Y × Y → C(Y )} be a sequence of multivalued almost Fδ-
contractions with respect to h, which is uniformly convergent to S : Y × Y × Y → C(Y ).
So S is continuous and by Lemma 3.1, also S is multivalued almost Fδ-contractions with
respect to h, and given that S(Y × Y × Y ) ⊆ h(Y ) and the pair of mappings (h, S) is
compatible.
Let kn = sup{H(Sn(x, y, z), S(x, y, z)) +H(Sn(y, z, x), S(y, z, x)) +H(Sn(z, x, y),
S(z, x, y)) : (x, y, z) ∈ Y × Y × Y }.
By uniformly convergence of sequence {Sn} to S.
lim
n→∞

kn = lim
n→∞

sup{H(Sn(x, y, z), S(x, y, z)) +H(Sn(y, z, x), S(y, z, x))

+H(Sn(z, x, y), S(z, x, y)) : (x, y, z) ∈ Y × Y × Y } = 0.
Using Theorem 3.2, we get H(C(h, Sn), C(h, S)) ≤ qkn +Mn.
Hence lim

n→∞
H(C(h, Sn), C(h, S)) ≤ lim

n→∞
(qkn +Mn) = 0.

That is lim
n→∞

H(C(h, Sn), C(h, S)) = 0.
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Example 3.4. Let Y = [0, 1] with usual metric σ be a complete m.s., define a sequence of
multivalued mappings Sn : Y ×Y ×Y → C(Y ), by Sn(x, y, z) = [ 1

3n ,
x+y+z

3 ], with the self

mapping h : Y → Y by hx = x2and consider F(α) = logα with K = 0,and 0 < τ < log3.
We claim that Sn for all n ≥ 1 are almost Fδ-contractions with respect to h and also
satisfy all other conditions of Theorem 2.4,and it observe that Sn(x, y, z) = [x+y+z3 , 1

3n ]

is uniformly convergent to S(x, y, z) = [0, x+y+z3 ].
Also S(Y × Y × Y ) ⊆ h(Y ) and the pair (h, S) is compatible, then
lim
n→∞

H(C(h, Sn), C(h, S)) = 0. Hence coincidence point sets of the sequence {(h, Sn)} of

pair of mappings are stable.

4. Applications

4.1. Application to Integral Inclusions

Take the following system of integral inclusions

a(t) ∈ p(t) +

∫ l

0

γ(t, s)[F ∗(s, a(s)) +G∗(s, b(s)) +H∗(s, c(s))]ds

b(t) ∈ p(t) +

∫ l

0

γ(t, s)[F ∗(s, b(s)) +G∗(s, c(s)) +H∗(s, a(s))]ds

c(t) ∈ p(t) +

∫ l

0

γ(t, s)[F ∗(s, c(s)) +G∗(s, a(s)) +H∗(s, b(s))]ds,

(4.1)

where
(i) F ∗, G∗, H∗ : [0, l]×R→ C(R)(Family of compact subsets of R) are continuous,
(ii) p, a, b, c : [0, l]→ R are continuous,
(iii) γ : [0, l]×R→ [0,∞) is continuous.

Theorem 4.1. Consider the system of integral inclusions 4.1, with the mappings f, g, h :
[0, l] × R → R,such that for all f(s, a(s)) ∈ F ∗(s, a(s))and f(s, b(s)) ∈ F ∗(s, b(s))
g(s, a(s)) ∈ G∗(s, a(s))and g(s, b(s)) ∈ G∗(s, b(s)) h(s, a(s)) ∈ H∗(s, a(s))and h(s, b(s)) ∈
H∗(s, b(s))implies

|f(s, a(s))− f(s, b(s))| ≤ |a(s)− b(s)| e−τ

|g(s, a(s))− g(s, b(s))| ≤ |a(s)− b(s)| e−τ

|h(s, a(s))− h(s, b(s))| ≤ |a(s)− b(s)| e−τ

and

max
t∈[0,l]

∫ l

0

γ(t, s)ds ≤ 1

3l
.

Then, the system of integral inclusion has a solution.

Proof. Let us consider, the space Y = C([0, l], R) of continuous functions on[0, l], with

σ(a, b) = max
t∈[0,l]

|a(t)− b(t)| ; a, b ∈ Y.

Then, obviously (Y, σ) be a complete m.s..
Now define, a mapping S : Y × Y × Y → C(Y ),by
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S(a(t), b(t), c(t)) = p(t) +

∫ l

0

γ(t, s)[F ∗(s, a(s)) +G∗(s, b(s)) +H∗(s, c(s))]ds

S(b(t), c(t), a(t)) = p(t) +

∫ l

0

γ(t, s)[F ∗(s, b(s)) +G∗(s, c(s)) +H∗(s, a(s))]ds

S(c(t), a(t), b(t)) = p(t) +

∫ l

0

γ(t, s)[F ∗(s, c(s)) +G∗(s, a(s)) +H∗(s, b(s))]ds.

(4.2)

Now, for S(a1(t), b1(t), c1(t)), S(a2(t), b2(t), c2(t)) ∈ C(Y ), we have

δ(S(a1(t), b1(t), c1(t)), S(a2(t), b2(t), c2(t)))

= sup{σ(a, b) : a ∈ S(a1(t), b1(t), c1(t)), b ∈ S(a2(t), b2(t), c2(t))}
(4.3)

where a(t) = p(t) +
∫ l
0
γ(t, s)[f(s, a1(s)) + g(s, b1(s)) + h(s, c1(s))]ds

b(t) = p(t) +
∫ l
0
γ(t, s)[f(s, b2(s)) + g(s, c2(s)) + h(s, a2(s))]ds

for some f(s, a1(s)) ∈ F ∗(s, a1(s))and f(s, a2(s)) ∈ F ∗(s, a2(s)) g(s, b1(s)) ∈ G∗(s, b1(s))
and g(s, b2(s)) ∈ G∗(s, b2(s)), h(s, c1(s)) ∈ H∗(s, c1(s))and h(s, c2(s)) ∈ H∗(s, c2(s)).
Now,

|a(t)− b(t)| =

∣∣∣∣∣
∫ l

0

γ(t, s)[f(s, a1(s))− f(s, a2(s)) + g(s, b1(s))− g(s, b2(s))

+ h(s, c1(s))− h(s, c2(s))]ds|

≤
∫ l

0

|γ(t, s)| ds.
∫ l

0

[|f(s, a1(s))− f(s, a2(s))|

+ |g(s, b1(s))− g(s, b2(s))|+ |h(s, c1(s))− h(s, c2(s))|]ds

≤
∫ l

0

|γ(t, s)| ds.
∫ l

0

[|a1(s)− a2(s)| e−τ + |b1(s)− b2(s)| e−τ

+ |c1(s)− c2(s)| e−τ ]ds. (4.4)

Hence, we have

max
t∈[0,l]

|a(t)− b(t)| ≤ max
t∈[0,l]

∫ l

0

|γ(t, s)| ds.
∫ l

0

max
t∈[0,l]

[|a1(t)− a2(t))| e−τ

+ |b1(t)− b2(t)| e−τ + |c1(t)− c2(t))| e−τ ]ds.

This amounts to say that

σ(a, b) ≤ 1

3
max
t∈[0,l]

[|a1(t)− a2(t))|+ |b1(t)− b2(t)|+ |c1(t)− c2(t))|]e−τ

=
1

3
[σ(a1, a2) + σ(b1, b2) + σ(c1, c2)]e−τ .
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Utilizing hypothesis of our theorem, we have

sup{σ(a, b) : a ∈ S(a1(t), b1(t), c1(t)), b ∈ S(a2(t), b2(t), c2(t))} ≤ 1

3
[σ(a1, a2)

+ σ(b1, b2)

+ σ(c1, c2)]e−τ .

δ(S(a1(t), b1(t), c1(t)), S(a2(t), b2(t), c2(t))) ≤ 1

3
[σ(a1, a2) + σ(b1, b2)

+ σ(c1, c2)]e−τ .

By the similar calculations, we have

δ(S(b1(t), c1(t), a1(t)), S(b2(t), c2(t), a2(t))) ≤ 1

3
[σ(b1, b2) + σ(c1, c2)

+ σ(a1, a2)]e−τ .

δ(S(c1(t), a1(t), b1(t)), S(c2(t), a2(t), b2(t))) ≤ 1

3
[σ(c1, c2) + σ(a1, a2)

+ σ(b1, b2)]e−τ .

Taking these three inequalities into account, we arrive at

δ(S(a1(t), b1(t), c1(t)), S(a2(t), b2(t), c2(t))) + δ(S(b1(t), c1(t), a1(t)),

S(b2(t), c2(t), a2(t))) + δ(S(c1(t), a1(t), b1(t)), S(c2(t), a2(t), b2(t)))

≤ [σ(a1, a2) + σ(b1, b2) + σ(c1, c2)]e−τ

≤M(a1, b1, c1, a2, b2, c2)e−τ .

(4.5)

Consequently, passing to logarithms, we get

τ+log(δ(S(a1(t), b1(t), c1(t)), S(a2(t), b2(t), c2(t)))

+ δ(S(b1(t), c1(t), a1(t)), S(b2(t), c2(t), a2(t)))

+ δ(S(c1(t), a1(t), b1(t)), S(c2(t), a2(t), b2(t))))

≤ log(M(a1, b1, c1, a2, b2, c2)).

(4.6)

Consequently, we arrive at

τ+F(δ(S(a1(t), b1(t), c1(t)), S(a2(t), b2(t), c2(t))) + δ(S(b1(t), c1(t), a1(t)),

S(b2(t), c2(t), a2(t))) + δ(S(c1(t), a1(t), b1(t)), S(c2(t), a2(t), b2(t))))

≤ F(M(a1, b1, c1, a2, b2, c2)),

(4.7)

for F(t) = logt, t > 0. Thus, S is almost Fδ−contraction, so by theorem 2.7, we conclude
that S has TFP .
i.e. a(t) ∈ S(a(t), b(t), c(t)), b(t) ∈ S(b(t), c(t), a(t)), c(t) ∈ S(c(t), a(t), b(t)).
Thus integral inclusion defined in (4.1) has a solution.

4.2. Application to Solution for Matrix Equation

Motivated by Fan et.al.[8],use the single valued case of Theorem 2.7 (Remark 2.8 ) to
discuss the existence of solution for the matrix equations:

Xp −A∗XA+B∗XB − C∗XC = P, p > 1, (4.8)
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where X ∈ H(m),the set of all Hermitian positive define matrices, P is an m×m positive
define matrix. A,B,C are m×m non singular matrices, A∗, B∗, C∗ denote the conjugate
transpose of the matrices A,B,C respectively.
Following are some important results which play important role for the rest of our analysis.
Thompson metric σ : H(m)×H(m)→ H(m) in [19] is defined as follows:

σ(A,B) = max{lnW (A/B), lnW (B/A)} =
∥∥∥ln(A−

1
2BA−

1
2 )
∥∥∥ , (4.9)

where W (A/B) = inf{λ > 0 : A ≤ λB} = λmax(B−
1
2AB−

1
2 ). Note that (H(m), σ) is a

complete metric space (see [16]).

Lemma 4.2. [12] Let σ : H(m) × H(m) → H(m) be a Thompson metric on the open
convex cone H(m), then for any A,B ∈ H(m) and a non singular matrix N , we have
that the following conditions hold:

σ(A,B) = σ(A−1, B−1) = σ(N∗AN,N∗BN), (4.10)

where A−1, B−1 are the inversion of matrices A and B,respectively;

σ(Ap, Bp) ≤ pσ(A,B), p ∈ [0, 1];

σ(N∗ApN,N∗BpN) ≤ |p|σ(A,B), p ∈ [−1, 1].
(4.11)

Lemma 4.3. [12] For any A,B,C,D ∈ H(m),

σ(A+B,C +D) ≤ max{σ(A,C), σ(B,D)}. (4.12)

Especially,

σ(A+B,A+ C) ≤ σ(B,C). (4.13)

Theorem 4.4. Let X1, X2, X3, Y1, Y2, Y3 ∈ H(m), with

σ
(A∗X1A−B∗X2B + C∗X3C

2
,
A∗Y1A−B∗Y2B + C∗Y3C

2

)
≤ σ(X1, Y1)e−τ , τ > 0

(4.14)

then the matrix equations (4.8) possess a solution.

Proof. Let S : H(m)×H(m)×H(m)→ H(m) be a single valued mapping, defined by

(X1, X2, X3) = (P +A∗X1A−B∗X2B + C∗X3C)
1
p .
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Using Lemma4.2 and Lemma4.3 for X1, X2, X3, Y1, Y2, Y3 ∈ H(m)

σ(S(X1, X2, X3), S(Y1, Y2, Y3))

= σ((P +A∗X1A−B∗X2B + C∗X3C)
1
p , (P +A∗Y1A−B∗Y2B + C∗Y3C)

1
p )

≤ 1

p
σ((P +A∗X1A−B∗X2B + C∗X3C), (P +A∗Y1A−B∗Y2B + C∗Y3C))

≤ 1

p
σ((A∗X1A−B∗X2B + C∗X3C), (A∗Y1A−B∗Y2B + C∗Y3C))

≤ σ((A∗X1A−B∗X2B + C∗X3C), (A∗Y1A−B∗Y2B + C∗Y3C))

≤ σ(
A∗X1A−B∗X2B + C∗X3C

2
,
A∗Y1A−B∗Y2B + C∗Y3C)

2
≤ σ(X1, Y1)e−τ

σ(S(X1, X2, X3), S(Y1, Y2, Y3))

≤ σ(X1, Y1)e−τ .

(4.15)

Similarly,

σ(S(X2, X3, X1), S(Y2, Y3, Y1)) ≤ σ(X2, Y2)e−τ

and

σ(S(X3, X1, X2), S(Y3, Y1, Y2)) ≤ σ(X3, Y3)e−τ

Combining these inequalities, we get

σ(S(X1, X2, X3), S(Y1, Y2, Y3)) + σ(S(X2, X3, X1), S(Y2, Y3, Y1))

+ σ(S(X3, X1, X2), S(Y3, Y1, Y2))

≤ (σ(X1, Y1) + σ(X2, Y2) + σ(X3, Y3))e−τ

≤ [M(X1, X2, X3, Y1, Y2, Y3) +KN(X1, X2, X3, Y1, Y2, Y3)e−τ

(4.16)

Passing to logarithms, above inequality becomes

log[σ(S(X1, X2, X3), S(Y1, Y2, Y3)) + σ(S(X2, X3, X1), S(Y2, Y3, Y1))

+ σ(S(X3, X1, X2), S(Y3, Y1, Y2))]

≤ log[M(X1, X2, X3, Y1, Y2, Y3) +KN(X1, X2, X3, Y1, Y2, Y3)]

+ log e−τ ,

(4.17)

and ultimately, we get

τ + F (σ(S(X1, X2, X3), S(Y1, Y2, Y3)) + σ(S(X2, X3, X1), S(Y2, Y3, Y1))

+ σ(S(X3, X1, X2), S(Y3, Y1, Y2)))

≤ F (M(X1, X2, X3, Y1, Y2, Y3) +KN(X1, X2, X3, Y1, Y2, Y3)),

(4.18)

for F (t) = logt, t > 0.
Hence we conclude that there exists X1, X2, X3 ∈ H(m), such that
X1 = S(X1, X2, X3), X2 = S(X2, X3, X1), X3 = S(X3, X1, X2). This shows the existence
of the solution of Matrix equation (4.8).

• Numerical experiment
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Example 4.5. Let

X1 = X2 = X3 =

[
1 −i
i 2

]
and

Y1 = Y2 = Y3 =

[
1 i
−i 2

]
are Hermitian positive definite matrixes, with

A =

[
2 1
1 1

]
B =

[
1 1
1 3

]
C =

[
1 1
1 2

]
are 2× 2 non singular matrices. Then

A∗X1A−B∗X2B + C∗X3C =

[
0 2
2 −7

]
A∗Y1A−B∗Y2B + C∗Y3C =

[
6 2
2 −7

]
satisfy the condition of Theorem 4.4.
Hence the matrix equation (4.8) has a solution, which is

X1 =

[
1 −i
i 2

]
since, it can easy to verify that the matrix

X2
1 −A∗X1A−B∗X1B + C∗X1C =

[
2 −3i− 2

3i+ 2 12

]
is a positive definite matrix.

Open Problem: For future reading, as an application, an open problem is suggested as
follows:
A discretized population balance for continuous systems at steady state can be modeled
by the following integral equation

f(t) =
a

2(1 + 2a)

∫ t

0

f(t− x)f(x)dx+ e−t.

Whether the existence of solution of the above integral equation can be derived from
results established in this note?

Acknowledgements

We are very grateful to the editor and the anonymous referees for their valuable and
useful comments, which helps in improving the quality of this work.



Applications of Multivalued Fδ-Contraction with Stability Results 543

References

[1] M. Abbas, H. Aydi and E. Karpinar, Tripled fixed points of multivalued Nonlin-
ear contraction mappings in Partial ordered metric spaces, Abstract and Applied
Analysis , Article ID 812690 (2011) 13 pages.
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